Способ кристаллизации фосфатов рзм из растворов экстракционной фосфорной кислоты

Изобретение может быть использовано в химической промышленности при переработке апатитового сырья на минеральные удобрения. Для кристаллизации фосфатов редкоземельных металлов (РЗМ) из пересыщенных растворов экстракционной фосфорной кислоты используют твердый затравочный материал - гранулированный полуводный гидрат фосфата церия. При этом создают непрерывное возвратно-поступательное движение указанного затравочного материала в условиях псевдокипящего слоя. Псевдокипящий слой организован непрерывным потоком воздуха в направлении «снизу-вверх», противоположном движению раствора экстракционной фосфорной кислоты. Изобретение позволяет повысить степень привеса концентрата фосфатов РЗМ при уменьшении расхода затравочного материала. 2 табл., 1 пр.

Реферат

Изобретение относится к способу извлечения редкоземельных металлов (РЗМ) в виде фосфатов из растворов неупаренной экстракционной фосфорной кислоты (ЭФК) дигидратного способа переработки апатитового концентрата, содержащего около 1 мас.% редкоземельных элементов.

Растворы продукционной ЭФК, получаемые в результате сернокислотной переработки апатита по дигидратной технологии, содержат около 0,08-0,10 мас.% лантаноидов преимущественно цериевой группы, что выше растворимости в 1,5 раза. В настоящее время все известные осадительные способы требуют применения реагентов-осадителей, что приводит к образованию трудно фильтруемых осадков и негативно сказывается на качестве фосфорной кислоты.

Известен способ извлечения лантаноидов из экстракционной фосфорной кислоты (RU 2381178, опубл. 10.02.2010 г.), заключающийся в добавлении к оборотной фосфорной кислоте с концентрацией 31,0-38,5 мас.%, содержащей соединения редкоземельных элементов, раствора карбоната натрия в количестве, обеспечивающем его содержание в очищенной фосфорной кислоте 5-10 г/л в пересчете на Na2О, при 65-80°С, отделении образовавшегося осадка гексафторсиликата натрия от очищенной фосфорной кислоты, введением в нее серной кислоты до обеспечения концентрации 10-15 мас.%, выдерживании полученной смеси кислоты до образования осадка двойных сульфатов лантаноидов и натрия, отделении полученного осадка от кислотного раствора и промывании его серной кислотой с концентрацией не менее 36 мас.%. Недостаткамиданного способа являются высокая продолжительность процесса и многостадийность, связанная с необходимостью использования приемов фильтрования для отделения осадка гексафторсиликата натрия от фосфорной кислоты. Это приводит к повышенным энергозатратам и увеличению числа единиц используемого оборудования.

Известен способ выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты (RU 2443630, опубл. 27.02.2012 г.), заключающийся во введении в нагретую кислоту реагента-осадителя с образованием суспензии и переводом основной части лантаноидов и части примесных компонентов в твердую фазу, отделением твердой фазы от фосфорнокислого раствора и ее промывку. В качестве реагента-осадителя используют растворимое в фосфорной кислоте соединение, содержащее фторид-ион. Недостатками данного способа являются изменение физико-химических свойств товарного продукта - экстракционной фосфорной кислоты и трудоемкость процесса при отделении взвеси в виде малорастворимых фторидов лантаноидов.

Известен способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты, полученной дигидратным методом (RU 2132303, опубл. 27.06.1999 г.). Предложенный способ включает нейтрализацию фосфорной кислоты до pH 3-3,5 циркуляционной пульпой, предварительно нейтрализованной до pH 4-4,5 аммиаком, углекислым натрием, углекислым кальцием, известью и другими нейтрализующими компонентами, а также сгущение полученной пульпы и отделение осадка фосфатного концентрата редкоземельных элементов. Отделение осадка редкоземельных элементов целесообразно вести либо фильтрацией, либо центрифугированием. Основными недостатками данного способа являются нарушение основного технологического процесса получения экстракционной фосфорной кислоты и введение дополнительных операций фильтрования мелкодисперсного осадка фосфатного концентрата редкоземельных элементов.

За прототип принят способ извлечения фосфата редкоземельных металлов из экстракционной фосфорной кислоты, заключающийся в пропускании экстракционной фосфорной кислоты, содержащей редкоземельные элементы, восходящим потоком через затравку в течение 5-15 минут при 60-80°C с получением фосфата редкоземельных элементов. В качестве затравки используют гексагональный гранулированный фосфат суммы редкоземельных элементов, полученный экструзией (RU 2040472, МПК 6 C01F 17/00, 25.07.1995 г.). Массовое соотношение экстракционной фосфорной кислоты и затравки составляет (5÷15):1. Предлагаемый способ позволяет извлекать фосфат редкоземельных элементов в процессе производства фосфорной кислоты и удобрений. Недостатками данного способа являются высокий расход затравочной фазы и низкая степень привеса концентрата РЗМ, составляющая не более 20% от исходного веса затравки.

Технический результат заключается в повышении степени привеса в виде концентрата суммы РЗМ, в том числе иттрия, при уменьшении расхода затравочной фазы, а также расширении области использования способа за счет выделения фосфатов РЗМ как из оборотной, так и продукционной неупаренной экстракционной фосфорной кислоты путем использования специального аппаратурного оформления.

Технический результат достигается тем, что при помощи способа кристаллизации фосфатов редкоземельных металлов (РЗМ) из пересыщенных растворов экстракционной фосфорной кислоты на твердом затравочном материале - гранулированном полуводном гидрате фосфата церия - согласно изобретению создают непрерывное возвратно-поступательное движение затравочного материала в условиях псевдокипящего слоя, создаваемого непрерывным потоком воздуха в направлении «снизу-вверх», противоположном движению раствора экстракционной фосфорной кислоты.

Развитая поверхность контакта твердой и жидкой фаз необходима для интенсификации процесса кристаллизации из пересыщенного фосфорнокислого раствора.

Затравочный материал подается в колонный кристаллизатор, размещается на технологических тарелках, сформированных во внутренней емкости колонного кристаллизатора в единый пакет, который при необходимости извлекают из колонного кристаллизатора для технического обслуживания, ремонта и т.п. Пространство между внутренней и внешней емкостью колонного кристаллизатора оборудовано обогревающим устройством, например, тепловым кабелем. Над верхней зоной колонного кристаллизатора предусмотрено пространство для подъема и замены пакетов насадки с помощью тельфера.

Подогретую ЭФК подают в колонный кристаллизатор. При заполнении колонного кристаллизатора до рабочего объема включают подачу воздуха от компрессора. Расход воздуха регулируется и фиксируется для обеспечения режима псевдо-ожиженного слоя на технологических тарелках. Отработанную ЭФК возвращают в производственный цикл.

Затравочный материал подают через верхнюю часть колонного кристаллизатора при помощи шнекового дозатора. В процессе работы колонного кристаллизатора затравочный материал перемещается сверху вниз, в противотоке с направлением движения ЭФК.

Перенос затравочного материала по технологическим тарелкам в направлении «сверху - вниз» выполняют организацией псевдо-ожиженного слоя. Отработанный затравочный материал удаляют из кристаллизатора.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Затравочный материал массой 50,00 г размещен на технологических тарелках лабораторного кристаллизатора рабочим объемом 1,8 л в соответствии с условиями, приведенными в таблице 1.

Таблица 1
Распределение затравочного материала на тарелках лабораторного кристаллизатора
Тарелка №
1 2 3 4 5 6 7 8 9 10
Масса затравочного материала, г 7,50 6,50 5,60 5,40 4,80 4,50 4,30 4,00 3,80 3,60

Подача раствора ЭФК в кристаллизатор выполнена при помощи перистальтического насоса со скоростью 110 см3/мин. Температура ЭФК непосредственно в колонне составляла 75±5°C. Время контакта раствора ЭФК в рабочем объеме кристаллизатора составляла 17,0±3,0 мин при соотношении объема жидкой фазы к массе твердой V/T=330±10. Для создания псевдо-ожиженного слоя в колонну подавали воздух со скоростью 2 дм3/мин с помощью побудителей расхода («KNF Neuberger», марка KNF -850 и «OMRON», марка NE - С28 - RU).

По окончании эксперимента технологические тарелки с затравочным материалом извлекали из колонны, промывали дистиллированной водой и сушили при температуре 250-280°C в сушильном шкафу («BINDER», серия ED 53). Охлажденный в эксикаторе до нормальных климатических условий, затравочный материал с сокристаллизованным из пересыщенного раствора концентратом фосфатов РЗМ взвешивали на технических весах с точностью до 0,01 г. Относительный привес твердой фазы фосфата суммы РЗМ на затравочном материале в среднем составил 33±3% при содержании фосфатов суммы РЗМ не менее 70%.

Пример 2. Затравочный материал массой 200,00 г размещен на технологических тарелках лабораторного кристаллизатора рабочим объемом 2,5 л в соответствии с условиями, приведенными в таблице 2.

Таблица 2
Распределение затравочного материала на тарелках лабораторного кристаллизатора
Тарелка №
1 2 3 4 5 6 7 8 9 10
Масса затравочного материала, г 10 12 13 15 18 20 23 26 30 33

Подача ЭФК в кристаллизатор выполнена при помощи перистальтического насоса со скоростью 120 см3/мин. Температура ЭФК непосредственно в колонне составляла 85±5°C. Время контакта раствора ЭФК в рабочем объеме кристаллизатора соответствовало 17,0±3,0 мин при соотношении объема жидкой фазы к массе твердой V/T=330±10. Для создания псевдокипящего слоя в колонну подавали воздух со скоростью 3 дм3/мин с помощью побудителей расхода.

По окончании эксперимента отработанный затравочный материал, извлеченный из колонны, промывали дистиллированной водой и сушили при температуре 250-280°C. Охлажденный в эксикаторе до нормальных климатических условий затравочный материал с сокристаллизованным концентратом фосфатов РЗМ взвешивали на технических весах с точностью до 0,01 г. Относительный привес твердой фазы фосфата суммы РЗМ на затравочном материале в среднем составил 35±3% при содержании фосфатов суммы РЗМ не менее 70%.

Способ кристаллизации фосфатов редкоземельных металлов из растворов экстракционной фосфорной кислоты, включающий создание непрерывного возвратно-поступательного движения твердой фазы за счет обеспечения псевдо-кипящего слоя путем непрерывного дозирования потока воздуха через раствор экстракционной фосфорной кислоты (продукционной и оборотной), способствует увеличению степени привеса исходной затравочной фазы за счет кристаллизации концентрата РЗМ до 33±3%, уменьшению расхода исходной затравки вследствие увеличения массового соотношения фаз до значений (220-260):1 при температурах 80-90°C.

Особенностью данного способа кристаллизации фосфатов РЗМ на затравках из потоков фосфорной кислоты является попутное извлечение лантаноидов и соблюдение основной технологии производства товарного продукта - экстракционной фосфорной кислоты.

Способ кристаллизации фосфатов редкоземельных металлов (РЗМ) из пересыщенных растворов экстракционной фосфорной кислоты на твердом затравочном материале - гранулированном полуводном гидрате фосфата церия, отличающийся тем, что создают непрерывное возвратно-поступательное движение затравочного материала в условиях псевдокипящего слоя, создаваемого непрерывным потоком воздуха в направлении «снизу-вверх», противоположном движению раствора экстракционной фосфорной кислоты.