Способ получения дифенилкарбоната
Иллюстрации
Показать всеИзобретение относится к способам получения диарилкарбонатов, которые позволяют получать диарилкарбонаты из газов, вызывающих парниковый эффект, таких как диоксид углерода. Способ получения диарилкарбоната включает реакцию эпоксида и диоксида углерода в первой реакционной зоне с образованием первого реакционного продукта, включающего циклический карбонат; переэтерификацию циклического карбоната с этанолом в присутствии катализатора первой переэтерификации во второй реакционной зоне с образованием второго реакционного продукта, включающего диэтилкарбонат и гликоль; разделение второго реакционного продукта с извлечением первой фракции диэтилкарбоната и первой фракции гликоля; переэтерификацию, по меньшей мере, части первой фракции диэтилкарбоната с арилгидроксисоединением в присутствии катализатора второй переэтерификации в третьей реакционной зоне с образованием третьего реакционного продукта, включающего этиларилкарбонат и этанол; разделение третьего реакционного продукта с извлечением фракции этиларилкарбоната и первой фракции этанола; диспропорционирование, по меньшей мере, части фракции этиларилкарбоната в присутствии катализатора диспропорционирования в четвертой реакционной зоне с образованием четвертого реакционного продукта, включающего диарилкарбонат и диэтилкарбонат; разделение четвертого реакционного продукта с извлечением фракции диарилкарбоната и второй фракции диэтилкарбоната; рециркуляцию, по меньшей мере, части первой фракции этанола во вторую реакционную зону и рециркуляцию, по меньшей мере, части второй фракции диэтилкарбоната в третью реакционную зону. Либо способ получения диарилкарбоната включает реакцию аммиака и диоксида углерода в первой реакционной зоне с образованием первого реакционного продукта, включающего мочевину; переэтерификацию мочевины с этанолом в присутствии катализатора первой переэтерификации во второй реакционной зоне с образованием второго реакционного продукта, включающего диэтилкарбонат и аммиак; разделение второго реакционного продукта с извлечением первой фракции диэтилкарбоната и первой фракции аммиака; переэтерификацию, по меньшей мере, части первой фракции диэтилкарбоната с арилгидроксисоединением в присутствии катализатора второй переэтерификации в третьей реакционной зоне с образованием третьего реакционного продукта, включающего этиларилкарбонат и этанол; разделение третьего реакционного продукта с извлечением фракции этиларилкарбоната и фракции этанола; диспропорционирование, по меньшей мере, части фракции этиларилкарбоната в присутствии катализатора диспропорционирования в четвертой реакционной зоне с образованием четвертого реакционного продукта, включающего диарилкарбонат и диэтилкарбонат; разделение четвертого реакционного продукта с извлечением фракции диарилкарбоната и второй фракции диэтилкарбоната; рециркуляцию, по меньшей мере, части фракции этанола во вторую реакционную зону и рециркуляцию, по меньшей мере, части второй фракции диэтилкарбоната в третью реакционную зону. Раскрываемые способы эффективно объединяют в одно целое производство диэтилкарбоната и диарилкарбоната, исключая при этом необходимость экстракционной дистилляции с растворителем, которую обычно применяют при получении диарилкарбонатов из диметилкарбоната, обеспечивая совмещение реакционного и разделительного оборудования и наилучшее использование сырья и снижая издержки производства и капитальные вложения для таких способов. В некоторых вариантах осуществления раскрываемые в изобретении способы могут быть осуществлены, например, с практически замкнутым циклом по этанолу. 2 н. и 27 з.п. ф-лы, 24 ил., 9 табл., 18 пр.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Настоящая заявка является частичным продолжением заявки на патент США № 12/029283 (U.S. Patent Application Serial No. 12/029283), озаглавленной "Способ непрерывного получения органических карбонатов или органических карбаматов и твердые катализаторы для него", зарегистрированной 11 февраля 2008 года автором изобретения J. Yong Ryu, содержание которой приводится здесь путем ссылки на нее.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Раскрываемые в описании изобретения варианты осуществления в целом относятся к способам и твердым катализаторам для реакций, включающих алкоголиз, переэтерификацию и диспропорционирование. Более конкретно, раскрываемые в описании изобретения варианты осуществления относятся к способам непрерывного получения органических карбонатов, органических карбаматов и других продуктов путем алкоголиза, переэтерификации и/или диспропорционирования на твердом катализаторе. В частности, раскрываемые в описании изобретения варианты осуществления относятся к способам получения диарилкарбонатов.
УРОВЕНЬ ТЕХНИКИ
Переэтерификация, или реакция обмена эфиров со спиртами (реакция алкоголиза), является важным классом реакций, которые могут быть ускорены с помощью как кислотных, так и щелочных катализаторов. Примеры переэтерификации, обычно, включают химические реакции с участием органических карбонатов и эфиров карбоновых кислот в качестве реагентов, продуктов, или и тех, и других. Другие реакции переэтерификации включают получение биодизельного топлива путем переэтерификации триглицеридов с этанолом или метанолом. Обычно, алкоголиз представляет собой реакцию, при которой одна или более функциональных групп соединения замещаются с помощью алкоксильной или арилоксильной группы спирта (алкил- или арилгидроксильного соединения). Примеры алкоголиза включают химические реакции с участием мочевины, в которой аминогруппы замещаются с помощью алкоксильных групп с получением органических карбаматов и карбонатов.
Эфиры карбоновых кислот получают путем переэтерификации эфира карбоновой кислоты со спиртом в присутствии кислотного и щелочного катализатора. Серная кислота (гомогенный катализатор) и кислотные ионообменные смолы (твердые катализаторы) являются предпочтительными катализаторами. Растворимые основания, такие как NaOH и KOH, различные Na/K алкоксиды или амины (гомогенные катализаторы), и различные основные ионообменные смолы (твердые катализаторы) являются предпочтительными щелочными катализаторами. Катализаторами для переэтерификации карбоновых эфиров могут являться как гомогенные катализаторы, так и гетерогенные катализаторы, но щелочные катализаторы обычно являются более эффективными, чем кислотные катализаторы. Например, длинноцепочечные алкилметакриловые эфиры получают путем реакции обмена метилметакрилата с длинноцепочечным спиртом в присутствии щелочного катализатора.
Биодизельное топливо может быть получено путем переэтерификации растительных масел (триглицеридов) с метанолом или этанолом с использованием гомогенного щелочного катализатора, такого как метоксид натрия или ацетат кальция, раскрытого в Патентах США №№ 6712867 и 5525126, и щелочного твердого катализатора, такого как смесь оксидов цинка и алюминия или алюминат цинка (оксид цинка, нанесенный на оксид алюминия и прокаленный при высокой температуре). Например, твердые катализаторы из алюмината цинка раскрыты в Патенте США № 5908946 и заявке на Патент США № 2004/0034244.
В Патенте США № 5908946 описан двухстадийный способ получения эфиров путем реакции растительных масел или животных масел со спиртом в присутствии твердых катализаторов, таких как оксид цинка или алюминаты цинка типа шпинели. На первой стадии, конверсию триглицерида проводят при высокой степени превращения, обычно выше чем 90%. На второй стадии подвергают превращению оставшиеся триглицериды, диглицериды и моноглицериды. Переэтерификации проводят при температуре от 230 до 245°C при давлении около 5,2 бар (около 72,5 фунт/дюйм2). Высокая степень конверсии требует относительно низких объемных скоростей вводимой смеси (0,5 час-1 или более низкая объемная скорость).
В Патенте США № 6147196 раскрыт способ получения эфиров жирных кислот высокой чистоты из растительного или животного масла в присутствии гетерогенного катализатора (алюмината цинка). Заявка на Патент США № 2004/0034244 относится к технологической схеме получения алкиловых эфиров из растительного или животного масла и спирта в присутствии гетерогенного катализатора (алюмината цинка). Эфиры получают путем переэтерификации в двух реакторах с неподвижным слоем катализатора. Высокая конверсия триглицирида достигалась в первом реакторе. После разделения глицерина от реакционного потока первой переэтерификации, оставшиеся непрореагировавший триглицерид, диглицерид и моноглицерид превращают в эфиры во втором реакторе. Переэтерификацию проводят при 200°C, давлении около 62 бар (900 фунт/дюйм2) и объемной скорости 0,5 час-1.
В публикации W. Xie et al., J. Mol. Cat. A: Chem. 246, 2006, pp. 24-32 обсуждается метанолиз соевого масла в присутствии Mg-Al катализатора из прокаленного гидроталькита. Прокаленные гидрокалькиты с Mg/Al отношением 3,0, получаемые прокаливанием при 500°C, являются катализатором, который может обеспечивать высокую щелочность и отличную каталитическую активность для этой реакции. В этой публикации приводятся данные по создаваемой прокаленными при различных температурах гидроталькитами щелочности в растворе.
Дизельные двигатели выбрасывают больше твердых частиц и NOx, чем бензиновые двигатели. Сообщается, что диалкилкарбонаты эффективно снижают содержания твердых частиц в выхлопе дизельного двигателя. Согласно Патенту США № 5954280 мочевина и аммиак являются эффективными средствами для снижения содержания NOx. Но использование мочевины и аммиака для дизельного двигателя создает проблемы или неудобства их применения на практике. В Патенте США № 6017368 раскрыт этилкарбамат в качестве эффективного средства для снижения NOx в выхлопе дизельных двигателей. В Патенте США № 4731231 (1988) сообщается, что сублимируемая циануровая кислота может быть эффективным средством для предотвращения или снижения выброса NOx. Высокотемпературная сублимация циануровой кислоты приводит к образованию изоциановой кислоты (HNCO), которая, по-видимому, содействует предотвращению выброса NOx. В патентных документах EP 0363681 и EP 0636681 раскрыт карбонатный эфир алифатического триола или тетраола в качестве компонента малодымящих смазок.
N-арилметилкарбамат получают реакцией ароматического амина с диметилкарбонатом, обычно в присутствии щелочного катализатора ввиду низких скоростей реакции в отсутствие катализатора. N-арилметилкарбамат может быть подвергнут разложению при повышенных температурах с получением ароматического изоцианата. Например, толуолдикарбамат получают путем реакции толуолдиамина с диметилкарбонатом в присутствии катализатора. Разложение толуолдикарбамата при повышенных температурах дает толуолдиизоцианат.
Органические карбонаты (диэфиры угольной кислоты) являются ценными соединениями, которые могут применяться в качестве растворителей, алкилирующих реагентов, карбонилирующих реагентов, реагентов сополимеризации, присадок к топливу, и так далее. Диметилкарбонат (ДМК) является важным диалкилкарбонатом, широко используемым в качестве сырья для получения дифенилкарбоната (ДФК, диарилкарбоната). Существуют различные способы промышленного получения ДМК. В одном таком промышленном способе, ДМК получают путем переэтерификации циклического карбоната с метанолом в присутствии гомогенного катализатора. Несмотря на то, что в патентах может раскрываться применение гомогенных катализаторов или гетерогенных катализаторов для переэтерификации циклического карбоната с метанолом, в настоящее время в промышленности не применяют гетерогенный или твердый катализатор для получения ДМК, по-видимому, вследствие короткого срока службы гетерогенных катализаторов в таких способах. ДФК обычно сополимеризуют с диолом, таким как бисфенол A, с получением поликарбонатов. Поликарбонаты используют в различных специальных областях применения, таких как диски памяти, ветровые стекла, конструкционные пластики, оптические материалы, и так далее.
Современные методы получения диарилкарбонатов с использованием нефосгенового способа позволяют получать ароматические карбонаты, такие как ДФК, путем переэтерификации ДМК с фенолом с получением метилфенилкарбоната и метанола и затем диспропорционирования метилфенилкарбоната с получением ДФК и ДМК в присутствии гомогенных металлоорганических катализаторов при использовании нескольких соединенных последовательно реакторов реакционной дистилляции. Предпочтительным гомогенным катализатором является алкоксид титана. Например, такие способы раскрыты в Патентах США № 4045464, 4554110, 5210268 и 6093842. Гомогенные катализаторы извлекают из части продуктовых потоков с самой высокой молекулярной массой в виде твердого вещества, которое может затем быть превращено в растворимый гомогенный катализатор, который рециркулируют.
Использование гомогенного катализатора при получении ДФК часто требует разделение гомогенного катализатора от продукта, особенно когда катализаторы используют при относительно высоких объемных скоростях введения сырья. Для устранения этого и других недостатков, связанных с использованием гомогенных катализаторов для получения диарилкарбонатов, в Патентах США № 5354923 и 5565605, и в патентном документе PCT Application Publication WO 03/066569 раскрыты альтернативные способы, в которых используют гетерогенные катализаторы. Например, в Патенте США № 5354923 раскрыты катализаторы из оксида титана в порошковой форме при иллюстрации получения ЭФК, МФК и ДФК из ДЭК или ДМК и фенола. В Патенте США № 5565605 раскрыты микропористые материалы, содержащие элементы Группы 4, в качестве катализаторов для переэтерификации и диспропорционирования. Однако твердые катализаторы в порошкообразной форме являются обычно неприемлемыми или менее предпочтительными для крупнотоннажного промышленного производства ДФК или метилфенилкарбоната. В патентном документе WO03/066569 раскрыт способ непрерывного получения ДФК в присутствии гетерогенного катализатора, приготовленного путем нанесения оксида титана на оксид кремния, в двустадийном способе с неподвижным слоем путем реакции ДМК с фенолом.
В публикации Z-H Fu and Y. Ono, J. Mol. Catal. A. Chemical, 118 (1997), pp. 293-299 и в патентном документе JP Application No. HEI 07-6682 раскрыты гетерогенные катализаторы для получения дифенилкарбоната путем переэтерификации ДМК с фенолом в МФК и диспропорционирования МФК в ДФК в присутствии MoO3 или V2O5, нанесенных на неорганический носитель, такой как оксид кремния, оксид циркония или оксид титана. Переэтерификацию и диспропорционирование проводят в системе реактор-дистилляционная колонна, состоящей из реактора и дистилляционной колонны, служащей для удаления побочных продуктов путем дистилляции.
В заявке на Патент США № 2007/0093672 ('672) (в настоящий момент Патент США № 7378540) и № 2007/0112214 ('214) (в настоящий момент Патент США № 7288668) раскрыты способы получения различных органических карбонатов, таких как диарилкарбонаты, включая ДФК, в присутствии гетерогенных катализаторов. В публикации '214, необходимые реакции (переэтерификацию и диспропорционирование) проводят в жидкой фазе в присутствии гетерогенного катализатора. Несколько реакторов с неподвижным слоем для реакций переэтерификации и диспропорционирования подсоединены к единственной дистилляционной колонне, в которой низкокипящие соединения, такие как этанол и ДЭК, удаляются в виде фракции в верхней части колонны, и более высококипящие соединения, включая ДФК, удаляются в виде смешанной кубовой фракции. ДФК затем извлекают из кубовой фракции.
В публикации '672 раскрывается способ получения диарилкарбонатов и диалкилкарбонатов путем осуществления необходимых реакций в двухфазной (пар и жидкость) системе на различных твердых катализаторах для переэтерификации и диспропорционирования. Химические реакции, позволяющие получать органические карбонаты, проводят в ряду последовательно соединенных реакторов с неподвижным слоем, при этом осуществляя выделение легкокипящего продукта из жидкой фазы в паровую фазу, для того чтобы сдвинуть неблагоприятное равновесие реакции в сторону образования требуемого продукта. Способ, в частности, применяют для получения алкиларилкарбонатов, таких как ЭФК (этилфенилкарбонат), и диарилкарбонатов, таких как ДФК (дифенилкарбонат). Способ также применяют для получения диалкилкарбонатов, таких как ДЭК. Расположенные в ряд реакторы с неподвижным слоем подсоединяют в различных местах к единственной дистилляционной колонне через потоки боковой фракции и возвратные потоки. Дистилляционная колонна также содержит ступени сепарации выше подсоединения последнего реактора в ряду и ниже подсоединения первого реактора в ряду. Гетерогенные катализаторы могут быть приготовлены путем нанесения одного или двух оксидов Ti, Zr, Nb, Hf, Ta, Mo, V, Sb, и других металлов на пористые носители, такие как силикагель. Гетерогенные катализаторы могут быть также приготовлены путем прививки одного или более металлоорганических соединений Ti, Zr, Nb, Hf, Ta, Mo, V, Sb и других металлов на пористый носитель, который имеет поверхностные гидроксильные группы или смесь гидроксильных и алкоксильных групп.
Другие различные способы получения органических карбонатов на гетерогенных катализаторах раскрыты в Патентах США № 5231212, 5498743 и 6930195.
В публикации P. Ball et al., C1 Mol. Chem. Vol. 1, 1984, pp. 95-108 приведены данные по исследованию химии получения диалкилкарбоната в присутствии различных гомогенных или гетерогенных катализаторов. Например, диметилкарбонат получают путем алкоголиза мочевины. Сообщается о диметоксиде дибутилолова, как об особенно эффективном катализаторе. Сообщается, что гетерогенные катализаторы являются также эффективными в отношении указанных химических реакций в присутствии сокатализаторов, таких как 4-диметиламинопиридин и PPh3. Рассмотренными гетерогенными катализаторами являются Al2O3, Sb2O3 и оксид кремния. Плавленый SiO2 не является катализатором, но становится каталитически активным в присутствии PPh3.
В Патенте США № 7074951 диалкилкарбонат получают путем алкоголиза мочевины с помощью спирта в присутствии гомогенного катализатора из комплекса олова в присутствии электродонорного высококипящего растворителя, такого как триглим. В этом патенте также продемонстрирована возможность непрерывного получения ДМК в течение приблизительно 1500 часов.
В патентном документе EP 1629888 и публикации D. Wang et al., Fuel Processing Tech. 88, 8, 2007, pp. 807-812 показано, что ДМК и ДЭК могут быть получены в присутствии оксида цинка и оксида цинка, нанесенного на оксид кремния. Но в этих публикациях полностью отсутствует информация о стабильности катализатора или продолжительности работы катализатора.
Дезактивация катализатора в процессе протекания реакций переэтерификации и диспропорционирования может быть вызвана отложением полимеров с высокой молекулярной массой на поверхности и порах катализатора. Скорость дезактивации катализатора в результате отложения полимера повышается с увеличением концентрации алкиларилкарбоната и диарилкарбоната или их обоих в реакционной смеси. Деполимеризация полимеров на поверхности гетерогенных катализаторов раскрыта в публикации '672. Однако деполимеризация может приводить только к частичному восстановлению активности твердого катализатора.
В Патентах США № 6768020 и 6835858 раскрыты способы получения диалкилкарбонатов и побочного продукта пропиленгликоля путем реакции пропиленкарбоната с ДМК, водой, или с обоими, в присутствии твердого катализатора, такого как оксид лантана и оксид цинка, нанесенный на оксид алюминия, оксид кремния и другие носители. Проблема нестабильности катализатора частично решается в Патенте США № 6768020 путем нанесения большого количества оксида лантана на носитель, такой как оксид алюминия и оксид кремния.
Методом, позволяющим компенсировать дезактивацию катализатора, является повышение температуры реакции по мере дезактивации катализатора. Этот метод, к сожалению, часто ускоряет дезактивацию гетерогенных катализаторов.
Для промышленного производства, в котором используется гетерогенный катализатор, обычно требуется стабильная на протяжении длительного времени рабочая характеристика твердого катализатора. Затраты на катализатор, простои производства в связи с заменой катализатора и другие известные в технике факторы выдвигает для гетерогенных катализаторов в качестве необходимого требование минимального срока службы обычно в течение более чем 3 месяцев, 6 месяцев, или года, в зависимости от процесса.
Несмотря на то, что гетерогенный катализ возможен при проведении различных реакций переэтерификации, как это описано выше в различных патентах и публикациях, в этих источниках не приводятся данные о продолжительности срока службы или продолжительности рабочего цикла катализатора. Автору настоящего изобретения из личного опыта известно, что такие гетерогенные катализаторы имеют неприемлемо короткие продолжительности цикла работы.
Следовательно, существует необходимость в способах переэтерификации и/или диспропорционирования с использованием гетерогенных катализаторов с улучшенной характеристикой их работы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном аспекте, раскрываемые в изобретении варианты осуществления относятся к способу алкоголиза, где способ включает: введение реагентов и следового количества растворимого металлоорганического катализатора в реактор, включающий твердый катализатор алкоголиза; где растворимый металлоорганический катализатор и твердый катализатор алкоголиза каждый независимо включает элемент Группы II - Группы VI. В некоторых вариантах осуществления, твердый катализатор и металлоорганическое соединение могут включать один и тот же элемент Группы II - Группы VI.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения диалкилкарбонатов, где способ включает: введение спирта и реагента, подвергаемого алкоголизу, включающего, по меньшей мере, либо мочевину, либо органический карбамат, или циклический карбонат, в первую реакционную зону, включающую твердый катализатор алкоголиза; введение растворимого металлоорганического катализатора в первую реакционную зону, где твердый катализатор алкоголиза и растворимый металлоорганический катализатор каждый независимо включает элемент Группы II - Группы VI.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения диарилкарбоната, где способ включает: введение ароматического гидроксисоединения и диалкилкарбоната в первую реакционную зону, включающую твердый катализатор переэтерификации; и введение растворимого металлоорганического катализатора в первую реакционную зону, где твердый катализатор переэтерификации и растворимый металлоорганический катализатор каждый независимо включает элемент Группы II - Группы VI.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения алкиларилкарбоната, где способ включает: введение ароматического гидроксисоединения и диалкилкарбоната в первую реакционную зону, включающую твердый катализатор переэтерификации; и введение растворимого металлоорганического катализатора в первую реакционную зону, где твердый катализатор переэтерификации и растворимый металлоорганический катализатор каждый независимо включает элемент Группы II - Группы VI.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения биодизельного топлива, где способ включает: введение спирта и глицерида в первую реакционную зону, включающую твердый катализатор переэтерификации; и введение растворимого металлоорганического катализатора в первую реакционную зону, где твердый катализатор переэтерификации и растворимый металлоорганический катализатор каждый независимо включает элемент Группы II - Группы VI.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения алкиларилкарбоната, где способ включает: введение ароматического гидроксисоединения и диалкилкарбоната в первую реакционную зону, включающую твердый катализатор переэтерификации; и введение растворимого металлоорганического катализатора в первую реакционную зону, где твердый катализатор переэтерификации и растворимый металлоорганический катализатор каждый независимо включает элемент Группы II - Группы VI.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения биодизельного топлива, где способ включает: введение спирта и глицерида в первую реакционную зону, включающую твердый катализатор переэтерификации; и введение растворимого металлоорганического катализатора в первую реакционную зону, где твердый катализатор переэтерификации и растворимый металлоорганический катализатор каждый независимо включает элемент Группы II - Группы VI
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу реактивации отработанного твердого катализатора алкоголиза, где способ включает: удаление полимерных материалов, отложившихся на катализаторе; и повторное нанесение каталитически активных металлов на твердый катализатор.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способам получения диарилкарбоната, включающим: реакцию эпоксида и диоксида углерода в первой реакционной зоне с образованием первого реакционного продукта, включающего циклический карбонат; переэтерификацию циклического карбоната с этанолом в присутствии первого катализатора переэтерификации во второй реакционной зоне с образованием второго реакционного продукта, включающего диэтилкарбонат и гликоль; разделение второго реакционного продукта с извлечением первой фракции диэтилкарбоната и первой фракции гликоля; переэтерификацию, по меньшей мере, части первой фракции диэтилкарбоната с арилгидроксисоединением в присутствии катализатора второй переэтерификации в третьей реакционной зоне с образованием третьего реакционного продукта, включающего этиларилкарбонат и этанол; разделение третьего реакционного продукта с извлечением фракции этиларилкарбоната и первой фракции этанола; диспропорционирование, по меньшей мере, части фракции этиларилкарбоната в присутствии катализатора диспропорционирования в четвертой реакционной зоне с образованием четвертого реакционного продукта, включающего диарилкарбонат и диэтилкарбонат; разделение четвертого реакционного продукта с извлечением фракции диарилкарбоната и второй фракции диэтилкарбоната; рециркуляцию, по меньшей мере, части первой фракции этанола во вторую реакционную зону; и рециркуляцию, по меньшей мере, части второй фракции диэтилкарбоната в третью реакционную зону.
В другом аспекте, раскрываемые в изобретении варианты осуществления относятся к способу получения диарилкарбоната, включающему: реакцию аммиака и диоксида углерода в первой реакционной зоне с образованием первого реакционного продукта, включающего мочевину; переэтерификацию мочевины с этанолом в присутствии катализатора первой переэтерификации во второй реакционной зоне с образованием второго реакционного продукта, включающего диэтилкарбонат и аммиак; разделение второго реакционного продукта с извлечением первой фракции диэтилкарбоната и первой фракции аммиака; переэтерификацию, по меньшей мере, части первой фракции диэтилкарбоната с арилгидроксисоединением в присутствии катализатора второй переэтерификации в третьей реакционной зоне с образованием третьего реакционного продукта, включающего этиларилкарбонат и этанол; разделение третьего реакционного продукта с извлечением фракции этиларилкарбоната и фракции этанола; диспропорционирование, по меньшей мере, части фракции этиларилкарбоната в присутствии катализатора диспропорционирования в четвертой реакционной зоне с образованием четвертого реакционного продукта, включающего диарилкарбонат и диэтилкарбонат; разделение четвертого реакционного продукта с извлечением фракции диарилкарбоната и второй фракции диэтилкарбоната; рециркуляцию, по меньшей мере, части фракции этанола во вторую реакционную зону; и рециркуляцию, по меньшей мере, части второй фракции диэтилкарбоната в третью реакционную зону.
Другие аспекты и преимущества будут очевидны из следующего далее описания и прилагаемых пунктов формулы изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фигуре 1 приведена упрощенная принципиальная технологическая схема, иллюстрирующая способ получения диарилкарбонатов согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 2 приведена упрощенная принципиальная технологическая схема, иллюстрирующая способ получения диарилкарбонатов согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 3 приведена упрощенная принципиальная технологическая схема, иллюстрирующая способ получения диарилкарбонатов согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 4 графически представлена переэтерификация с использованием гомогенного катализатора.
На фигуре 5 графически представлена активность катализатора после повторной активации катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 6 графически представлена активность твердого катализатора при введении в реактор следового количества растворимого металлоорганического катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 7 приводится графически представленное сравнение активности гетерогенного катализатора с активностью твердого катализатора при введении в реактор следового количества растворимого металлоорганического катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 8 графически представлена активность твердого катализатора при введении в реактор следового количества растворимого металлоорганического катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигурах 9A и 9B графически представлена активность твердого катализатора в процессе получения ЭФК и ДФК, соответственно, при введении в реактор следового количества растворимого металлоорганического катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 10 графически представлена активность гетерогенного катализа в процессе получения ДФК при прививке катализатора одновременно с проведением реакции переэтерификации.
На фигуре 11 графически представлена конверсия ЭФК в ДФК и ДЭК в отсутствии твердых катализаторов согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 12 графически представлены результаты алкоголиза пропиленкарбоната с этанолом с получением ДЭК и пропиленгликоля в присутствии твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 13 представлены результаты получения ДЭК с использованием гомогенного катализатора.
На фигуре 14 представлены результаты получения ДЭК с использованием твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 15 приведена упрощенная принципиальная технологическая схема получения диалкилкарбонатов с использованием твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 16 представлены результаты получения ДЭК из этилкарбамата с использованием твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 17 представлены результаты алкоголиза масла канолы с метанолом с использованием твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 18 приведена упрощенная принципиальная технологическая схема непрерывного получения ДЭК и пропиленгликоля в качестве побочного продукта путем осуществления алкоголиза пропиленкаробоната с этанолом в присутствии твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 19 приведена упрощенная принципиальная технологическая схема, иллюстрирующая способ получения дифенилкарбоната (ДФК) согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 20 приведена упрощенная принципиальная технологическая схема, иллюстрирующая совмещенный способ получения дифенилкарбоната (ДФК) согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 21 графически представлены результаты алкоголиза пропиленкарбоната с этанолом с получением ДЭК и пропиленгликоля в присутствии твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 22 представлены результаты получения ДЭК из этилкарбамата с использованием твердого катализатора согласно раскрываемым в изобретении вариантам осуществления.
На фигуре 23 графически представлены результаты каталитической переэтерификации ДЭК с фенолом с получением ЭФК, промежуточного продукта в способе получения ДФК.
На фигуре 24 графически представлены результаты каталитического диспропорционирования ЭФК с получением ДФК и ДЭК.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В одном аспекте, раскрываемые в изобретении варианты осуществления относятся к процессам алкоголиза, переэтерификации и/или диспропорционирования с использованием твердых катализаторов. Используемый в описании изобретения термин "алкоголиз" обозначает различные химические реакции, в которых органическое гидроксильное соединение (спирт) принимает участие в качестве одного или двух реагентов с образованием продукта и побочного продукта. Алкоголиз может быть охарактеризован как разрыв связей (C - Y) между углеродным атомом и гетероатомом Y молекул с помощью молекулы спирта (ROH). Реакциями алкоголиза являются реакции,Alcoholyses в которых участвуют карбонильные группы молекулы, и карбонильная группа сама по себе сохраняется в молекуле продукта. Поэтому, атом C в связи C - Y является углеродным атомом карбонильной группы молекулы. Обычно алкоголиз является обратимой реакцией и может быть представлен следующим образом:
,
где Y является гетероатомом или гетероатомом функциональной группы, и Rb является алкилом, арилом, или функциональной группой, имеющей один или более гетероатомов.
Примерами реакций алкоголиза являются реакция спирта с диэфирами угольной кислоты, эфирами карбоновой кислоты, мочевиной и карбаматами. Алкоголиз диалкилкарбоната (часто называемой в литературе переэтерификацией) с фенолом дает алкиларилкарбонат и спирт. Алкоголиз эфира карбоновой кислоты со спиртом производит обмен алкильной группы эфира с алкильной группой молекулы спирта и дает в результате молекулу нового спирта. Алкоголиз мочевины со спиртом спирт дает органический карбамат и аммиак. Алкоголиз органического карбамата со спиртом приводит к образованию диалкилкарбоната и аммиака. Конкретными примерами реакций алкоголиза являются переэтерификация ДЭК с фенолом с получением ЭФК и этанола, алкоголиз мочевины или органического карбамата со спиртом с получением органического карбамата или диалкилкарбоната и аммиака, переэтерификация триглицерида с метанолом с получением метиловых эфиров (биодизельного топлива) и глицерина.
Несмотря на то, что при диспропорционировании асимметрических диэфиров угольной кислоты и при реакции диалкилкарбоната с органическим амином спирт не участвует в качестве реагента, тем не менее, для удобства эти типы реакций в описании изобретения также относят к реакциям алкоголиза, так как RA группы (R является алкилом или арилом, и A является атомом кислорода или атомом азота) принимают участие в механизмах реакций на молекулярном уровне. Поэтому, в случае необходимости, при описании различных вариантов осуществления термины переэтерификация и диспропорционирование используются в качестве синонимов термина алкоголиз. Ряд упомянутых выше реакций алкоголиза могут быть представлены следующими уравнениями реакций:
В другом аспекте, раскрываемые в изобретении варианты осуществления относится к новому способу сохранения каталитической активности твердого катализатора в течение длительного производственного цикла. Время цикла или продолжительность цикла работы твердого катализатора определяется в описании изобретения как период времени, в течение которого можно непрерывно без каких-либо остановок использовать твердый катализатор для конкретной химической реакции. Например, если для катализатора требуется регенерация или замена после непрерывного использования в течение 6 месяцев, продолжительность или время цикла работы катализатора составляет 6 месяцев. Согласно раскрываемому изобретением способу, в различных вариантах осуществления, твердые катализаторы для процессов алкоголиза могут сохранять каталитическую активность в течение продолжительного времени цикла работы, например, в течение более чем 3 месяцев, 6 месяцев, 1 года, 1,5 лет и 2 лет или более.
В процессе переэтерификации ДЭК с фенолом, автором настоящего изобретения наблюдалась дезактивация гетерогенных катализаторов (оксида титана и смеси оксидов ниобия и титана, нанесенных на оксид кремния), которую он описал в Испытании 4 в публикации '672. Деполимеризация отложения полимера на катализаторе для повышения активности катализатора была также проиллюстрирована в Испытании 6B в публикации '672. Однако регенерация катализатора путем деполимеризации приводила только к частичному восстановлению исходной активности катализатора. На тот момент, природа дезактивации катализатора была еще не полностью выяснена.
Неожиданно было установлено, что гетерогенные катализаторы переэтерификации, такие как гетерогенные катализаторы для получения ДФК, теряют свою активность вследствие двух основных причин: отложения полимера и вымывания компонента каталитически активного металла. Гетерогенные катализаторы для получения диалкилкарбоната путем переэтерификации циклического карбоната со спиртом теряют свою активность вследствие вымывания компонентов каталитически активных металлов.
В процессе реакций алкоголиза или переэтерификации на гетерогенных катализаторах, компоненты каталитически активных металлов на твердых катализаторах могут вымываться из гетерогенных металлоксидных катализаторов и металлоорганических катализаторов, иммобилизируемых на различных пористых носителях, в реакционной среде при реакционных условиях, что приводит к постоянной дезактивации катализатора. Это влечет за собой неприемлемо короткий срок службы промышленных гетерогенных катализаторов, которые могут быть использованы для непрерывного получения различных органических карбонатов. Кроме того, как уже упоминалось выше, отложение полимера может также отрицательно воздействовать на рабочую характеристику катализатора переэтерификации. Еще одним видом дезактивации катализатора является отравление катализатора.
Гетерогенный катализатор, который предполагается использовать в промышленном реакторе с неподвижным слоем, должен иметь приемлемую долговечность, как с точки времени рабочего цикла, так и суммарного срока службы. При отсутствии отравления, и в случае, если на гетерогенном катализаторе не происходит отложение полимеров или оно является небольшим, долговечность катализатора может определяться скоростью вымывания компонента активного металла из гетерогенного катализатора.
Раскрываемые в изобретении варианты осуществления относятся к способам подд