Система и способ управления для гибридного транспортного средства

Иллюстрации

Показать все

Группа изобретений относится к системе и способу управления гибридным транспортным средством. Система управления содержит двигатель, электромотор, устройство выбора режима, автоматическую трансмиссию, интегрированный контроллер, контроллер автоматической трансмиссии. Способ управления включает этапы, на которых управляют выбором между режимом приведения в движение за счет электрического привода и гибридным режимом приведения в движение, при котором гибридное транспортное средство снабжается мощностью как посредством двигателя, так и посредством электромотора. Инициируют управление запуском/остановкой двигателя, выполняют управление переключением передач в отношении автоматической трансмиссии, инициируют первое управление, включающее в себя одно из управления запуском/остановкой двигателя и управления переключением передач, принимают запрос на второе управление. Определяют то, существует или нет такое условие, что толчок от переключения передач в отношении автоматической трансмиссии превышает допустимый уровень. Запрещают начало второго управления при приеме запроса на второе управление, когда условие существует в ходе первого управления. Многократно определяют то, продолжает или нет существовать условие после запрещения начала второго управления и в ходе первого управления. Инициируют второе управление при определении того, что условие больше не существует в ходе первого управления. Технический результат заключается в минимизации ударов при переключении передач. 2 н. и 9 з.п. ф-лы, 16 ил.

Реферат

Область техники

Настоящее изобретение относится к системе управления для гибридного транспортного средства, имеющего двигатель, электромотор и автоматическую трансмиссию в приводной системе, и к способу управления таким транспортным средством.

Уровень техники

Система управления для гибридного транспортного средства согласно предшествующему уровню техники может осуществлять управление запуском двигателя и управление переключением передач отдельно, чтобы предотвращать толчок вследствие одновременного выполнения управления запуском двигателя и управления переключением передач. Соответственно, если сначала начинается управление запуском двигателя, управление переключением передач начинается после того, как закончено управление запуском двигателя. Если сначала начинается управление переключением передач, управление запуском двигателя начинается после того, как закончено управление переключением передач. Такая система управления описана, например, в не прошедшей экспертизу заявке на патент Японии № H10-2241.

Сущность изобретения

В такой системе управления управление запуском двигателя и управление переключением передач, в общем, выполняется по отдельности даже в случае, при котором одновременное выполнение управления запуском двигателя и управления переключением передач не представляет собой проблему. Следовательно, когда запуск двигателя задерживается и сначала начинается управление переключением передач, система управления предоставляет водителю ощущение запаздывания увеличения движущей силы. Кроме того, водитель стремится сильнее нажимать педаль акселератора, поскольку движущая сила не увеличивается. Следовательно, дополнительное нажатие педали акселератора приводит к резкому увеличению движущей силы и ощущению рывка во время начала управления запуском двигателя. Соответственно, выполнение по отдельности управления запуском двигателя и управления переключением передач оказывает негативное влияние на задержки и расход топлива, и, кроме того, водитель не может управлять движущей силой надлежащим образом.

Напротив, варианты осуществления настоящего изобретения обеспечивают систему управления и/или способ управления для гибридного транспортного средства, которые позволяют предотвращать толчок и минимизировать влияние на запаздывание и расход топлива, когда запрос на управление для одного управления сформирован в ходе управления другим управлением относительно управления запуском/остановкой двигателя в отношении двигателя и управления переключением передач в отношении автоматической трансмиссии.

Для решения этой задачи система управления для управления гибридным транспортным средством содержит двигатель, электромотор, устройство выбора режима, автоматическую трансмиссию, интегрированный контроллер и контроллер автоматической трансмиссии. Электромотор обеспечивается в приводной системе, идущей от двигателя к ведущему колесу, и он может запускать двигатель и приводить в движение ведущее колесо. Устройство выбора режима располагается между двигателем и электромотором, и оно может переключать режим приведения в движение транспортного средства между гибридным режимом приведения в движение с использованием двигателя и электромотора в качестве источника приведения в движение и режимом приведения в движение за счет электрического привода с использованием электромотора в качестве источника приведения в движение. Автоматическая трансмиссия располагается между электромотором и ведущим колесом, и она может иметь множество положений переключения передач для различных передаточных чисел. Интегрированный контроллер выполняет управление запуском/остановкой двигателя, причем управление запуском/остановкой двигателя является управлением запуском двигателя в ответ на запрос на запуск во время переключения режима на гибридный режим приведения в движение или управлением остановкой двигателя в ответ на запрос на остановку во время переключения режима на режим приведения в движение за счет электрического привода. Контроллер автоматической трансмиссии выполняет управление переключением передач для изменения положения передачи автоматической трансмиссии с текущего положения на запрашиваемое положение в ответ на запрос на переключение передач в ходе движения транспортного средства. Интегрированный контроллер принимает в ходе первого управления, которое является одним из управления запуском/остановкой двигателя в отношении двигателя и управления переключением передач в отношении автоматической трансмиссии, запрос на управление для второго управления, которое является другим из управления запуском/остановкой двигателя и управления переключением передач. Когда толчок не превышает допустимый уровень, если второе управление начинается в запрашиваемое время касательно запроса на управление второго управления в ходе первого управления, интегрированный контроллер начинает второе управление в запрашиваемое время. Когда толчок превышает допустимый уровень, если второе управление начинается в запрашиваемое время, интегрированный контроллер ожидает и начинает второе управление во время разрешения.

Следовательно, в случае, при котором толчок не представляет собой проблему, даже если управление запуском двигателя и управление переключением передач выполняются одновременно, система управления начинает второе управление в ответ во время запроса на управление для второго управления, если запрос на второе управление сформирован в ходе первого управления. Кроме того, в случае, при котором толчок представляет собой проблему, если управление запуском двигателя и управление переключением передач выполняются одновременно, система управления ожидает до времени разрешения второго управления, когда запрос на второе управление сформирован в ходе первого управления, и затем начинает управление переключением передач.

Таким образом, в случае, если толчок не представляет собой проблему, система управления обрабатывает управление запуском двигателя и управление переключением передач одновременно с высокой чувствительностью без задержки. В случае если толчок представляет собой проблему, система управления обрабатывает управление запуском двигателя и управление переключением передач одновременно после минимального периода для задержки начала управления до времени перехода к случаю, когда толчок не представляет собой проблему. Следовательно, когда одно управление запрашивается во время другого, система управления может предотвращать толчок и, кроме того, ограничивать негативное влияние на запаздывание и расход топлива до минимального уровня.

Краткое описание чертежей

Описание в данном документе ссылается на прилагаемые чертежи, на которых одинаковыми ссылочными позициями означены аналогичные части на нескольких видах и на которых:

фиг. 1 - вид, показывающий пример гибридного транспортного средства, в котором может применяться система управления согласно вариантам осуществления изобретения;

фиг. 2 - вид, показывающий пример карты переключения передач автоматической трансмиссии с фиг. 1;

фиг. 3 - вид, показывающий пример карты выбора EV-HEV согласно первому варианту осуществления;

фиг. 4 - схематичный вид, показывающий один пример автоматической трансмиссии с фиг. 1;

фиг. 5 - таблица состояний зацепления, представляющая состояние зацепления каждого фрикционного элемента положений передачи в автоматической трансмиссии с фиг. 1;

фиг. 6 - блок-схема управления, показывающая систему координирования работы двигателя/трансмиссии согласно первому варианту осуществления;

фиг. 7 - блок-схема последовательности операций способа, показывающая координирование работы двигателя/трансмиссии, выполняемой посредством системы координирования работы двигателя/трансмиссии с фиг. 6, когда запрос на переключение передач сформирован после начала управления запуском;

фиг. 8 - блок-схема последовательности операций способа, показывающая координирование работы двигателя/трансмиссии, выполняемой посредством системы координирования работы двигателя/трансмиссии с фиг. 6, когда запрос на запуск сформирован после начала управления переключением передач;

фиг. 9 - таблица выбора, иллюстрирующая способ для выбора второй муфты из фрикционных элементов автоматической трансмиссии;

фиг. 10 - вид, показывающий примеры для запрещения переключения передач, запрещения запуска и разрешения запуска в различные времена, связанные с определенными переменными при переключении коробки передач "вверх" 1→2;

фиг. 11 - временная диаграмма, показывающая характеристики определенных переменных во время полного запрещения переключения коробки передач "вверх" при запуске;

фиг. 12 - временная диаграмма, показывающая характеристики определенных переменных во время запрещения запуска в ходе предварительной обработки при переключении передач;

фиг. 13 - временная диаграмма, показывающая характеристики определенных переменных во время разрешения запуска в ходе фазы крутящего момента;

фиг. 14 - номограмма, показывающая варьирование частоты вращения в автоматической трансмиссии AT во время разрешения запуска в ходе фазы крутящего момента согласно фиг. 13;

фиг. 15 - временная диаграмма, показывающая характеристики определенных переменных во время разрешения запуска в ходе инерционной фазы при переключении передач; и

фиг. 16 - временная диаграмма, показывающая характеристики определенных переменных во время запрещения запуска в ходе фазы CL-синхронизации при переключении передач.

Подробное описание вариантов осуществления изобретения

На фиг. 1 показано гибридное транспортное средство с задним приводом, в котором может применяться система управления согласно вариантам осуществления настоящего изобретения. Как показано на фиг. 1, приводная система гибридного транспортного средства FR-типа включает в себя двигатель ENG, маховик FW, первую муфту CL1 (средство выбора режима или средство переключения режима), электромотор/генератор MG (электромотор или электродвигатель), вторую муфту CL2, автоматическую трансмиссию AT, входной трансмиссионный вал IN, механический масляный насос M-O/P, вспомогательный масляный насос S-O/P, карданный вал PS, дифференциал DF, левый приводной вал DSL, правый приводной вал DSR, левое заднее колесо RL (ведущее колесо) и правое заднее колесо RR (ведущее колесо). Транспортное средство дополнительно включает в себя левое переднее колесо FL и правое переднее колесо FR.

Двигатель ENG может быть бензиновым двигателем или дизельным двигателем и управляется согласно командам управления двигателем из контроллера 1 двигателя. С помощью команд управления двигателем контроллер 1 двигателя выполняет управление запуском двигателя, управление остановкой двигателя, управление открытием дроссельного клапана, управление отсечкой топлива и т.д. Выходной вал двигателя содержит маховик FW.

Первая муфта CL1 является муфтой, обеспечиваемой между двигателем ENG и электромотором/генератором MG. Первая муфта CL1 управляется между состояниями зацепления, частичного зацепления (или зацепления со проскальзыванием) и расцепления (или отпускания) с помощью давления регулирующей жидкости первой муфты, сформированного посредством гидравлического узла 6 первой муфты согласно команде управления первой муфтой из контроллера 5 первой муфты. Например, первая муфта CL1 является обычно закрытой однодисковой сухой муфтой, включающей в себя диафрагменную пружину для удерживания полного зацепления за счет силы упругости. Первая муфта CL1 использует гидравлический актуатор 14, который включает в себя поршень 14a, выполненный с возможностью осуществлять управление длиной хода между полным зацеплением, зацеплением с проскальзыванием и полным расцеплением. Первая муфта CL1 находится в зацеплении, когда давление масла не подается.

Электромотор/генератор MG является синхронным электромотором/генератором, включающим в себя ротор, содержащий встроенный постоянный магнит(ы), и статор, содержащий катушечную обмотку статора. Согласно команде управления из контроллера 2 электромотора, электромотор/генератор MG управляется посредством приложения трехфазного переменного тока, сформированного посредством инвертора 3. Электромотор/генератор MG может выступать в качестве электромотора, приводимого в действие посредством приема подачи мощности из аккумулятора 4 (называемой движение с подачей мощности), и выступать в качестве генератора для формирования электродвижущей силы через обмотку статора и зарядки аккумулятора 4, если ротор принимает энергию вращения из двигателя ENG или ведущих колес (рекуперация). Ротор электромотора/генератора MG соединяется с входным трансмиссионным валом IN автоматической трансмиссии AT.

Вторая муфта CL2 является муфтой, обеспечиваемой между электромотором/генератором MG и левым и правым задними колесами RL, RR. Вторая муфта CL2 управляется между состояниями зацепления, зацепления с проскальзыванием и расцепления (или отпускания) с помощью давления регулирующей жидкости, сформированного посредством гидравлического узла 8 второй муфты согласно команде управления второй муфтой из AT-контроллера 7. Например, вторая муфта CL2 является обычно открытой многодисковой гидравлической муфтой или многодисковым гидравлическим тормозом, который расцепляется, когда давление масла не подается, и содержит пропорциональный соленоид, допускающий непрерывное управление расходом масла и давлением жидкости. В этом примере гидравлический узел 6 первой муфты и гидравлический узел 8 второй муфты располагаются в узле CVU клапанов регулирования давления жидкости, присоединенном к автоматической трансмиссии AT.

Автоматическая трансмиссия AT является многоскоростной трансмиссией (или ступенчатой AT), допускающей автоматическое изменение передаточного отношения между множеством скоростей в соответствии со скоростью транспортного средства и степенью открытия акселератора. В проиллюстрированном примере первого варианта осуществления, автоматическая трансмиссия AT является ступенчатой трансмиссией, имеющей 7 скоростей переднего хода и 1 скорость заднего хода. В этом примере вторая муфта CL2 не является специальной независимой муфтой, специально добавляемой в автоматическую трансмиссию AT. Вместо этого вторая муфта CL2 является выбранным одним из фрикционных зацепляющих элементов (муфты и/или тормоза), которые избирательно зацепляются, чтобы достигать одной из скоростей. Из фрикционных зацепляющих элементов один из них, удовлетворяющий предварительно определенному условию, выбирается и используется в качестве второй муфты CL2.

Механический масляный насос M-O/P предоставляется на входном трансмиссионном валу IN (также называемом моторным валом) автоматической трансмиссии AT и выполнен с возможностью приведения в действие посредством входного трансмиссионного вала IN. Вспомогательный масляный насос A-O/P является насосом, приводимым в действие посредством электромотора, чтобы предотвращать снижение давления жидкости, когда давление на выходе механического насоса M-O/P становится недостаточным вследствие остановки транспортного средства или по некоторой другой причине. Вспомогательный масляный насос S-O/P предоставляется в корпусе электромотора и т.п. в этом примере. Привод вспомогательного масляного насоса S-O/P управляется посредством AT-контроллера 7, как упомянуто ниже.

Карданный вал PS соединяется с выходным трансмиссионным валом автоматической трансмиссии AT. Карданный вал PS также соединяется с левым и правым задними колесами RL и RR через дифференциал DF и левый и правый ведущие валы DSL и DSR.

Это гибридное транспортное средство FR-типа имеет, в качестве режимов приведения в движение, режим электромобиля (в дальнейшем называемый EV-режимом), режим гибридного транспортного средства (в дальнейшем называемый HEV-режимом) и режим управления крутящим моментом приведения в движение (в дальнейшем называемый WSC-режимом).

EV-режим является режимом, в котором первая муфта CL1 расцепляется, и транспортное средство приводится в движение только посредством движущей силы электромотора/генератора MG. EV-режим включает в себя режим приведения в движение за счет электромотора и рекуперативный режим приведения в движение. EV-режим выбирается, когда запрашиваемая движущая сила (т.е. запрашиваемый крутящий момент приведения в движение) низкая, и обеспечивается состояние зарядки (SOC) аккумулятора.

HEV-режим является режимом, в котором первая муфта CL1 находится в зацеплении, и транспортное средство приводится в движение в зацепленном состоянии первой муфты CL1. HEV-режим включает в себя режим приведения в движение при содействии электромотора, режим приведения в движение с выработкой электроэнергии и режим приведения в движение за счет двигателя. Транспортное средство приводится в движение в одном из этих режимов. HEV-режим выбирается, когда запрашиваемая движущая сила высокая или когда SOC аккумулятора является недостаточным.

WSC-режим (режим управления крутящим моментом приведения в движение) является режимом для управления транспортным средством посредством удерживания второй муфты CL2 в состоянии зацепления с проскальзыванием посредством управления частотой вращения электромотора/генератора MG и тем самым управления перегрузочной способностью по крутящему моменту муфты таким образом, чтобы устанавливать соответствие передаточного крутящего момента муфты через вторую муфту CL2 с запрашиваемым крутящим моментом приведения в движение, определенным посредством рабочего состояния транспортного средства и операции водителя. WSC-режим выбирается в области приведения в действие, в которой частота вращения двигателя становится ниже частоты вращения на холостом ходу, аналогично случаю, в котором транспортное средство остановлено, начинает движение или замедляется в HEV-режиме.

Система управления гибридным транспортным средством FR-типа выполнена так, как поясняется ниже. Как показано на фиг. 1, система управления гибридным транспортным средством FR-типа согласно первому варианту осуществления включает в себя контроллер 1 двигателя, контроллер 2 электромотора, инвертор 3, аккумулятор 4, контроллер 5 первой муфты, гидравлический узел 6 первой муфты, AT-контроллер 7, гидравлический узел 8 второй муфты, тормозной контроллер 9 и интегрированный контроллер 10. Интегрированный контроллер 10 соединяется с контроллерами 1, 2, 5, 7 и 9 через линию 11 CAN-связи, обеспечивающую обмен информацией.

Интегрированный контроллер 10 и другие контроллеры, описанные в данном документе, в общем, состоит из соответствующего микрокомпьютера, включающего в себя центральный процессор (ЦП), порты ввода и вывода (I/O), принимающие определенные данные, описанные в данном документе, оперативное запоминающее устройство (ОЗУ), энергонезависимое запоминающее устройство (ЭЗУ), общую шину данных и постоянное запоминающее устройство (ПЗУ) в качестве электронного носителя хранения данных для выполняемых программ и определенных сохраненных значений, как пояснено в данном документе. Функциональные (или обрабатывающие) узлы интегрированного контроллера 10, описанные в данном документе (и других контроллеров при необходимости) могут быть, например, реализованы в программном обеспечении в качестве выполняемых программ либо могут быть реализованы полностью или частично посредством отдельных аппаратных средств в форме одной или более интегральных схем (ИС). Интегрированный контроллер 10 может быть модулем управления двигателем (МУД), как известно в данной области техники, запрограммированным так, как описано в данном документе. Другие контроллеры, описанные в данном документе, могут иметь аналогичные конструкции. Кроме того, хотя показано несколько контроллеров, возможно меньшее или большее их число.

Контроллер 1 двигателя принимает частоту вращения двигателя из датчика 12 частоты вращения двигателя, команду управления целевым крутящим моментом двигателя из интегрированного контроллера 10 и другую запрошенную информацию. Затем, контроллер 1 двигателя доставляет команду для управления рабочей точкой двигателя (Ne, Te) в актуатор дроссельного клапана двигателя ENG и т.д.

Контроллер 2 электромотора принимает положение вращения ротора электромотора/генератора MG, считываемое посредством кругового датчика 13 положения, команду управления целевым крутящим моментом MG и команду управления целевой частотой вращения MG из интегрированного контроллера 10 и другую запрошенную информацию. Затем, контроллер 2 электромотора доставляет команду в инвертор 3 для управления рабочей точкой электромотора (Nm, Tm) для электромотора/генератора MG. Кроме того, контроллер 2 электромотора отслеживает состояние зарядки (SOC) аккумулятора, представляющее зарядную емкость аккумулятора 4, и предоставляет информацию по SOC аккумулятора в интегрированный контроллер 10 через линию 11 CAN-связи.

Контроллер 5 первой муфты принимает положение хода поршня 14a гидравлического актуатора 14, считываемое посредством датчика хода 15 первой муфты, команду управления целевым крутящим моментом CL1 из интегрированного контроллера 10 и другую запрошенную информацию. Затем, контроллер 5 первой муфты доставляет команду в гидравлический узел 6 первой муфты в гидравлическом регулирующем клапанном узле CVU, чтобы управлять состоянием зацепления, частичного зацепления или расцепления первой муфты CL1.

AT-контроллер 7 принимает информацию из датчика 16 открытия акселератора, датчика 17 скорости транспортного средства и других датчиков 18. В ходе операции движения транспортного средства с выбранным диапазоном D (передач), AT-контроллер 7 определяет оптимальное передаточное число посредством проверки положения рабочей точки, определенного посредством степени APO открытия акселератора и скорости VSP транспортного средства на карте переключения передач, показанной в качестве примера на фиг. 2. Затем, AT-контроллер 7 доставляет команду управления в гидравлический регулирующий клапанный узел CVU, чтобы достигать выбранного передаточного числа. Как показано на фиг. 2, карта переключения передач включает в себя линии переключения коробки передач "вверх" и линии переключения коробки передач "вниз" в зависимости от открытия APO акселератора и скорости VSP транспортного средства. В дополнение к этому управлению переключением передач, AT-контроллер 7 принимает команду управления целевым крутящим моментом CL2 из интегрированного контроллера 10 и, в ответ, выполняет управление второй муфтой посредством вывода команды в гидравлический узел 8 второй муфты в гидравлическом регулирующем клапанном узле CVU, чтобы управлять зацеплением с проскальзыванием второй муфты CL2.

Тормозной контроллер 9 принимает скорости вращения колес для четырех колес, считываемые посредством датчиков 19 скорости вращения колес, ход BS тормоза, считываемый посредством датчика 20 хода тормоза, команду координирования работы при рекуперации из интегрированного контроллера 10 и другую запрошенную информацию. Затем, тормозной контроллер 9 выполняет координирование работы при рекуперации, чтобы компенсировать недостаток с помощью механической тормозной силы (гидравлической тормозной силы и/или тормозной силы электромотора), например, когда только рекуперативной тормозной силы недостаточно для того, чтобы достигать запрашиваемой тормозной силы, определенной из хода BS тормоза во время нажатия тормоза.

Интегрированный контроллер 10 выполняет функции, чтобы управлять потребленной энергией транспортного средства в целом и управлять транспортным средством с наибольшей эффективностью. Интегрированный контроллер 10 принимает запрошенную информацию из датчика 21 частоты вращения электромотора для считывания частоты Nm вращения электромотора и других датчиков/переключателей 22 и информацию через линию 11 CAN-связи. Затем, интегрированный контроллер 10 доставляет команду управления целевым крутящим моментом двигателя в контроллер 1 двигателя, команду управления целевым крутящим моментом MG и команду управления целевой частотой вращения MG в контроллер 2 электромотора, команду управления целевым крутящим моментом CL1 в контроллер 5 первой муфты, команду управления целевым крутящим моментом CL2 в AT-контроллер 7 и команду координирования работы при рекуперации в тормозной контроллер 9.

Интегрированный контроллер 10 включает в себя секцию выбора режима для поиска оптимального режима приведения в движение в соответствии с положением рабочей точки, определенным посредством степени APO открытия акселератора и скорости VSP транспортного средства на карте выбора EV-HEV, показанной в качестве примера на фиг. 3. Интегрированный контроллер 10 затем выбирает такой определенный режим приведения в движение в качестве требуемого целевого режима приведения в движение. Карта выбора EV-HEV включает в себя линию переключения EV→HEV для переключения режима приведения в движение с "EV-режима" на "HEV-режим" в случае пересечения рабочей точки (APO, VSP) этой линии из EV-области, линию переключения HEV→EV для переключения режима приведения в движение с "HEV-режима" на "EV-режим" в случае пересечения рабочей точки (APO, VSP) этой линии из HEV-области и линию переключения HEV→WSC для переключения режима приведения в движение на "WSC-режим" в случае попадания рабочей точки (APO, VSP) в WSC-область в ходе работы в HEV-режиме. Линия переключения HEV→EV и линия переключения EV→HEV сконфигурированы предоставлять гистерезис в качестве границы, разделяющей EV-область и HEV-область. Линия переключения HEV→WSC идет вдоль линии первой заданной скорости VSP1 транспортного средства, при которой двигатель ENG удерживается на частоте вращения на холостом ходу, когда автоматическая трансмиссия AT работает на первой скорости. Когда SOC аккумулятора становится меньше или равным предварительно определенному значению в ходе выбора "EV-режима", целевой режим приведения в движение принудительно изменяется на "HEV-режим".

Фиг. 4 является схематичным видом, показывающим один пример автоматической трансмиссии AT, установленной в гибридном транспортном средстве FR-типа, содержащем систему управления согласно первому варианту осуществления. Автоматическая трансмиссия AT этого примера является ступенчатой автоматической трансмиссией, имеющей семь скоростей переднего хода и одну скорость заднего хода. Движущая сила, полученная из источника приведения в движение, включающего в себя только электромотор/генератор MG либо как электромотор/генератор MG, так и двигатель ENG, вводится на входной трансмиссионный вал IN (INPUT), частота вращения изменяется посредством четырех планетарных передач и семи фрикционных зацепляющих элементов, и вращение выходного вала выводится из выходного трансмиссионного вала OUTPUT.

Передаточный механизм включает в себя первый редуктор GS1, включающий в себя первую планетарную передачу G1 и вторую планетарную передачу G2, и второй редуктор GS2, включающий в себя третью планетарную передачу G3 и четвертую планетарную передачу G4, размещаемые в порядке относительно оси от входного трансмиссионного вала INPUT к выходному трансмиссионному валу OUTPUT. Группа фрикционных зацепляющих элементов включает в себя первую муфту C1 (или входную муфту I/C), вторую муфту C2 (или прямую муфту D/C), третью муфту C3, первый тормоз B1, второй тормоз B2, третий тормоз B3 и четвертый тормоз B4. Дополнительно предоставляются первая односторонняя муфта F1 и вторая односторонняя муфта F2.

Первая планетарная передача G1 является планетарной передачей с сателлитами одного типа, включающей в себя первую солнечную шестерню S1, первую коронную шестерню R1, первые сателлиты P1 и первое водило PC1. Вторая планетарная передача G2 является планетарной передачей с сателлитами одного типа, включающей в себя вторую солнечную шестерню S2, вторую коронную шестерню R2, вторые сателлиты P2 и второе водило PC2. Третья планетарная передача G3 является планетарной передачей с сателлитами одного типа, включающей в себя третью солнечную шестерню S3, третью коронную шестерню R3, третьи сателлиты P3 и третье водило PC3. Четвертая планетарная передача G4 является планетарной передачей с сателлитами одного типа, включающей в себя четвертую солнечную шестерню S4, четвертую коронную шестерню R4, четвертые сателлиты P4 и четвертое водило PC4.

Входной трансмиссионный вал INPUT соединяется со второй коронной шестерней R2 (сплошная соединительная линия опущена на фиг. 4) и выполнен с возможностью принимать вращающую движущую силу, по меньшей мере, из одного из двигателя ENG и электромотора/генератора MG. Выходной трансмиссионный вал OUTPUT соединяется с третьим водилом PC3 и может доставлять выходную вращающую движущую силу через конечную шестерню на ведущее колесо (левое и правое задние колеса RL, RR).

Первый соединительный элемент M1 соединяет первую коронную шестерню R1, второе водило PC2 и четвертую коронную шестерню R4 между собой, так что они вращаются как один узел. Второй соединительный элемент M2 соединяет третью коронную шестерню R3 и четвертое водило PC4 между собой, так что они вращаются как один узел. Третий вращающийся элемент M3 соединяет первую солнечную шестерню S1 и вторую солнечную шестерню S2 между собой, так что они вращаются как один узел.

Первая муфта C1 является муфтой для избирательного выполнения и разрыва соединения между входным трансмиссионным валом INPUT и вторым соединительным элементом M2. Вторая муфта C2 является муфтой для избирательного выполнения и разрыва соединения между четвертой солнечной шестерней S4 и четвертым водилом PC4. Третья муфта C3 (или H&LR-муфта H&LR/C) является муфтой для избирательного выполнения и разрыва соединения между третьей солнечной шестерней S3 и четвертой солнечной шестерней S4. Вторая односторонняя муфта F2 (или односторонняя муфта 1&20WC первой и второй скорости) располагается между третьей солнечной шестерней S3 и четвертой солнечной шестерней S4. Первый тормоз B1 (или передний тормоз Fr/B) является тормозом для избирательного удерживания первого водила PC1 так, что он не вращается, на картере CASE трансмиссии. Первая односторонняя муфта F1 (или односторонняя муфта 1stOWC для первой скорости) располагается параллельно с первым тормозом B1. Второй тормоз B2 (или тормоз LOW/B низшей передачи) является тормозом для избирательного удерживания третьей солнечной шестерни S3 так, что она не вращается, на картере CASE трансмиссии. Третий тормоз B3 (или 2346-тормоз 2346/B) является тормозом для избирательного удерживания третьего вращающегося элемента M3, соединяющего первую и вторую солнечные шестерни S1 и S2, так, что он не вращается, на картере CASE трансмиссии. Четвертый тормоз B4 (или тормоз R/B заднего хода) является тормозом для избирательного удерживания четвертого водила PC4 так, что он не вращается, на картере CASE трансмиссии.

Фиг. 5 показывает таблицу состояний зацепления, показывающую состояния зацепления фрикционных зацепляющих элементов на каждой скорости в автоматической трансмиссии AT с фиг. 4, установленной в гибридном транспортном средстве FR-типа согласно фиг. 1. На фиг. 5 белый круг указывает гидравлическое зацепление в состоянии приведения в движение, белый круг в круглых скобках указывает гидравлическое зацепление в состоянии движения по инерции (работу односторонней муфты в состоянии приведения в движение), а отсутствие метки указывает расцепление.

Механизм переключения скоростей с такой конструкцией позволяет достигать семи скоростей переднего хода и одной скорости заднего хода, как упомянуто ниже, посредством смены операции переключения передач по расцеплению одного элемента и зацеплению другого элемента.

На "первой скорости" только второй тормоз B2 находится в зацеплении, и, соответственно, первая и вторая односторонние муфты F1 и F2 находятся в зацеплении. На "второй скорости" второй тормоз B2 и третий тормоз B3 находятся в зацеплении, и вторая односторонняя муфта F2 находится в зацеплении. На "третьей скорости" второй тормоз B2, третий тормоз B3 и вторая муфта C2 находятся в зацеплении, а первая и вторая односторонние муфты F1 и F2 не находятся в зацеплении. На "четвертой скорости" третий тормоз B3, вторая муфта C2 и третья муфта C3 находятся в зацеплении. На "пятой скорости" первая муфта C1, вторая муфта C2 и третья муфта C3 находятся в зацеплении. На "шестой скорости" третий тормоз B3, первая муфта C1 и третья муфта C3 находятся в зацеплении. На "седьмой скорости" первый тормоз B1, первая муфта C1 и третья муфта C3 находятся в зацеплении, и первая односторонняя муфта F1 находится в зацеплении. На "скорости заднего хода" четвертый тормоз B4, первый тормоз B1 и третья муфта C3 находятся в зацеплении.

Фиг. 6 является блок-схемой управления, показывающей интегрированный контроллер 10 и AT-контроллер 7 согласно первому варианту осуществления, выполненные с возможностью формировать систему координирования работы двигателя/трансмиссии (или систему управления взаимодействием двигателя/переключения передач), координирующую управление запуском двигателя и управление переключением передач.

Система координирования работы двигателя/трансмиссии, показанная на фиг. 6, отличается посредством флага запрещения переключения передач, заданного посредством интегрированного контроллера 10, имеющего информацию относительно управления двигателем и доставляемого в AT-контроллер 7, и флага запрещения запуска, заданного посредством AT-контроллера 7, имеющего информацию относительно управления переключением передач и доставляемого в интегрированный контроллер 10. Если, например, интегрированный контроллер 10 может задавать оба из флага запрещения переключения передач и флага запрещения запуска, интегрированный контроллер 10 должен принимать подробную информацию относительно управления переключением передач из AT-контроллера 7. В отличие от этой компоновки, компоновка по фиг. 6 позволяет точно задавать флаг запрещения запуска без приема подробной информации относительно управления переключением передач из AT-контроллера 7. Соответственно, эта конфигурация является предпочтительной, но не обязательной.

Как показано на фиг. 6, интегрированный контроллер 10 включает в себя секцию 10a определения режима запуска, секцию 10b определения системных запросов при отказах, секцию 10c формирования флага запроса на запуск, секцию 10d определения запрещения переключения передач (средство задания флага запрещения переключения передач), секцию 10e определения запрещения остановки двигателя и секцию 10f определения запрещения запуска двигателя.

Секция 10a выбора режима запуска выбирает одно из обычного запуска и запуска при движении по инерции и доставляет результат выбора в секцию 10f определения запрещения запуска двигателя. Секция 10b определения системных запросов при отказах определяет запрос на переход в отказоустойчивый режим и запрос на переход в режим защиты компонентов и доставляет результаты определения в секцию 10f определения запрещения запуска двигателя. Секция 10c формирования флага запроса на запуск формирует флаг запроса на запуск двигателя и доставляет его в секцию 71 управления запуском AT-контроллера 7, поясненного в дальнейшем. Секция 10d определения запрещения переключения передач (средство задания флага запрещения переключения передач) задает флаг запрещения переключения передач и доставляет его в секцию 72 управления переключением передач AT-контроллера 7, поясненного в дальнейшем. Секция 10e определения запрещения остановки определяет запрещение остановки двигателя. Секция 10f определения запрещения запуска двигателя принимает флаг запрещения запуска из секции 71a формирования флага запрещения запуска (также называемой секцией задания флага запрещения запуска) секции 71 управления запуском, результат выбора из секции 10a определения режима запуска и результаты определения из секции 10b определения системных запросов при отказах. В ответ секция 10e определения запрещения запуска двигателя определяет запрещение запуска двигателя, включающее в себя приоритеты условий запрещения запуска двигателя. Приоритеты (или степени приоритета) следующие: 1 - отказоустойчивый режим, 2 - режим защиты компонентов, 3 - запрос на выполнение и 4 - запрос по выделению выхлопных газов при расходе т