Клапан

Иллюстрации

Показать все

Изобретение относится к клапану для управления прохождением частиц из первой зоны (6) во вторую зону (7), содержащий: клапанный материал (4), имеющий изменяемую степень проницаемости, и клапанную зону (16, 116), содержащую клапанный материал (4, 104, 204, 304), при этом клапанная зона (16, 116) и клапанный материал (4, 104, 204, 304) выбраны с возможностью принудительного движения частиц сквозь клапанный материал (4, 104, 204, 304) при прохождении через клапан (2, 102) при переносе частиц из первой зоны (6, 106) во вторую зону (7, 107), при этом клапанный материал (4) управляется посредством блока (17, 18) управления клапаном таким образом, что физические свойства клапанного материала (4) изменяются с возможностью изменения степени проницаемости. Также изобретение относится к устройству, использующему клапан, а также способу получения клапана и способу изготовления устройства. Предложенный клапан имеет упрощенную конструкцию. 5 н. и 8 з.п. ф-лы, 26 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится к клапану для управления прохождением частиц из первой зоны во вторую зону и к многозонному устройству, содержащему этот клапан. Изобретение также относится к способу изготовления клапана и к способу изготовления многозонного устройства.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В документе US 6679729 B1 описан струйный клапан, выполненный с возможностью переключения состояния потока текучей среды в канале сообщения по текучей среде конструкции, направляющей текучую среду. Нагрев двухфазного клапанного элемента вызывает изменение состояния двухфазного клапанного элемента от состояния высокой вязкости к состоянию низкой вязкости. Если клапан закрыт, двухфазный клапанный элемент находится в состоянии высокой вязкости и закупоривает канал сообщения по текучей среде. Чтобы открыть клапан, двухфазный клапанный элемент, который закупоривает канал сообщения по текучей среде, можно втолкнуть в расширенную часть канала сообщения по текучей среде путем приложения давления к текучей среде, а двухфазный клапанный элемент при этом оказывается в состоянии низкой вязкости, откупоривая канал сообщения по текучей среде. Чтобы закрыть клапан, двухфазный клапанный элемент можно вытолкнуть из камеры-источника клапанного элемента в канал сообщения по текучей среде с помощью перекачиваемой текучей среды, попадающей в камеру-источник на входе насоса, а двухфазный клапанный элемент при этом оказывается в состоянии низкой вязкости, причем двухфазный клапанный элемент, вытолкнутый в канал сообщения по текучей среде, переключается в состояние высокой вязкости и закупоривает канал сообщения по текучей среде. Таким образом, требуется относительно сложная конструкция для управления состоянием вязкости двухфазного клапанного элемента, а также для выталкивания двухфазного клапанного элемента из канала сообщения по текучей среде и вталкивания его в канал сообщения по текучей среде с целью открывания и закрывания клапана, соответственно.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задача данного изобретения состоит в том, чтобы разработать клапан, позволяющий управлять прохождением частиц из первой зоны во вторую зону с помощью технически менее сложной конструкции. Дополнительная задача данного изобретения состоит в том, чтобы разработать соответствующее многозонное устройство, содержащее такой клапан, и способы изготовления этих клапана и устройства.

В первом аспекте данного изобретения представлен клапан для управления прохождением частиц из первой зоны во вторую зону, причем клапан содержит клапанный материал, имеющий изменяемую степень проницаемости, и клапанную зону, содержащую клапанный материал, при этом клапанная зона выполнена и клапанный материал подготовлен так, что частицам приходится проходить сквозь клапанный материал, если эти частицы проходят через клапан для переноса из первой зоны во вторую зону.

Поскольку степень проницаемости клапанного материала является изменяемой и поскольку клапанный материал подготовлен так, что частицам приходится проходить сквозь клапанный материал, если эти частицы проходят через клапан для переноса из первой зоны во вторую зону, можно легко управлять степенью открывания клапана путем изменения степени проницаемости клапанного материала.

Степенью проницаемости клапанного материала можно легко управлять посредством блока управления клапаном, управляющего клапанным материалом таким образом, что достигается желаемая степень проницаемости клапанного материала. Становится не нужно предусматривать дополнительный блок управления и, например, нажимное средство для выталкивания клапанного элемента из канала сообщения или вталкивания его в канал сообщения для открывания или закрывания клапана, соответственно. Это позволяет разработать клапан, являющийся технически менее сложным.

Кроме того, если в первой зоне присутствует текучая среда, содержащая частицы, степенью проницаемости клапанного материала можно управлять таким образом, что: а) частицы могут проходить сквозь клапанный материал, что обеспечивает перенос частиц из первой зоны во вторую зону; и b) текучая среда может, по существу, не проходить сквозь клапанный материал. Это обеспечивает отделение частиц от текучей среды, присутствующей в первой зоне.

Первая зона, которая может быть первой камерой, и вторая зона, которая может быть второй камерой, которые соединены посредством клапанной зоны, так что оказывается возможным перенос частиц из первой зоны во вторую зону через клапанную зону. Клапанный материал предпочтительно находится внутри клапанной зоны, так что частицам приходится проходить сквозь клапанный материал, если частицы проходят через клапан для переноса из первой зоны во вторую зону.

Клапанный материал предпочтительно подготовлен так, что обеспечивается прохождение магнитных частиц сквозь клапанный материал. Магнитные частицы предпочтительно приводятся в движение магнитным полем, которое приводит к нагнетанию магнитных частиц сквозь клапанный материал, если управление степенью проницаемости клапанного материала осуществляется так, что магнитные частицы могут проходить сквозь клапанный материал. В первой зоне магнитные частицы предпочтительно предусматриваются в текучей среде, причем за счет прохождения через клапан магнитные частицы отделяются от текучей среды. Степень проницаемости предпочтительно является изменяемой по отношению к частицам, имеющим диаметр между 3 нм и 10000 нм, предпочтительнее - между 10 нм и 5000 нм, а еще предпочтительнее - между 50 нм и 3000 нм.

Также предпочтительно, чтобы клапан дополнительно содержал блок управления клапаном для управления степенью проницаемости клапанного материала.

Также предпочтительно, чтобы блок управления клапаном был выполнен с возможностью управления, по меньшей мере, одним параметром из фазы и вязкости клапанного материала с целью управления степенью проницаемости.

Например, блок управления клапаном может быть выполнен с возможностью изменения фазы клапанного материала от твердого состояния к текучему состоянию, причем за счет фазового перехода клапанного материала из твердого состояния в текучее состояние степень проницаемости повышается. Соответственно, если блок управления клапаном преобразует состояние клапанного материала из текучего состояния в твердое состояние, степень проницаемости уменьшается. В дополнительном варианте осуществления, блок управления клапаном может быть выполнен и клапанный материал может быть подготовлен так, что вязкость изменяется от высокой вязкости до низкой вязкости с целью увеличения степени проницаемости клапанного материала, а также так, что можно изменять вязкость от низкой вязкости до высокой вязкости, чтобы уменьшить степень проницаемости. Если клапанный материал обладает вязкоупругими свойствами, то блок управления клапаном может быть выполнен и клапанный материал может быть подготовлен так, что вязкоупругое свойство клапанного материала изменяется для увеличения или уменьшения вязкости клапанного материала с целью уменьшения или увеличения степени проницаемости, соответственно.

Поскольку клапанный материал является материалом, изменяющим свою фазу, и/или материалом, изменяющим свою вязкость, клапанный материал можно поддерживать в стабильном непроницаемом состоянии наибольшую часть времени, например, в процессе хранения, а изменению с переходом в проницаемое состояние подвергать лишь тогда, когда необходим перенос частиц. Перенос может быть быстрым процессом, в ходе которого клапанный материал в его проницаемом состоянии подвергается воздействию (био)химического состава текучей среды лишь в течение очень короткого времени. Таким образом, если этот (био)химический состав способен изменять характеристики клапанного материала и менять стабильность или воспроизводимость клапанного материала, то у (био)химического состава текучей среды есть лишь очень мало времени для изменения клапанного материала. Быстрое переключение между состоянием, в котором клапанный материал является проницаемым, и состоянием, в котором клапанный материал является непроницаемым, позволяет использовать клапан с широкой номенклатурой (био)химических составов, в частности с широкой номенклатурой (био)химических составов текучих сред, и обеспечивает приемлемую стабильность и воспроизводимость клапана. Возможные (био)химические составы, которые могут изменять клапанный материал, представляют собой моющие средства, соли, ферменты и т.д.

В предпочтительном варианте, клапанный материал подготовлен и блок управления клапаном выполнен так, что управление степенью проницаемости осуществляется между непроницаемым состоянием, в котором частицы не могут проходить сквозь клапанный материал, и проницаемым состоянием, в котором клапанный материал является проницаемым. Таким образом, в предпочтительном варианте, блок управления клапаном выполнен и клапанный материал подготовлен так, что происходит переключение клапанного материала между непроницаемым состоянием и проницаемым состоянием.

Также предпочтительно, чтобы клапанный материал был подготовлен и блок управления клапана был выполнен так, что клапанный материал переключается между твердым состоянием, в котором степень проницаемости уменьшается, и жидким состоянием, в котором степень проницаемости увеличивается.

Клапанный материал находится, например, в твердом состоянии при температурах хранения, в частности при комнатной температуре примерно 20°С или около этого.

Также предпочтительно, чтобы клапанный материал был подготовлен так, что степень проницаемости клапанного материала зависит от температуры. Это позволяет легко управлять степенью проницаемости клапанного материала путем управления температурой клапанного материала. Управление температурой клапанного материала предпочтительно осуществляет блок управления клапаном.

Температурой клапанного материала можно управлять путем использования электрических нагревательных элементов, а предпочтительно также путем использования охлаждающих элементов. Температурой клапанного материала можно управлять путем направления света на клапанный материал для поглощения этого света клапанным материалом с целью его нагрева. Клапанный материал может содержать пигменты черного цвета, такие как углеродная сажа, чтобы увеличить поглощение света. В качестве источника света для нагрева клапанного материала можно использовать лазер или не лазерный источник света.

Клапанный материал предпочтительно является плавким. Клапанным материалом предпочтительно является воск, подобный парафину или полиэтиленгликолю. Предпочтительные твердые парафины имеют температуру плавления между 25°C и 50°C, 44°C и 46°C, между 53°C и 57°C, между 58°C и 62°C или между 70°C и 80°C. Предпочтительные твердые парафины являются твердыми парафинами от фирмы Sigma-Aldrich. Их расчетные температуры плавления находятся в диапазоне от 0°C до 100°C.

Также предпочтительно, чтобы клапанный материал был гидрофобным.

Если клапанный материал является гидрофобным, то снижается вероятность смешивания клапанного материала с текучими средами на водной основе. Это увеличивает срок службы клапанного материала, а значит и клапана, если клапан выполнен с возможностью использования с текучими средами на водной основе. Блоком управления клапаном может быть блок управления, который выполнен с возможностью управления степенью проницаемости клапанного материала независимо от других блоков, или блок управления клапаном может быть выполнен с возможностью управления степенью проницаемости во взаимодействии с другими блоками. Например, клапан может содержать нагревательный элемент для нагрева клапанного материала, причем блоком управления, предназначенным для управления нагревательным элементом, может быть внешний блок, который выполнен с возможностью соединения с нагревательным элементом для управления степенью проницаемости клапанного материала.

Блоком управления клапаном также может быть внешний блок, не встроенный в клапан. Например, многозонное устройство, содержащее клапан, может быть введено во внешний держатель, причем этот внешний держатель содержит нагревательные элементы и блок управления нагревательными элементами, образующие блок управления клапаном, предназначенный для управления степенью проницаемости клапанного материала. Внешний блок также может иметь функциональные средства для приведения частиц в движение через клапан и/или для анализа этих частиц.

Также предпочтительно, чтобы клапанный материал был гидрофильным.

Если клапанный материал является гидрофильным, то снижается вероятность смешивания клапанного материала с гидрофобными текучими средами, в частности, на масляной основе. Это увеличивает срок службы клапанного материала, а значит - и клапана, если клапан выполнен с возможностью использования с гидрофобными текучими средами, в частности, на масляной основе.

В состоянии, в котором частицы проходят сквозь клапанный материал, клапанный материал, возможно, имеет межфазное натяжение с водой менее 100 мН/м, предпочтительнее - менее 72 мН/м, предпочтительнее - менее 50 мН/м, предпочтительнее - менее 25 мН/м, а еще предпочтительнее - менее 10 мН/м. В одном варианте осуществления, межфазное натяжение с водой составляет 60 мН/м, если клапанный материал находится в состоянии, в котором он проницаем для частиц. Если межфазное натяжение с водой имеет такое малое значение, то требуется лишь малое воздействие для транспортировки частиц из первой зоны сквозь клапанный материал во вторую зону.

Кроме того, в одном примере межфазное натяжение с водой больше 1 мН/м. В одном варианте осуществления, клапанный материал имеет межфазное натяжение с водой 1,52 мН/м.

Также предпочтительно, чтобы клапанный материал был инертным. Поскольку клапанный материал предпочтительно является химически инертным, он является, по существу, химически неактивным по отношению к элементам, контактирующим с клапанным материалом, в частности проходящим сквозь него, т.е. клапанный материал, по существу, не реагирует с этими элементами, которыми могут быть текучие среды, подобные воде, магнитные частицы и т.д. Это дает длительный срок службы клапанного материала, а значит и самого клапана.

В частности, клапанный материал предпочтительно является несмешиваемым с водой и инертным по отношению к ней. Поэтому клапан можно легко изготавливать, предусматривая гидрофильные зоны и гидрофобные зоны, причем в эти зоны подаются вода и клапанный материал. Вода будет находиться, по существу, только в гидрофильных зонах, позволяя клапанному материалу находиться, по существу, только в гидрофобных зонах. Таким образом, клапан можно легко изготавливать, предусматривая гидрофобные и гидрофильные зоны, путем подачи воды и клапанного материала в текучем состоянии соответственно в гидрофильные и гидрофобные зоны и путем изменения вязкости клапанного материала таким образом, что он становится твердым. После того как клапанный материал стал твердым, воду удаляют, при этом первая и вторая зоны и клапанный материал, образующие клапан, наряду с блоком управления клапаном остаются.

В предпочтительном варианте, для изготовления клапана путем обеспечения гидрофильных зон и гидрофобных зон, при котором в эти зоны подаются вода и клапанный материал, сначала подают воду, а затем текучий среду, в частности жидкий клапанный материал.

В дополнительном аспекте данного изобретения предложено многозонное устройство, причем это многозонное устройство содержит:

первую зону и вторую зону;

клапан по п.1 формулы изобретения, при этом клапан расположен между первой зоной и второй зоной для управления прохождением частиц из первой зоны во вторую зону.

Многозонное устройство предпочтительно является многокамерным диагностическим устройством.

Многозонное устройство предпочтительно является устройством для подготовки проб, например для анализа нуклеиновых кислот, анализа белков или анализа клеток. Например, в устройстве можно вызывать лизис клеток и можно очищать ДНК посредством разных этапов промывки в разных камерах. Эти этапы промывки можно проводить, например, давая частицам проходить сквозь клапанный материал и при этом не давая текучей среде или другим частицам проходить сквозь клапанный материал, чтобы тем самым отделить определенные частицы от текучей среды или от других частиц.

Частицы можно приводить в движение сквозь клапанный материал с помощью любой силы. Например, частицы можно приводить в движение сквозь клапанный материал с помощью магнитных сил, с помощью электрических сил, с помощью капиллярных сил и т.д. Частицы предпочтительно являются магнитными частицами, которые нагнетаются сквозь клапанный материал за счет использования магнитного исполнительного блока, который является блоком генерирования магнитного поля или содержит такой блок для генерирования магнитных сил с целью приведения магнитных частиц в движение сквозь клапанный материал. Блок генерирования магнитного поля представляет собой, например, магнит, подобный постоянному магниту или электрическому магниту, или токоведущий провод.

Предпочтительно, чтобы первая зона и вторая зона содержали гидрофильную поверхность.

Также предпочтительно, чтобы многозонное устройство по п.10 формулы изобретения было содержащим слой, имеющий поверхность с гидрофильными зонами, ограничивающими первую и вторую зоны, при этом клапанная зона, содержащая клапанный материал, находилась между гидрофильными зонами.

Упомянутый слой предпочтительно представляет собой подложку, подобную стеклянной или пластмассовой подложке, имеющую поверхность с гидрофильными зонами, ограничивающими первую и вторую зоны, и гидрофобную зону, находящуюся между гидрофильными зонами, причем гидрофобная зона содержит клапанный материал. Слой, имеющий поверхность с гидрофильными зонами и предпочтительно с гидрофобной зоной, являющейся клапанной зоной, по существу, является частью корпуса, причем первая гидрофильная зона на слое ограничивает первую камеру, вторая гидрофильная зона на слое ограничивает вторую камеру, и при этом гидрофобная зона ограничивает клапанную зону, содержащую клапанный материал.

В дополнительном аспекте данного изобретения, представлено устройство для приведения частиц в движение, причем это устройство для приведения частиц в движение содержит принимающую многозонное устройство зону для приема многозонного устройства по п.9 формулы изобретения, при этом устройство для приведения частиц в движение выполнено с возможностью приведения частиц, находящихся в первой зоне, в движение в направлении второй зоны, если многозонное устройство находится в принимающей многозонное устройство зоне, для переноса частиц из первой зоны во вторую зону через клапан.

Это позволяет разработать многозонное устройство как устройство одноразового использования, а устройство для приведения частиц в движение как устройство многоразового использования. Устройство для приведения частиц в движение может содержать дополнительное функциональное средство, подобное блоку для анализа текучей среды и/или частиц.

Устройство для приведения частиц в движение предпочтительно содержит также блок управления клапаном, предназначенный для управления степенью проницаемости клапана. Например, устройство для приведения частиц в движение содержит нагревательный элемент для изменения температуры клапанного материала и блок управления нагревательным элементом для управления температурой клапанного материала. Устройство для приведения частиц в движение дополнительно содержит датчик температуры для измерения температуры вблизи клапанного материала, так что температурой можно управлять путем управления нагревательным элементом в зависимости от измеряемой температуры. Нагревательный элемент, блок управления нагревательным элементом и предпочтительно датчик температуры образуют блок управления клапаном.

В дополнительном аспекте данного изобретения представлен способ изготовления клапана для управления прохождением частиц из первой зоны во вторую зону, включающий в себя этапы, на которых:

формируют клапанный материал, имеющий изменяемую степень проницаемости;

формируют клапанную зону;

располагают клапанный материал в клапанной зоне и выполняют клапанную зону и подготавливают клапанный материал так, что частицам приходится проходить сквозь клапанный материал, если частицы проходят через клапан для переноса из первой зоны во вторую зону.

В дополнительном аспекте данного изобретения представлен способ изготовления многозонного устройства, включающий в себя этапы, на которых:

формируют первую зону и вторую зону;

формируют клапан по п.1 формулы изобретения;

располагают клапан между первой зоной и второй зоной для управления прохождением частиц из первой зоны во вторую зону.

Также предпочтительно, чтобы этапы формирования первой зоны и второй зоны и расположения клапана между первой зоной и второй зоной осуществлялись путем:

формирования первого слоя, содержащего гидрофильные и гидрофобные зоны на своей поверхности;

формирования воды и клапанного материала на поверхности таким образом, что вода располагается в гидрофильных зонах, а клапанный материал располагается в гидрофобных зонах.

В дополнительном примере заявлен способ изготовления, посредством которого выполняют, по меньшей мере, одно отверстие в первом слое или во втором слое, а клапанный материал подают в клапан через это отверстие.

В дополнительном примере заявлен способ изготовления, посредством которого формируют, по меньшей мере, один канал, перпендикулярный направлению переноса частиц, на конце которого расположено упомянутое отверстие, причем этот канал пересекает направление переноса, а перенос частиц происходит по каналу за счет капиллярных сил.

Оба способа также обеспечивают менее сложное изготовление, особенно за счет загрузки клапанного материала в клапан через упомянутое обеспеченное отверстие.

Следует понять, что клапан по п.1 формулы изобретения, многозонное устройство по п.6 формулы изобретения, устройство для приведения частиц в движение по п.8 формулы изобретения, способ изготовления клапана по п.9 формулы изобретения и способ изготовления многозонного устройства по п.10 формулы изобретения имеют аналогичные и/или идентичные предпочтительные варианты осуществления, охарактеризованные в зависимых пунктах формулы изобретения.

Следует понять, что предпочтительный вариант осуществления изобретения также может представлять собой любую комбинацию зависимых пунктов формулы изобретения с соответствующим независимым пунктом формулы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 схематически показан возможный вариант осуществления многозонного устройства;

на фиг.2 схематически показан возможный вариант осуществления устройства для приведения частиц в движение, в состав которого включено многозонное устройство;

на фиг.3 схематически показан возможный вид сверху многозонного устройства согласно варианту осуществления;

на фиг.4 схематически показан возможный вид сверху на многозонное устройство в варианте осуществления, содержащее магнитные частицы и текучую среду;

на фиг.5-8 схематически показаны возможные варианты осуществления магнитного исполнительного средства для нагнетания магнитных частиц сквозь клапанный материал клапана;

на фиг.9 схематически показаны возможные разные распределения гидрофильных и гидрофобных зон многозонного устройства;

на фиг.10 схематически показано возможное изображение в изометрии с пространственным разнесением гидрофильных и гидрофобных зон многозонного устройства и магнитного исполнительного средства;

на фиг.11 показана возможная блок-схема последовательности операций, иллюстрирующая способ изготовления клапана, а

на фиг.12 показана возможная блок-схема последовательности операций, иллюстрирующая способ изготовления многофазного устройства;

на фиг.13 показан вид сверху снабженного отверстиями слоя многофазного устройства;

на фиг.14 показан вид сверху двухсторонней клейкой ленты для нанесения на слой согласно фиг.13;

на фиг.15 показан вид сбоку клапана с первой зоной и второй зоной и клапанным материалом, подаваемым между этими зонами через отверстие в соответствии с фиг.13, 14;

на фиг.16-18 показаны схематические виды сверху многозонного устройства и множества частиц, переносимых из второй зоны в первую зону сквозь клапанный материал, в соответствии с фиг.13-15;

на фиг.19 показан вид сверху альтернативного слоя многофазного устройства, снабженного отверстиями наверху слоя;

на фиг.20 показан вид сверху альтернативной двухсторонней клейкой ленты для нанесения на слой согласно фиг.19;

на фиг.21 показан вид сбоку клапана с первой зоной и второй зоной и клапанным материалом, подаваемым между этими зонами через отверстие в соответствии с фиг.19-20;

на фиг.22-24 показаны схематические виды сверху многозонного устройства и множества частиц, переносимых из первой зоны во вторую зону сквозь клапанный материал, в соответствии с фиг.19-21;

на фиг.25 показана гистограмма концентрации флуоресцентной индикаторной краски в камерах клапана согласно примеру изобретения в ходе процедуры очистки;

на фиг.26 показана гистограмма сравнения очистки определенного количества копий определенной ДНК от связующего буфера.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

На фиг.1 схематически показан возможный вариант осуществления многозонного устройства 1, содержащего первую зону 6 и вторую зону 7. Между первой зоной 6 и второй зоной 7 расположен клапан 2 для управления прохождением частиц между первой зоной 6 и второй зоной 7. Многозонное устройство предпочтительно является многокамерным диагностическим устройством.

Многозонное устройство 1 содержит первый слой 11, представляющий собой стеклянную или пластмассовую подложку, и противоположный второй слой 12, также представляющий собой стеклянную или пластмассовую подложку. Многозонное устройство дополнительно содержит ограничительные элементы 13, образующие стенки для ограничения текучей среды внутри многозонного устройства 1.

В этом варианте осуществления, многозонное устройство 1 дополнительно содержит дополнительный клапан 3, причем слои 11, 12, ограничивающие элементы 13 и клапаны 2, 3 образуют несколько камер, ограничивающих первую зону 6, вторую зону 7 и зону 8 анализа. Второй слой 12 содержит впускное отверстие 26, позволяющее вводить текучую среду в первую зону 6, и выпускное отверстие 27, позволяющее газу, подобному воздуху, и/или введенной текучей среде покидать многозонное устройство.

Клапаны 2, 3 содержат клапанный материал 4, 5, имеющий изменяемую степень проницаемости, причем клапанный материал 4, 5 расположен внутри клапанной зоны 16, 28, так что частицам приходится проходить сквозь клапанный материал 4, 5, если частицы проходят через клапаны 2, 3 для переноса их из первой зоны 6 во вторую зону 7 или из второй зоны 7 в зону 8 анализа, соответственно. Поскольку степень проницаемости клапанного материала 4, 5 является изменяемой и поскольку клапанный материал 4, 5 подготовлен так, что частицам приходится проходить сквозь клапанный материал 4, 5, если частицы проходят через клапан 2, 3 для переноса из первой зоны 6 во вторую зону 7 или из второй зоны 7 в зону 8 анализа, степенью открывания клапана 2, 3 можно легко управлять путем изменения степени проницаемости клапанного материала 4, 5.

В предпочтительном варианте, в первую зону 6 многозонного устройства 1 через впускное отверстие 26 вводят текучую среду, содержащую магнитные частицы. Тогда подготовка клапанного материала 4, а также клапанного материала 5 и управление ими предпочтительно осуществляются так, что a) магнитные частицы могут проходить сквозь клапанный материал для обеспечения переноса магнитных частиц из первой зоны 6 во вторую зону 7 и из второй зоны 7 в зону 8 анализа, соответственно, и так, что b) текучая среда, по существу, не может проходить сквозь клапанный материал 4 или клапанный материал 5. Это позволяет отделять магнитные частицы от текучей среды, присутствующей в первой зоне 6.

Магнитные частицы предпочтительно приводятся в движение магнитным полем, которое нагнетает магнитные частицы сквозь клапанный материал 4, 5, если управление степенью проницаемости клапанного материала 4, 5 таково, что магнитные частицы могут проходить сквозь клапанный материал 4, 5. Приведение магнитных частиц в движение магнитным полем также будет подробнее описано ниже.

Степень проницаемости клапанного материала 4, 5 предпочтительно является изменяемой по отношению к частицам, имеющим диаметр между 3 нм и 10000 нм, предпочтительнее - между 10 нм и 5000 нм, а еще предпочтительнее - между 50 нм 3000 нм.

Клапаны 2, 3 дополнительно содержат блок управления клапаном, предназначенный для управления степенью проницаемости клапанного материала 4, 5. Блок управления клапаном может быть полностью встроен в многозонное устройство или он может быть встроен в другое отдельное устройство, подобное устройству для приведения частиц в движение, при этом другое внешнее устройство и многозонное устройство взаимодействуют для управления степенью проницаемости. Кроме того, первая часть блока управления клапаном может быть встроена в многозонное устройство, а дополнительная часть блока управления клапаном может быть встроена в дополнительное внешнее устройство. Возможный вариант осуществления дополнительного внешнего устройства, являющегося устройством для приведения частиц в движение, которое содержит блок управления клапаном, схематически показан на фиг.2.

Устройство 9 для приведения частиц в движение содержит принимающую многозонное устройство зону 10 для приема многозонного устройства. В варианте, показанном на фиг.9, многозонное устройство 1 введено в принимающую многозонное устройство зону 10 устройства 9 для приведения частиц в движение. Устройство 9 для приведения частиц в движение выполнено с возможностью приведения магнитных частиц, находящихся в первой зоне 6, в движение в направлении второй зоны 7, если многозонное устройство 1 находится в принимающей многозонное устройство зоне 10, для переноса частиц из первой зоны 6 во вторую зону 7 через клапан 2. Устройство 9 для приведения частиц в движение также выполнено с возможностью приведения частиц, находящихся во второй зоне 7, в движение в направлении зоны 8 анализа, если многозонное устройство 1 находится в принимающей многозонное устройство зоне 10, для переноса частиц из второй зоны 7 в зону 8 анализа через клапан 3. Для нагнетания магнитных частиц из первой зоны 6 во вторую зону 7 через клапан 2 и из второй зоны 7 в зону 8 анализа через клапан 3, устройство 9 для приведения частиц в движение содержит магнитное исполнительное средство 19, управляемое блоком 18 управления. Предпочтительные воплощения магнитного исполнительного средства 19 будут дополнительно описаны ниже.

Устройство 9 для приведения частиц в движение дополнительно содержит нагревательные элементы 17, 29 для изменения температуры клапанных материалов 4, 5. Нагревательные элементы 17, 29 управляются блоком 18 управления, так что блок 18 управления и нагревательные элементы 17, 29 образуют блок управления клапаном. Путем управления температурой клапанного материала 4, 5 осуществляется управление, по меньшей мере, одним параметром из фазы и вязкости клапанного материала 4, 5, а значит и управление степенью проницаемости клапанного материала 4, 5 по отношению к магнитным частицам.

В этом варианте осуществления, клапанный материал 4, 5 подготовлен и блок 17, 28, 18 управления клапаном выполнен так, что клапанный материал 4, 5 переключается между твердым состоянием, в котором степень проницаемости по отношению к магнитным частицам уменьшается, и жидким состоянием, в котором степень проницаемости по отношению к магнитным частицам увеличивается. Предпочтительно, в твердом состоянии магнитные частицы, а также предпочтительно текучая среда, в которой могут быть суспендированы эти магнитные частицы, не могут проходить сквозь клапанный материал 4, 5, а в жидком состоянии только магнитные частицы могут проходить сквозь клапанный материал 4, 5, но не текучая среда, в которой могут быть суспендированы эти магнитные частицы.

Клапанный материал 4, 5 находится в твердом состоянии предпочтительно при температурах хранения, в частности при комнатной температуре примерно 20°C или около этого. Клапанный материал 4, 5 предпочтительно является плавким и предпочтительно является воском, подобным парафину или полиэтиленгликолю.

Клапанный материал 4, 5 предпочтительно является гидрофобным, чтобы минимизировать риск того, что жидкость на водной основе сможет смешаться с клапанным материалом 4, 5, если клапанный материал 4, 5 находится в жидком состоянии. В другом варианте осуществления, в котором многозонное устройство выполнено с возможностью использования с гидрофобными жидкостями, в частности, на масляной основе, клапанный материал предпочтительно подготовлен из гидрофильного материала, чтобы минимизировать риск смешивания клапанного материала с гидрофобными жидкостями, в частности, на масляной основе, если клапанный материал 4, 5 находится в жидком состоянии.

Клапанный материал 4, 5 предпочтительно является химически инертным, т.е. клапанный материал 4, 5, по существу, не реагирует с другими элементами, контактирующими с клапанным материалом 4,5, в частности, проходящими сквозь него. Это дает длительный срок службы клапанного материала 4, 5, а значит и клапанов 2, 3.

Устройство 9 для приведения частиц в движение дополнительно содержит блок 21 анализа, предназначенный для анализа частиц, которые достигли зоны 8 анализа многозонного устройства 1. Например, блок 21 анализа может быть выполнен с возможностью определения количества или концентрации магнитных частиц в зоне 8 анализа оптическим или магнитным методом. Кроме того, блоком 21 анализа предпочтительно управляет блок 18 управления.

Снова обратившись к Фиг.1, можно констатировать, что многозонное устройство 1 дополнительно содержит поверхность с гидрофильными зонами 14 на первом слое 11 в первой и второй зонах 6, 7 и в зоне 8 анализа и гидрофобными зонами 15 на первом слое 11 в клапанных зонах 16, 28. Таким образом, первая и вторая зоны 6, 7 и зона 8 анализа ограничены гидрофильными зонами 14, клапанные зоны 16, 28 ограничены гидрофобными зонами 15. Поскольку первый слой 11 содержит гидрофильные и гидрофобные зоны 14, 15 и поскольку клапанный материал предпочтительно является несмешиваемым и инертным по отношению к воде, при изготовлении можно легко получать разные зоны внутри многозонного устройства 1 путем подачи воды и клапанного материала 4, 5 в эти зоны. Вода окажется располагающейся по существу, только в гидрофильных зонах 14, позволяя размещать материал 4, 5, по существу, только в гидрофобных зонах 15. Таким образом, клапан 2, 3 можно легко изготовить, обеспечивая гидрофильные и гидрофобные зоны 14, 15, подавая воду и клапанный материал 2, 3 в текучем состоянии в гидрофильные и гидрофобные зоны 14, 15 и изменяя состояние клапанного материала 4, 5 таким образом, что он становится твердым. После того как клапанный материал 4, 5 стал твердым, воду удаляют, причем первая и вторая зоны 6, 7, а в этом варианте осуществления - и зона 8 анализа, и клапанные зоны 16, 28, содержащие клапанный материал 4, 5, остаются.

Многозонное устройство 1 предпочтительно является диагностическим устройством, предпочтительно, компактным, стойким к внешним воздействиям и выполненным таким образом, что требуются лишь немногие этапы, проводимые с участием пользователя. В предпочтительном варианте, пользователю нужно лишь добавить пробу, подобную пробе крови или слюны, в многозонное устройство, а все остальные реагенты, которые могут понадобиться для анализа этой пробы, уже присутствуют в многозонном устройстве. Многозонное устройство