Мультиплексирование управляющей информации и информации данных от пользовательского оборудования в физическом канале данных

Иллюстрации

Показать все

Изобретение относится к беспроводным системам. Технический результат - улучшение надежности приема HARQ-ACK, когда оно кодировано с использованием блочного кода относительно того, когда оно кодировано с использованием кода с повторением. Для этого способ и устройство для пользовательского оборудования (UE) предусматривают передачу информации HARQ-ACK по физическому совместно используемому каналу восходящей линии связи (PUSCH) в ответ на прием по меньшей мере одного транспортного блока (TB), когда UE сконфигурировано базовой станцией с множеством составляющих несущих (CC) нисходящей линии связи (DL), для выбора единственного PUSCH для передачи управляющей информации восходящей линии связи (UCI), когда UE имеет несколько передач PUSCH, и для и применения разнесения передачи к передаче HARQ-ACK в PUSCH. 2 н. и 8 з.п. ф-лы, 13 ил., 2 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, направлено на беспроводные системы связи, а более конкретно, но не исключительно, на передачу сигналов управляющей информации в восходящей линии связи системы связи.

Описание предшествующего уровня техники.

Система связи включает в себя нисходящую линию связи (DL), которая переносит сигналы передачи от базовой станции (BS или Node B) пользовательским оборудованием (UE), и восходящую линию связи (UL), которая переносит сигналы передачи от UE к Node B. Пользовательское оборудование, также обычно именуемое терминалом или мобильной станцией, может быть стационарным или мобильным и может быть беспроводным устройством, сотовым телефоном, персональным вычислительным устройством и так далее. Node B обычно является стационарной станцией и также может упоминаться как базовая приемо-передающая система (BTS), точка доступа или как некоторая другая эквивалентная совокупность терминов. Более конкретно, UL поддерживает передачу сигналов данных, несущих информационное содержимое, управляющих сигналов, предоставляющих информацию, ассоциированную с передачей сигналов данных в DL, и опорных сигналов (RS), которые обычно называются пилотными сигналами. DL также поддерживает передачу сигналов данных, управляющих сигналов и RS.

Сигналы данных UL передаются через физический совместно используемый канал восходящей линии связи (PUSCH), а сигналы данных DL передаются через физический совместно используемый канал нисходящей линии связи (PDSCH).

В отсутствие передачи PUSCH, UE передает управляющую информацию восходящей линии связи (UCI) через физический канал управления восходящий линии связи (PUCCH). Однако при наличии передачи PUSCH, UE может передавать UCI совместно с информацией данных через PUSCH.

Управляющие сигналы DL могут быть широковещательно переданы или посланы с учетом специфики UE. Соответственно, наряду с другими целями, для предоставления UE назначений планирования (SA) для приема PDSCH (DL SA) или передачи PUSCH (UL SA), могут быть использованы специфичные для UE каналы управления. Данные SA передают от Node B в соответствующие UE, используя форматы управляющей информации нисходящей линии связи (DCI), через соответствующие физические каналы управления нисходящей линии связи (PDCCH).

UCI включает в себя подтверждающую (ACK) информацию, ассоциированную с использованием процессов гибридных автоматических запросов на повторение передачи (HARQ). Информацию HARQ-ACK посылают в ответ на прием UE транспортных блоков (TB), передаваемых посредством PDSCH.

UCI также может включать в себя индикатор качества канала (CQI), индикатор матрицы предварительного кодирования (PMI) или индикатор ранга (RI), которые вместе могут именоваться информацией о состоянии канала (CSI). CQI снабжает Node B измерением отношения сигнал/шум, которое UE испытывает на подканалах или по всей рабочей ширине полосы пропускания (BW) DL. Это измерение обычно выражено в виде наивысшей схемы модуляции и кодирования (MCS), для которой можно достичь заданной частоты появления ошибочных блоков (BLER) для передачи TB. MCS представляет собой произведение порядка модуляции (числа битов данных на символ модуляции) и кодовой скорости, примененной к передаче информации данных. PMI/RI информирует Node B как комбинировать передачи сигналов к UE от множества антенн Node B, используя принципы множественного входа - множественного вывода (MIMO).

Фиг.1 иллюстрирует обычную структуру передачи PUSCH.

Ссылаясь на фиг.1, для простоты интервал времени передачи (TTI) является одним подкадром 110, который включает в себя два временных слота. Каждый временной слот 120 включает в себя N s y m b U L символов, используемых для передачи сигналов данных, сигналов UCI, или RS. Каждый символ 130 включает в себя циклический префикс (CP) для снижения помех из-за эффектов распространения канала. Передача PUSCH в одном временном слоте 120 может быть или на той же или на другой BW, что и передача PUSCH в другом временном слоте.

Некоторые символы в каждом временном слоте используют для передачи RS 140, которые делают возможным оценку канала и когерентную демодуляцию принятых данных и/или сигналов UCI.

BW передачи включает в себя блоки частотных ресурсов, которые в данном документе будут именоваться как блоки физических ресурсов (PRB). Каждый PRB включает в себя N s c R B поднесущих или ресурсных элементов (RE), а UE для BW передачи PUSCH выделяют MPUSCH PRB 150 в общей сложности M s c P U S C H = M P U S C H ⋅ N s c R B RE.

Последний символ подкадра используют для передачи зондирующего RS 160 от одного или нескольких UE. SRS снабжает Node B оценкой CQI для среды канала UL для соответствующего UE. Параметры передачи SRS полустатически конфигурируются посредством Node B каждому UE посредством сигнализации более высокого уровня, такой как сигнализация управления радиоресурсами (RRC).

На фиг.1 число символов подкадров, доступных для передачи данных, равно N s y m b P U S C H = 2 ⋅ ( N s y m b U L − 1 ) − N S R S , где NSRS=1, если последний символ подкадра используется для передачи SRS, а иначе NSRS=0.

Фиг.2 иллюстрирует обычный передатчик для передачи данных, CSI и HARQ-ACK сигналов по PUSCH.

Ссылаясь на фиг.2, кодированные биты 205 CSI и кодированные биты 210 данных мультиплексируют мультиплексором 220. Затем вставляют HARQ-ACK биты путем прокалывания (исключения) битов данных и/или битов CSI посредством модуля 230 прокалывания. Затем посредством модуля 240 DFT выполняют дискретное преобразование Фурье (DFT). Затем посредством преобразования (отображения) поднесущих модулем 250 преобразования поднесущих выбирают RE, соответствующие BW передачи PUSCH от модуля 255 управления. Выполняют обратное быстрое преобразование Фурье (IFFT) посредством модуля 260 IFFT, выполняют вставку CP посредством модуля 270 вставки CP и выполняют операцию «временное окно» посредством фильтра 280, создавая, таким образом, передаваемый сигнал 290.

Передача PUCHS предполагается через кластеры смежных RE в соответствии со способом множественного доступа с ортогональным частотным разделением с расширением спектра дискретным преобразованием Фурье (DFT-S-OFDMA) для передачи сигнала через один кластер 295A (также известным как множественный доступ с частотным разделением с одной несущей (SC-FDMA)) или через множество несмежных кластеров 295B.

Фиг.3 иллюстрирует обычный приемник для приема посылаемого сигнала, показанного на фиг.2.

Ссылаясь на фиг.3, антенна принимает аналоговый радиочастотный (RF) сигнал и после модулей дальнейшей обработки (таких как фильтры, усилители, частотные преобразователи с понижением частоты, и аналогово-цифровые преобразователи), которые не показаны для краткости, принятый цифровой сигнал 310 фильтруют фильтром 320 и удаляют CP посредством модуля 330 удаления CP. Затем принимающий модуль применяет быстрое преобразование Фурье (FFT) посредством модуля 340 FFT, под управлением модуля 355 управления, с помощью модуля 350 обратного преобразования поднесущих выбирает RE, использованные передатчиком посредством обратного преобразования поднесущих, после чего модуль 360 обратного DFT (IDFT) применяет IDFT, извлекающий модуль 370 извлекает биты HARQ-ACK, а демультиплексирующий модуль 380 демультиплексирует биты 390 данных и биты 395 CSI.

Предполагается, что передача RS осуществляется с использованием последовательности с постоянной амплитудой и нулевой автокорреляцией (CAZAC). Пример CAZAC-последовательностей показан в Уравнении (1).

c k ( n ) = exp [ j 2 π k L ( n + n n + 1 2 ) ] ... (1)

В Уравнении (1) L является длиной CAZAC-последовательности, n является индексом элемента последовательности n={0,1, …, L-1}, а k является индексом последовательности. Если L является простым числом, то имеется L-1 определенных последовательностей, определенных как k диапазонов в {0, 1, …, L-1}.

Для четного числа RE последовательности с четной длиной, основанные на CAZAC, могут быть созданы, например, посредством усечения или расширения CAZAC-последовательности.

Ортогональное мультиплексирование CAZAC-последовательностей может быть достигнуто посредством применения разных циклических сдвигов (CS) к одной и той же CAZAC-последовательности.

Для передачи HARQ-ACK или RI по PUSCH, UE определяет соответствующее число кодированных символов Q', как показано в уравнении (2).

Q ' = min ( ⌈ O ⋅ β o f f s e t P U S C H Q m ⋅ R ⌉ ,4 ⋅ M s c P U S C H ) ... (2)

В уравнении (2) O является числом битов информации HARQ-ACK или битов информации RI, β o f f s e t P U S C H сообщается UE через сигнализацию RRC, Qm является числом битов данных на символ модуляции (Qm=2,4,6 для QPSK, QAM16, QAM64 соответственно), R является кодовой скоростью данных начальной передачи PUSCH для того же TB, M s c P U S C H является BW передачи PUSCH в текущем подкадре, а ⌈ ⌉ обозначает операцию округления, округляющую число до ближайшего целого в большую сторону.

Кодовая скорость данных определена, как показано в уравнении (3)

R = ( ∑ r = 0 C − 1 K r ) / ( Q m ⋅ M s c P U S C H − i n i t i a l ⋅ N s y m b P U S C H − i n i t i a l ) ... (3)

В уравнении (3) C является общим числом кодовых блоков данных, а Kr является числом битов для кодового блока номер r. Максимальное число HARQ-ACK или RI RE ограничено RE из 4 DFT-S-OFDM символов ( 4 ⋅ M s c P U S C H ) .

Когда UE принимает один TB, HARQ-ACK включает в себя 1 бит, который кодируют как бинарную "1", если TB корректно принят (положительное квитирование или ACK), или как бинарный "0", если TB принят некорректно (негативное квитирование или NACK).

Когда UE принимает два TB, HARQ-ACK включает в себя 2 бита [ o 0 A C K o 1 A C K ] , где o 0 A C K для TB 0 и o 1 A C K для TB 1. Кодировка для данных битов HARQ-ACK дана в таблице 1, где o 2 ACK = ( o 0 A C K + o 1 A C K ) mod 2 для обеспечения (3, 2) симплексного кода для 2-битной передачи HARQ-ACK.

Таблица 1Кодирование для 1 бита и 2 битов HARQ-ACK
Q m Кодированный HARQ-ACK - 1 бит Кодированный HARQ-ACK - 2 бит
2 [ o 0 A C K y] [ o 0 A C K o 1 A C K o 2 A C K o 0 A C K o 1 A C K o 2 A C K ]
4 [ o 0 A C K y x x] [ o 0 A C K o 1 A C K xx o 2 A C K o 0 A C K xx o 1 A C K o 2 A C K xx]
6 [ o 0 A C K y x x x x] [ o 0 A C K o 1 A C K xxxx o 2 A C K o 0 A C K xxxx o 1 A C K o 2 A C K xxxx]

Для CQI/PMI мультиплексирования в PUSCH, UE определяет соответствующее число кодированных символов Q', как показано в уравнении (4).

Q ' = min ( ⌈ ( O + L ) ⋅ β o f f s e t P U S C H Q m ⋅ R ⌉ , M s c P U S C H ⋅ N s c P U S C H − Q R I Q m ) ... (4)

В уравнении (4) O является числом бит информации CQI/PMI, L является числом бит CRC, заданным L = { 0 O ≤ 11 8 o t h e r w i s e , а QCQI=Qm∙Q'. Если RI не передается, то тогда QRI=0.

Для канального кодирования CQI/PMI используют сверточный код, если O>11 бит, и используют (32, O) блочный код Рида-Мюллера, если O≤11бит. Кодовые слова данного (32, O) блочного кода являются линейными комбинациями 11 последовательностей базисов, обозначенных как M i , n , и приведенных ниже в Таблице 2. Обозначая входящую последовательность как o 0 , o 1 , o 2 ,..., o O − 1 , а кодированный CQI/PMI блок как b 0 , b 1 , b 2 , b 3 ,... b B − 1 ,B=32, получаем b i = ∑ n = 0 O − 1 ( o n ⋅ M i , n ) mod 2 , i = 0,1,2,..., B − 1 .

Выходную последовательность q 0 , q 1 , q 2 , q 3 ,... q Q C Q I − 1 получают посредством циклического повторения кодированного CQI/PMI блока как q i = b ( i mod B ) , i = 0,1,2,... Q C Q I − 1 .

Среди UCI HARQ-ACK имеют наивысшие требования к надежности, и соответствующие RE расположены следом за RS в каждом временном слоте с тем, чтобы получить наиболее точную оценку канала для их демодуляции. При отсутствии передачи CQI/PMI, RI располагают в символах после HARK-ACK, в то время как при передаче CQI/PMI равномерно мультиплексируют по всему подкадру.

Фиг.4 иллюстрирует обычное мультиплексирование UCI в подкадре PUSCH.

Ссылаясь на фиг.4, биты 410 HARQ-ACK расположены следом за RS 420 в каждом временном слоте подкадра PUSCH. Биты 430 CQI/PMI мультиплексированы по всем DFT-S-OFDM-символам, а оставшаяся часть подкадра переносит передачу битов 440 данных. Поскольку мультиплексирование осуществляют до DFT, для расположения UCI используют размеры виртуальной частоты.

Для передатчика UE, имеющего более чем одну антенну, разнесение передачи (TxD) может улучшить надежность принятого сигнала, обеспечивая пространственное разнесение.

Примером способа TxD является пространственно-временное блочное кодирование (STBC). При STBC, если первая антенна передает символы d 0 , d 1 , вторая антенна передает символы d 0 * , d 1 * , где d* является комплексным сопряжением от d. Обозначив оценку канала для сигнала, принятого на опорной антенне Node B и переданного от j-той антенны UE как h, где j=1,2, и обозначив сигнал, принятый на антенне Node B в k-том DFT-S-OFDM символе как yk, k=1,2, решение для пары STBC символов [ d ^ k , d ^ k + 1 ] соответствует [ d ^ k , d ^ k + 1 * ] T = H H [ y k , y k + 1 * ] T , где [ ] T обозначает транспонирование вектора, а H H = [ h 1 * − h 2 h 2 * h 1 ] / ( | h 1 | 2 + | h 2 | 2 ) .

С целью увеличения поддерживаемых скоростей передачи данных рассматривается агрегация множества составляющих несущих (CC), как в DL, так и в UL, для обеспечения больших рабочих BW. Например, для поддержания передачи в пределах 60 МГц, может быть использована агрегация трех 20 МГц CC.

Фиг.5 иллюстрирует принцип обычной агрегации несущих (CA).

Ссылаясь на фиг.5, рабочая DL BW в 60 МГц 510 построена посредством агрегации 3 (смежных, для простоты) DL CC 521, 522, и 523, каждая из которых имеет BW в 20 МГц. Точно так же рабочая UL BW в 60 МГц 530 построена посредством агрегации 3 UL CC 541, 544, и 543, каждая из которых имеет BW в 20 МГц. Для простоты в примере, показанном на фиг.5, каждая из DL CC 521, 522, и 523 уникально отображается на UL CC (симметричная CA), но также является возможным отобразить на одиночную UL CC более чем одну DL CC или отобразить на одиночную DL CC более чем одну UL CC (ассиметричная CA, не показана для краткости). Линия связи между DL CC и UL CC обычно зависит от UE.

Node B конфигурирует CC для UE, используя сигнализацию RRC. Принимая во внимание передачу разных TB в каждом из множества DL CC 521, 522, и 523, в UL будет передаваться множество битов HARQ-ACK.

Для одновременности передач HARQ-ACK и PUSCH прямым расширением обычной работы является включение битов HARQ-ACK для TB, принятого на DL CC, в PUSCH связанного UL CC. Однако на практике не все UL CC могут иметь передачи PUSCH в том же самом подкадре. Таким образом, любое исполнение, поддерживающее передачу по PUSCH битов HARQ-ACK, соответствующих принятию TB на множестве DL CC, должно учитывать случай только с единственным PUSCH. Это также применимо к любому виду UCI (не именно к HARQ-ACK). Предполагается, что передача PUCCH имеет место в одиночной UL CC, которая будет далее именоваться первичной CC UL.

Для UCI передачи по PUSCH необходимо поддерживать TxD (если UE имеет несколько передающих антенн), особенно для HARQ-ACK, требующих высокую надежность, которая может быть сложно достижима без существенного увеличения требуемых ресурсов PUSCH, особенно для большой нагрузки HARQ-ACK (такой как, например, 10 бит HARQ-ACK, соответствующих получению TB в 5 DL CC, при 2 TB на DL CC.

Таким образом, существует необходимость в поддержке передачи информации HARQ-ACK по PUSCH в ответ на прием по меньшей мере одного TB от UE, выполненного с возможностью CA в DL системы связи.

Существует другая необходимость в определении размеров ресурсов PUSCH, используемых для мультиплексирования HARQ-ACK в зависимости от способа кодирования HARQ-ACK с целью улучшения надежности приема HARQ-ACK.

Существует другая необходимость в выборе PUSCH для передачи UCI для множества одновременных передач PUSCH.

Существует другая необходимость в поддержке TxD для передачи HARQ-ACK по PUSCH.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Целью отдельных вариантов осуществления данного изобретения является решить, смягчить или избежать, хотя бы частично, по меньшей мере одну из проблем и/или недостатков, относящихся к предшествующему уровню техники.

Соответственно, настоящее изобретение было призвано решить, по меньшей мере, вышеизложенные ограничения и проблемы в предшествующем уровне техники, и данное изобретение предоставляет способы и устройства для UE передавать сигналы ACK, ассоциированные с HARQ-процессами, то есть сигналы HARQ-ACK, в ответ на прием TB, когда UE сконфигурировано из Node B с множеством CC в DL системы связи, таким образом улучшая надежность приема информации HARQ-ACK, закодированной в PUSCH, выбирать PUSCH среди множества PUSCH для мультиплексирования UCI и применять разнесение передачи HARQ-ACK в PUSCH.

В соответствии с аспектом настоящего изобретения предоставлен способ для пользовательского оборудования (UE) передачи к базовой станции информации квитирования в ответ на прием по меньшей мере одного транспортного блока (TB) по меньшей мере на одной назначенной несущей среди N назначенных несущих, причем для каждой назначенной несущей базовая станция назначает для UE соответствующий режим передачи (TM), определяющий максимальное число TB, которые UE может принять в физическом совместно используемом канале нисходящей линии связи (PDSCH) при передаче базовой станцией на соответствующей назначенной несущей, причем информация квитирования передается (мультиплексируется) совместно с информацией данных в физическом совместно используемом канале восходящей линии связи (PUSCH). Способ включает в себя создание посредством UE N+M битов квитирования; упорядочивание посредством UE упомянутых N+M битов квитирования в кодовом слове в соответствии с порядком назначенных несущих; и кодирование и передачу кодового слова. M является числом назначенных несущих, на которых UE назначен TM, позволяющий прием не более чем 2 TB, а N-M является числом назначенных несущих, на которых устройству UE назначен TM, позволяющий прием 1 TB.

В соответствии с другим аспектом настоящего изобретения предоставлен способ для улучшения надежности приема управляющей информации в системе связи, причем пользовательское оборудование (UE) кодирует управляющую информацию, используя код, управляющую информацию передают совместно с информацией данных в физический совместно используемый канал восходящей линии связи (PUSCH), номинальную кодовую скорость для управляющей информации определяют из модуляции и кодовой скорости информации данных. Способ включает в себя определение, является ли номинальная кодовая скорость для управляющей информации выше, чем максимальная кодовая скорость; установку кодовой скорости для управляющей информации равной номинальной кодовой скорости, когда номинальная кодовая скорость для управляющей информации не выше, чем максимальная кодовая скорость; установку кодовой скорости для управляющей информации, равной максимальной кодовой скорости, когда номинальная кодовая скорость для управляющей информации выше, чем максимальная кодовая скорость; и передачу управляющей информации, используя установленную кодовую скорость.

В соответствии с другим аспектом настоящего изобретения предоставлен способ для пользовательского оборудования (UE) выбирать одиночный PUSCH для передачи управляющей информации в системе связи, где базовой станцией для UE запланирована передача информации данных по некоторому числу несущих, используя соответствующий физический совместно используемый канал восходящей линии связи (PUSCH) на каждой из данных несущих, причем UE также передает управляющую информацию. Способ включает в себя вычисление показателя для каждого PUSCH в каждой из данных несущих; выбор PUSCH для передачи управляющей информации в соответствии с вычисленными показателями; и передачу информации данных и управляющей информации в выбранный PUSCH.

В соответствии с другим аспектом настоящего изобретения предоставлен способ для пользовательского оборудования (UE) выбирать одиночный физический совместно используемый канал восходящей линии связи (PUSCH) для передачи управляющей информации в системе связи, причем UE использует ресурсы на первой несущей, когда оно передает только управляющую информацию и запланировано базовой станцией передавать информацию данных по некоторому числу U несущих, используя соответствующие PUSCH в каждой из данных U несущих. Способ включает в себя выбор PUSCH на первой несущей, если она является одной из этих U несущих; выбор PUSCH на второй несущей, причем вторую несущую определяют по порядку несущих, сконфигурированному базовой станцией, если первая несущая не является одной из U несущих; и передачу управляющей информации по выбранному PUSCH.

В соответствии с другим аспектом настоящего изобретения предоставлено устройство пользовательского оборудования (UE) для передачи информации квитирования, причем устройству UE базовой станцией назначено некоторое число несущих N и режим передачи (TM) для каждой несущей, причем TM определяет максимальное число транспортных блоков (TB), которые устройство UE может принять по соответствующему физическому совместно используемому каналу нисходящей линии связи (PDSCH), передаваемых базовой станцией на назначенной несущей, причем информация квитирования является ответом на прием по меньшей мере одного TB на по меньшей мере одной назначенной несущей и передается совместно с информацией данных по физическому совместно используемому каналу восходящей линии связи (PUSCH). Устройство включает в себя генератор для создания N+M битов квитирования; модуль расстановки для упорядочивания N+M битов квитирования в кодовое слово в соответствии с порядком назначенных несущих; кодировщик для кодирования кодового слова из N+M битов квитирования; и передатчик для передачи информации квитирования и информации данных. M является числом назначенных несущих, которые назначены устройству UE с TM, позволяющим прием не более чем 2 TB, а N-M является числом назначенных несущих, которые назначены устройству UE с TM, позволяющим прием 1 TB.

В соответствии с другим аспектом настоящего изобретения предоставлено устройство пользовательского оборудования (UE) для передачи управляющей информации и информации данных на одной несущей, причем устройству UE базовой станцией назначены ресурсы на первой несущей для передачи только управляющей информации, и базовой станцией назначена передача информации данных в определенном числе U несущих с использованием соответствующих физических совместно используемых каналов восходящей линии связи (PUSCH) на каждой из U несущих. Устройство включает в себя селектор для выбора PUSCH на первой несущей, если несущая является одной из U несущих, или для выбора PUSCH на второй несущей, если первая несущая не является одной из U несущих, причем вторую несущую определяют в соответствии с порядком несущих, сконфигурированным базовой станцией; и передатчик для передачи информации данных и управляющей информации по выбранному PUSCH.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Приведенные выше и другие аспекты, признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего подробного описания взятыми вместе с прилагающимися чертежами, на которых:

Фиг.1 является схемой, иллюстрирующей обычную структуру подкадра PUSCH;

Фиг.2 является функциональной схемой, иллюстрирующей обычный передатчик для передачи данных, CSI, и HARQ-ACK сигналов по PUSCH;

Фиг.3 является функциональной схемой, иллюстрирующей обычный приемник для приема данных, CSI и HARQ-ACK сигналов по PUSCH;

Фиг.4 является схемой, иллюстрирующей обычное мультиплексирование UCI и данных по PUSCH;

Фиг.5 является схемой, иллюстрирующей представление об обычной агрегации несущих;

Фиг.6 иллюстрирует создание HARQ-ACK битов квитирования в соответствии с вариантом осуществления настоящего изобретения;

Фиг.7 иллюстрирует HARQ-ACK биты информации в соответствии с вариантом осуществления настоящего изобретения;

Фиг.8 иллюстрирует передачу кодированных HARQ-ACK битов от UE, используя QPSK модуляцию с одним повторением и с двумя повторениями блочного кода в соответствии с вариантом осуществления настоящего изобретения;

Фиг.9 иллюстрирует использование разных частот для передачи в каждом временном слоте подкадра кодированных HARQ-ACK бит от UE для двух повторений блочного кода в соответствии с вариантом осуществления настоящего изобретения;

Фиг.10 является блок-схемой, иллюстрирующей способ мультиплексирования разной HARQ-ACK (или RI) информационной нагрузки по PUSCH в соответствии с вариантом осуществления настоящего изобретения;

Фиг.11 иллюстрирует выбор одиночного PUSCH среди множества PUSCH для мультиплексирования UCI согласно показателям, измеренным посредством PUSCH MCS, в соответствии с вариантом осуществления настоящего изобретения;

Фиг.12 иллюстрирует вложение "UCI_Multiplexing" IE в DCI формат планирования передачи PUSCH, в соответствии с вариантом осуществления настоящего изобретения; и

Фиг.13 является схемой, иллюстрирующей STBC передачи HARQ-ACK по PUSCH, в соответствии с вариантом осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Теперь, в дальнейшем в этом документе, различные варианты осуществления настоящего изобретения будут описаны более полно со ссылкой на прилагающиеся чертежи. Однако данное изобретение может быть осуществлено во многих разных видах и не должно интерпретироваться как ограниченное вариантами изобретения, изложенными в данном документе. Вместо этого, эти варианты осуществления предоставлены с тем, чтобы это описание было полным и законченным и полностью передавало объем настоящего изобретения специалистам в данной области техники.

Кроме того, хотя варианты осуществления настоящего изобретения будут описаны ниже со ссылкой на систему связи с дуплексной передачей с частотным разделением каналов (FDD), использующей OFDM передачу с расширением спектра DFT, они также применимы к системам связи с дуплексной передачей с временным разделением каналов (TDD) и ко всем передачам с мультиплексированием с разделением частот (FDM), в целом, и к ортогональному частотному разделению каналов с мультиплексированием на одной несущей (SC-FDMA) и OFDM, в частности.

В соответствии с вариантом осуществления настоящего изобретения мультиплексирование HARQ-ACK выполняют в одиночном PUSCH в ответ на прием по меньшей мере одного TB от UE, сконфигурированного с множеством DL CC (если однозначно не указано иное).

Все O>2 биты HARQ-ACK предполагается совместно закодировать с использованием одного способа кодирования вместо того, чтобы иметь несколько параллельных передач 1 или 2 HAR