Плазменный реактор для преобразования газа в жидкое топливо

Иллюстрации

Показать все

Изобретение относится к способу и устройству для преобразования газообразного углеводорода в жидкий углеводород. Реактор, действующий на основе нетеплового повторяющегося импульсного скользящего разряда, содержит: высоковольтный источник энергии, выполненный с возможностью подачи импульсного высоковольтного потенциала; входное отверстие для газа; входное отверстие для жидкого сорбента; выходное отверстие для продукта; первые электроды, соединенные с высоковольтным источником энергии; вторые электроды, которые являются заземленными; и желоб; причем первые электроды отделены от вторых электродов разрядной областью. Изобретение позволяет снизить энергозатраты при производстве жидких продуктов и повысить производительность реакторных систем. 3 н. и 50 з.п. ф-лы, 3 табл., 6 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение в целом относится к изготовлению топлива. В частности, настоящее изобретение относится к преобразованию газообразного углеводорода в жидкий углеводород.

УРОВЕНЬ ТЕХНИКИ

[0002] Установлено, что в настоящее время в год сжигают впустую природный газ на сумму между 3 и 12 миллиардами долларов по причине невозможности его эффективной добычи, очистки и/или транспортирования. Несмотря на то что известны способы добычи, очистки и/или транспортирования природных газов, указанные способы являются сложными и не подходящими для использования в труднодоступных или расположенных в акватории на расстоянии от берега местах залежей природного газа.

[0003] Природный газ может быть преобразован в жидкое топливо различными известными способами. Например, такие способы включают способ Фишера-Тропша и способы, разработанные компанией Mobil, а также способы преобразования газа в жидкость (GTL) с использованием плазмы. Способ Фишера-Тропша и способы, разработанные компанией Mobil, содержат многоступенчатые этапы синтеза, на которых легкий углеводород (т.е. газообразный углеводород) первоначально преобразуется в сингаз при высоком давлении и высоких температурах до 1300 К (1026,85°С). Сингаз представляет собой смесь окиси углерода (СО) и водорода (Н2). Сингаз обычно получают путем бескислородного сжигания газообразного углеводорода. Следующие реакции приведены в качестве иллюстрации примеров указанных известных способов:

СО+Н2 → жидкие углеводороды (способ Фишера-Тропша);

СО+Н2 → СН3ОН и/или другие жидкие углеводороды (способ компании Mobil).

[0004] По причине экстремальных тепловых эксплуатационных условий установки для крекинга сингаза представляют собой громоздкие сооружения и являются дорогими в эксплуатации. Установки GTL, чтобы быть коммерчески оправданными, должны быть очень большими и сложными. Эксплуатационные энергозатраты, необходимые для сжатия и нагрева газа, являются очень высокими и составляют примерно 60-80% всех затрат на изготовление топлива такими способами. Кроме того, на всех этапах известных способов для преобразования используются в целом дорогие катализаторы, которые к тому же требуют частой замены.

[0005] Другой подход к преобразованию легких углеводородов в жидкое топливо состоит в использовании способа на основе нетепловой плазмы. В патенте США №7,033,551 (далее патент 551) описана система реактора, содержащая электрохимическую ячейку и использующая диэлектрический барьерный разряд, в которой формирование жидких продуктов происходит в основном путем олигомеризации радикалов газообразного углеводорода в нетепловой плазме барьерного разряда в газе. Нетепловая плазма обеспечивает исходную концентрацию свободных радикалов благодаря диссоциации легких молекул алкана под действием электронов с высокой энергией при низкой температуре газа (от примерно 100°С до примерно 600°С) и атмосферном давлении газа. Электрохимические ячейки в соединении с барьерным разрядом позволяют осуществить окисление избыточного водорода в плазме, неполное окисление и окислительную конденсацию основного газа. Конечный состав содержит смесь жидких углеводородов, из которых меньшая часть представляет собой спирты.

[0006] Способ, описанный в патенте США №7,033,551, осуществлен на основе способов диссоциации углеводородных молекул, которая происходит под действием "горячих" электронов в реакторе барьерного разряда согласно реакции (1):

e − + R H → R ⋅ + H ⋅ + e −   ( 1 )

В реакции (1) RH - общая формула для углеводорода, и е - электрон. В указанных способах радикалы R· и Н· формируются при высоких энергиях активации (>400 кДж/моль). Подобные способы с аналогичной высокой энергией активации также могут быть облегчены путем использования способов облучения светом, согласно которым необходимую энергию активации обеспечивает источник (hv) ультрафиолетового (УФ) излучения, как описано в патенте 551:

h v + R H → R ⋅ + H ⋅   ( 2 )

Требование высокой энергии активации для реакций (1) и (2) вытекает из энергетического состояния неактивированной молекулы углеводорода, энергия которой соответствует очень низкому уровню по сравнению с энергетическим состоянием ее диссоциированных компонентов. Каждое событие разрыва связей (т.е. диссоциации) под действием электрона имеет место только при возбужденном состоянии электрона, при этом потребляется значительное количество энергии. Принимая во внимание энергию, освобожденную из преобразования высших углеводородов (реакция (3)) после указанных выше реакций диссоциации

2 R ⋅ → R 2   ( 3 ) ,

энергозатраты, необходимые для осуществления указанного способа, обычно превышают 100 кВт·ч на 1 кг конечного продукта.

[0007] В патенте США №6,375,832 (далее патент 832) описан синтез жидких продуктов под действием барьерного разряда, при это использование катализатора является дополнительным. В способе синтеза, описанном в патенте 832, олигомеры углеводородных радикалов вырабатываются в результате диссоциации исходного газа и преобразования углеводородов из фрагментов свободных радикалов путем непосредственного соединения и окислительной конденсации:

C H 4 → C 2 H 6 → C 4 H 10   ( 4 ) .

Если СO2 вводится в исходную смесь газов в качестве окислителя, то также происходит преобразование двуокиси углерода, которое способствует формированию жидких углеводородов. В результате разложения СО2 также могут быть выработаны спирты. Такие способы могут быть описаны реакциями 5-7:

C O 2 + e − → C O + O ⋅ + e −   ( 5 ) ,

R H + O ⋅ → R ⋅ + O H   ( 6 ) ,

R ⋅ + O H ⋅ → R O H   ( 7 ) .

[0008] Ограничивающими факторами для вышеуказанных способов, в которых используется плазма, являются: нецепной характер процессов преобразования в реакторе барьерного разряда и высокая энергия активации (>400 кДж/моль) основного процесса формирования радикалов. Следовательно, конкретные энергозатраты при изготовлении жидких продуктов обычно превышают 100 кВт·ч на 1 кг продукта. Другое значительное ограничение способов на основе использования плазмы барьерного разряда состоит в небольших величине электрического тока (10-5-10-3 А/см2) и плотности энерговыделения плазмы барьерного разряда (1-10 Вт/см3), которые снижают производительность реакторных систем. Кроме того, вышеуказанные способы на основе использования плазмы позволяют управлять только температурой исходного газа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0009] Согласно одному аспекту настоящего изобретения предложен способ, согласно которому:

вводят газообразный углеводород в реактор, содержащий:

первые электроды, каждый из которых индивидуально соединен с импульсным высоковольтным источником энергии;

вторые электроды, которые являются заземленными; и

желоб;

причем первые электроды отделены от вторых электродов разрядной областью,

вводят в желоб жидкий сорбент,

генерируют нетепловой повторяющийся импульсный скользящий разряд в разрядной области, и

получают жидкий углеводородный состав.

Согласно одному варианту реализации уровень жидкого сорбента в реакторе поддерживается в непосредственной близости к разрядной области. Согласно некоторым вариантам реализации каждый из первых электродов соединен с импульсным высоковольтным источником энергии посредством конденсатора. Согласно некоторым вариантам реализации длительность одиночного импульса в реакторе на основе нетеплового повторяющегося импульсного разряда в газе составляет меньше 100 нс. Согласно некоторым вариантам реализации напряженность электрического поля в реакторе на основе нетеплового повторяющегося импульсного разряда в газе составляет меньше 8 кВ/см. Согласно некоторым вариантам реализации удельная энергия плазмы составляет от примерно 0,2 Дж/см3 до примерно 2,5 Дж/см3.

[0010] Согласно некоторым вариантам реализации газообразный углеводород представляет собой алкан C1, C2, С3 или C4. Согласно некоторым таким вариантам реализации газообразный углеводород представляет собой метан, этан, n-пропан, изопропан, n-бутан, изобутан, трет-бутан или смесь любых по меньшей мере двух указанных соединений.

[0011] Согласно некоторым вариантам реализации газообразный углеводород дополнительно содержит СO2, воздух или кислород. Согласно некоторым вариантам реализации газообразный углеводород дополнительно содержит СO2.

[0012] Согласно некоторым вариантам реализации реактор также содержит твердый катализатор. Согласно некоторым таким вариантам реализации твердый катализатор содержит оксид алюминия, алюмосиликат, алюмофосфат, Li, Na, К, Be, Мg, Са, Sr, Ва, Сu, Аg, Аu, Zn, Cd, Нg, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt или смесь любых по меньшей мере двух указанных веществ.

[0013] Согласно некоторым вариантам реализации жидкий сорбент представляет собой бензин, легкое дизельное топливо, керосин, жидкий алкан или смесь любых по меньшей мере двух указанных веществ.

[0014] Согласно некоторым вариантам реализации время между отдельными разрядами составляет от примерно 10 мкс до 100 мкс, от примерно 10 мкс до 80 мкс, от примерно 20 мкс до 50 мкс или примерно 35 мкс. Согласно некоторым вариантам реализации длительность одиночного разряда составляет величину порядка примерно 10 нс.

[0015] Согласно некоторым вариантам реализации жидкий углеводородный состав содержит насыщенные углеводороды, а удельная энергия нетеплового повторяющегося импульсного разряда в газе составляет примерно от 0,5 Дж/см3 до примерно 2 Дж/см3 на импульс. Согласно некоторым вариантам реализации жидкий углеводородный состав содержит олефины, а удельная энергия нетеплового повторяющегося импульсного разряда в газе составляет примерно 2 Дж/см3 на импульс. Согласно некоторым таким вариантам реализации реактор содержит твердый катализатор, содержащий цеолит, оксид элементов групп IIВ, IVB, VB или группы VIB, элемент группы VIIIB или смесь любых по меньшей мере двух указанных веществ.

[0016] Согласно некоторым вариантам реализации жидкий углеводородный состав содержит нефтяные масла, а удельная энергия разряда в газе составляет от примерно 2 Дж/см3 до примерно 2,5 Дж/см3 на один импульс разряда. Согласно некоторым таким вариантам реализации реактор содержит твердый катализатор, содержащий катион, оксид металла или комплексное соединение элементов групп IIА, IIIА, IVB, VB или VIIIB или смесь любых по меньшей мере двух указанных веществ.

[0017] Согласно некоторым вариантам реализации газообразный углеводород дополнительно содержит О2, и концентрация O2 является ниже предела воспламенения.

[0018] Согласно некоторым вариантам реализации реактор содержит твердый катализатор, содержащий окиси элементов групп IIА, IVA, IIB, IVB и элементы группы VIIIB.

[0019] Согласно другому аспекту настоящего изобретения предложенное устройство содержит реактор, действующий на основе нетеплового повторяющегося импульсного скользящего разряда, содержащий:

высоковольтный источник энергии, выполненный с возможностью генерирования импульсного высоковольтного потенциала;

входное отверстие для газа;

входное отверстие для жидкого сорбента;

выходное отверстие для продукта;

первые электроды, каждый из которых индивидуально соединен с высоковольтным источником энергии;

вторые электроды, которые являются заземленными; и

желоб;

причем первые электроды отделены от вторых электродов разрядной областью.

Согласно некоторым вариантам реализации каждый из первых электродов соединен с импульсным высоковольтным источником энергии посредством конденсатора.

[0020] Согласно некоторым вариантам реализации желоб содержит твердый катализатор. Согласно некоторым таким вариантам реализации твердый катализатор содержит оксид алюминия; алюмосиликат, алюмофосфат; цеолит; окись металла; катион; оксид элемента групп IIВ, IVB, VB или группы VIB; элемент группы VIIIB; комплексное соединение элементов групп IIА, IIIA, IVB, VB или VIIIB или смесь любых по меньшей мере двух указанных веществ.

[0021] Согласно некоторым вариантам реализации высоковольтный генератор импульсов выполнен с возможностью подачи одиночного импульса длительностью меньше 100 нс. Согласно некоторым вариантам реализации реактор выполнен с возможностью обеспечения электрического поля напряженностью меньше 8 кВ/см. Согласно некоторым вариантам реализации реактор выполнен с возможностью формирования разряда, имеющего удельную энергию от примерно 0,1 Дж/см3 до примерно 5 Дж/см3.

[0022] Согласно некоторым вариантам реализации первые электроды и вторые электроды установлены на корпусе реактора. Согласно некоторым вариантам реализации первые электроды и вторые электроды расположены кольцеобразно и установлены на корпусе реактора.

[0023] Согласно некоторым вариантам реализации в корпусе реактора, имеющего кольцевую или многоугольную конструкцию, сформирован кольцевой желоб. Согласно некоторым вариантам реализации желоб содержит политетрафторэтилен. Согласно некоторым вариантам реализации корпус реактора дополнительно содержит по меньшей мере один радиальный канал, соединяющий желоб с центральной областью корпуса реактора.

[0024] Согласно некоторым вариантам реализации реактор также содержит резервуар для жидкого сорбента. Согласно некоторым вариантам реализации реактор также содержит приемник.

[0025] Согласно некоторым вариантам реализации первые и вторые электроды содержат железо, хром, никель, золото, серебро, медь, платину, иттрий, иридий, палладий, рений, рутений, молибден, вольфрам, титан, ванадий, их сплавы, их оксиды, графит или смесь любых по меньшей мере двух указанных веществ.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0026] На фиг.1 показана структурная схема плазменной реакторной системы и способа преобразования газа в жидкость согласно различным вариантам реализации.

[0027] На фиг.2 схематически показан разрез электродов и плазмы разряда в плазменной камере реактора согласно одному варианту реализации.

[0028] На фиг.3 схематически показан разрез электродов и плазмы разряда, перпендикулярный показанному на фиг.2, согласно одному варианту реализации.

[0029] На фиг.4 показана открытая реакционная камера с кольцевым расположением электродов согласно одному варианту реализации.

[0030] На фиг.5 показана схема резервуара и потоки жидкости согласно различным вариантам реализации.

[0031] На фиг.6 показан перспективный вид реактора, действующего на основе разряда в газе, согласно различным вариантам реализации.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0032] В следующем ниже подробном описании сделана ссылка на сопроводительные чертежи, которые являются частью настоящего описания. На чертежах подобные символы обычно обозначают подобные компоненты, если из контекста не следует иное. Иллюстративные варианты реализации, раскрытые в подробном описании, чертежах и пунктах приложенной формулы, не предназначены для ограничения. Могут быть использованы другие варианты реализации и могут быть сделаны другие изменения без отступления от идеи или объема настоящего изобретения. Предложенные способы также иллюстрируются примерами, описанными ниже, которые в любом случае не должны рассматриваться в качестве ограничения.

[0033] Ниже описаны устройство и способ изготовления жидкого топлива из природных газов с использованием нетеплового импульсного скользящего электрического разряда. Жидкое топливо формируется из природных газов путем использования колебательного и вращательного возбуждения молекул газа, как, например, сформулировано в реакциях 8-10:

e − + R H → R H ∗ + e −   ( 8 )

R H ∗ + H ⋅ → ( R ⋅ ) ∗ + H 2   ( 9 )

( R ⋅ ) ∗ + R H ∗ → R 2 + H ⋅   ( 10 )

Стимулирование газов до колебательно- и вращательно-возбужденных уровней требует намного меньшей энергии активации, чем требуется для диссоциации газов, как сформулировано в реакциях 1-3 и 5-7. Использованные ниже символы обозначают следующее: е - электрон; RH - углеводородный фрагмент; "•" указывает свободнорадикальные частицы; и "*" указывает колебательно- или вращательно-возбужденное состояние. Следует отметить, что при инициировании реакций RH относится к углеводородному фрагменту природного газа С14 или первоначально сформированным малым соединениям R2, однако в начале формирования цепочки RH также может относится к последовательно большим углеводородным фрагментам, которые остаются в плазме и таким образом продолжают оставаться вращательно и колебательно возбужденным и формировать еще большие углеводородные фрагменты. Реакция 11 обрыва цепи и водородная реакция 12 восстановления являются дополнительными реакциями в общей схеме формирования углеводородного топлива:

( R ⋅ ) ∗ + R H ∗ → R 2 + H ∗   ( 11 )

2 H ∗ → H 2   ( 12 )

Согласно некоторым из вариантов реализации предложенный способ также может содержать реакцию диссоциации, такую как проиллюстрированная реакцией 1, в которой энергия системы изменяется до уровня, при котором могут произойти реакции диссоциации. Однако указанные реакции диссоциации обеспечивают незначительный вклад в общую последовательность реакций.

[0034] Способ, проиллюстрированный реакциями 8-11, запускает механизм цепной реакции, которая приводит к формированию R2. Указанный механизм цепной реакции отличается от механизмов молекулярной диссоциации-преобразования, проиллюстрированных реакциями 1 и 3, происходящими в плазме барьерного разряда. Кроме того, реакции 8-11 происходят при уменьшенной энергии активации по сравнению с диссоциацией газа в барьерном разряде. Энергия активации, необходимая для описанного ниже механизма цепной реакции, меньше по сравнению со способом диссоциации газа в барьерном разряде в несколько раз или даже на несколько порядков, в зависимости от конкретных реагирующих веществ. Предложенные механизмы цепной реакции также предусматривают постоянное количество свободных радикалов, присутствующее в плазме в течение всего периода действия разряда на газ.

[0035] Параметры, необходимые для устройств, вырабатывающих нетепловой импульсный скользящий разряд, описанный ниже, значительно отличаются от параметров, необходимых для описанных выше систем барьерного разряда. Например, напряженность электрического поля, необходимая для нетеплового импульсного скользящего разряда, примерно на 26% выше по сравнению с барьерным разрядом, при этом энергия, поданная в один разрядный канал, примерно на 3300% выше. Таким образом, нетепловой импульсный разряд согласно настоящему изобретению обеспечивает увеличенную производительность по сравнению с системами барьерного разряда. В Таблице 1 перечислено несколько примеров указанных параметров.

Таблица 1
Сравнение примеров параметров плазмы для условий барьерного разряда и нетеплового импульсного разряда
Параметр Барьерный разряд Нетепловой импульсный разряд
Напряженность электрического поля 30 кВ/см 8 кВ/см
Длительность импульса 10-8 с 10-7 с
Ток 0,1 А 1,25 А
Энерговклад в один разрядный канал 3,0×10-5 Дж 10-3 Дж

[0036] Таким образом, согласно одному аспекту настоящего изобретения предложены устройство и способ для преобразования газообразных при нормальных условиях углеводородов в жидкие при нормальных условиях углеводороды путем использования нетеплового повторяющегося импульсного скользящего разряда. Устройство содержит реакционную камеру, содержащую несколько первых электродов, которые соединены с высоковольтным импульсным источником питания, и несколько вторых электродов, которые заземлены. Первые электроды и вторые электроды разделены разрядной областью или разрядным промежутком. Первые и вторые электроды расположены попарно, так что каждому первому электроду соответствует второй электрод, расположенный на противоположной стороне разрядной области. Согласно некоторым из вариантов реализации первые и вторые электроды являются штыревыми электродами.

[0037] Разрядная область расположена в непосредственной близости к желобу, который содержит по меньшей мере один жидкий сорбент. При приложении к первому электроду высоковольтного электрического потенциала в разрядной области происходит электрический разряд. Указанный разряд распространяется от первого электрода к образующему с ним пару второму электроду. Распространение разряда происходит вдоль поверхности жидкого сорбента или в непосредственной близости к поверхности жидкого сорбента. Поскольку разряд, как сказано выше, распространяется от первого электрода к второму электроду скольжением или глиссированием вдоль поверхности жидкого сорбента, такой разряд ниже назван как "скользящий разряд". Для поддержания разрядов высоковольтный потенциал является пульсирующим, и каждый импульс вызывает разряд. Разряды, которые инициируются и поддерживаются устройством согласно настоящему изобретению, являются нетепловыми. Таким образом, устройство согласно настоящему изобретению вырабатывает нетепловой повторяющийся импульсный скользящий разряд.

[0038] Плазма, которая вырабатывается при действии устройства, является нетепловой плазмой. Используемый ниже термин "нетепловая плазма" или "холодная плазма" обозначает плазму, которая не находится в состоянии термодинамического равновесия. В то время как электроны в нетепловой плазме имеют высокие электронные температуры, температура других атомов и молекул в плазме является относительно низкой и, следовательно, система не находится в термодинамическом равновесии.

[0039] По сравнению с нетепловой плазмой, тепловая плазма, или "горячая плазма", вырабатывается в результате сильного нагрева газа при разряде в газе до температуры в несколько тысяч градусов Кельвина, и в результате распределение энергий молекул, ионов и электронов газа в тепловой плазме, а также вся система находятся в термодинамическом равновесии, которое сопровождается пиролизом. В результате большого количества столкновений между частицами, в частности между электронами и тяжелыми положительными ионами или нейтральными частицами, происходит быстрое перераспределение энергии, и таким образом достигается термодинамическое равновесие. Следовательно, температура в разрядной области является очень высокой и равномерно распределена среди всех частиц.

[0040] В дополнение к электродам и желобу, реакционная камера также содержит входное отверстие для ввода газообразных углеводородов в камеру, в которой происходит разряд; входное отверстие и выходное отверстие для жидкого сорбента, через которые жидкий сорбент может быть распространен вдоль желоба; выходное отверстие для продукта; и вентиляционное отверстие, через которое газы могут быть выведены из камеры. Реакционная камера не ограничивается конкретными геометрией и конструкцией и может быть помимо прочего кольцевой (т.е. круглой), многоугольной (т.е. треугольной, квадратной или прямоугольной, пятиугольной, гексагональной и т.п.), линейной или иметь другие формы и конструкцию.

[0041] Согласно различным вариантам реализации устройство согласно настоящему изобретению также может содержать источник газа, который сообщается с реакционной камерой, и измеритель для определения расхода газа, поданного в камеру. Устройство согласно настоящему изобретению также может содержать жидкостный насос для обеспечения циркуляции жидкого сорбента. Устройство согласно настоящему изобретению также может содержать коллектор или резервуар для продукта. Устройство согласно настоящему изобретению также может содержать устройства для захвата, очистки и вывода газов из реакционной камеры посредством вентиляционного отверстия.

[0042] Используемый в настоящем описании термин "газообразные углеводороды" или сырьевые газообразные углеводороды обозначает легкие углеводородные материалы, которые находятся в газообразном состоянии при нормальных температуре и давлении. Легкие углеводородные материалы обычно представляют собой углеводороды низкого порядка, имеющие от одного до четырех атомов углерода. Например, такие легкие углеводородные материалы могут содержать помимо прочего метан, этан, пропан, n-бутан, изобутан, трет-бутан или смесь любых по меньшей мере двух указанных соединений. Согласно некоторым вариантам реализации легкие углеводороды могут быть такими, которые сопутствуют добыче природного газа нефти, или могут вырабатываться в результате утилизации отходов или других залежей или формирований природного газа.

[0043] Не вдаваясь в теорию, принято считать, что если указанные материалы подаются в реакционную камеру и подвергаются нетепловому скользящему разряду, молекулы газообразного углеводорода получают вращательное и колебательное возбуждение на энергетическом уровне, который является недостаточным для немедленного разрыва молекулярных связей и преобразования молекул в ионы или перевода молекул в свободнорадикальное состояние. Вместо этого колебательно и вращательно возбужденные молекулы взаимодействуют друг с другом и формируют высшие углеводороды посредством механизмов, таких как описанные реакциями 8-11 и 12. Сформированные таким образом высшие углеводороды имеют от 5 до 20 атомов углерода.

[0044] Опять же, не вдаваясь в теорию, принято считать, что описанный нетепловой повторяющийся импульсный скользящий разряд обеспечивает ступенчатый цепной механизм формирования углеводородных продуктов высшего порядка из углеводородов низкого порядка, как проиллюстрировано приведенными выше реакциями 8-11 и приведенными ниже реакциями 8'-11'

H R H + e − → H R H * + e −   ( 8 ' )

H R H * + H R H * → H R − R H + H 2   ( 9 ' )

H R − R H + e − → [ H R − R H ] * + e −   ( 10 ' )

H R H * + [ H R − R H ] * → H R − R − R H + H 2   ( 11 ' )

Таким образом, углеводороды HRH и HR-RH возбуждены колебательно и вращательно электронами скользящей плазмы согласно реакциям (8') и (10'). После этого указанные возбужденные углеводороды могут взаимодействовать с другими возбужденными углеводородами и таким образом формировать углеводороды высшего порядка согласно реакциям (3) и (5). Энергия скользящей плазмы регулируется таким образом, что непосредственная и полная ионизация или формирование свободных радикалов из газообразных углеводородов при их контакте с плазмой не происходит или по меньшей мере сведены к минимуму. Когда углеводороды высшего порядка, обозначенные как HR-RH и HR-R-RH, достигают достаточного размера, они выпадают или конденсируются из плазмы в форме жидкого углеводородного продукта, собираются жидким сорбентом в реакционной камере и выводятся из нее. В описанных выше реакциях R обозначает любой углеводородный фрагмент любого размера и используется в настоящей заявке только для общего описания цепного механизма формирования углеводородов высшего порядка из углеводородов низкого порядка.

[0045] Жидкий сорбент, циркулирующий в реакционной камере, выполняет несколько функций, включая помимо прочего помощь в распространении нетепловой скользящей плазмы, сбор жидких углеводородных продуктов и охлаждение системы. Подходящие жидкие сорбенты содержат помимо прочего бензин, легкое дизельное топливо, керосин, легкую нефть, жидкие алканы или смесь любых по меньшей мере двух указанных жидкостей. Во время работы системы преобразование газообразного углеводорода в жидкий сорбент поддерживается в непосредственной близости к нетепловой повторяющейся импульсной плазме, и таким образом облегчается поглощение жидких углеводородов, выработанных в плазме. Такое расположение обеспечивает быстрое удаление (например, в пределах примерно 10-5 секунд формирования) жидких углеводородных продуктов после импульсного разряда. Такое быстрое удаление также способствует снижению температуры в реакционной камере и предотвращает потери продукта и сорбента из-за перегрева.

[0046] Формирование углеводородов с использованием нетепловой скользящей плазмы принципиально отличается от других способов на основе нетепловой плазмы. Например, при использовании нетепловой плазмы другого типа, такой как плазма барьерного разряда, коронного разряда, микроволнового разряда и электродугового разряда, происходит прямое формирование ионов и частиц со свободными радикалами из газообразного углеводорода. Затем указанные ионизированные или свободнорадикальные частицы преобразуют в углеводородные продукты высшего порядка.

[0047] Таким образом, согласно некоторым вариантам реализации плазма, выработанная в промежутке между первым электродом или электродами и вторым электродом или электродами, не образуется в диэлектрическом барьерном разряде. Кроме того, согласно некоторым вариантам реализации в области между первыми и вторыми электродами отсутствует диэлектрический оксидный материал, такой как кварц, или материалы, такие как двуокись циркония, оксид алюминия, стекло, и т.п. Следовательно, плазма, выработанная согласно настоящему способу, формируется не на основе диэлектрического барьерного разряда. Кроме того, нетепловая скользящая плазма обеспечивает механизм, посредством которого производительность реактора может быть улучшена благодаря возможности использования газовых смесей, имеющих повышенную плотность энерговыделения по сравнению с традиционным сингазом или исходными нефтепродуктами на основе СO2.

[0048] Жидкие углеводородные продукты могут включать широкий диапазон топливных продуктов или товарных химических соединений. Например, могут быть выработаны углеводороды высшего порядка С520 или выше. Таким образом, углеводородные продукты могут включать помимо прочего алканы С520, алкены, алкины и их изомерные формы, а также смеси любых по меньшей мере двух указанных соединений. Смеси углеводородов дополнительно могут содержать такие продукты, как присутствующие в бензине, дизельном топливе, керосине, углеводородных восках и маслах. Кроме того, для ввода кислорода и/или азота в углеводородные жидкие продукты в реактор вместе с газообразным углеводородным сырьем могут быть введены кислородосодержащие или азотосодержащие материалы. Такие кислородо- или азотосодержащие углеводороды могут включать помимо прочего спирты, альдегиды, сложные эфиры, амины, карбоновые кислоты и кетоны.

[0049] Согласно некоторым вариантам реализации в плазму вместе с газообразным углеводородом могут быть введены газообразные окислители. Такие газообразные окислители обеспечивают атомы и радикал кислорода, которые могут быть встроены в продукты преобразования газообразного углеводорода. Подходящие газообразные окислители для использования в способе согласно настоящему изобретению могут включать помимо прочего воздух, O2, Н2O, N2O, CO2 или смесь любых по меньшей мере двух указанных окислителей. Продукты углеводородного преобразования содержат кислородосодержащие углеводороды, такие как помимо прочего спирты, альдегиды, кетоны, сложные эфиры или смеси любых по меньшей мере двух указанных кислородосодержащих углеводородов. Для улучшения селективности и эффективности изготовления кислородосодержащих углеводородов могут дополнительно использоваться размещенные внутри реакционной камеры твердые катализаторы.

[0050] Согласно некоторым вариантам реализации удельная энергия нетеплового повторяющегося импульсного скользящего разряда обеспечивает точное управление колебательной температурой Тv (температурой Тv колебательного возбуждения). Такое управление частично обеспечивает выбор распределения продукта. Как указано выше, нетепловая плазма является относительно холодной, и ее температура по существу не регулируется. Например, температура нетепловой плазмы обычно меньше 1000 К (726,85°С). Однако колебательной температурой Тv газа можно управлять путем управления удельной энергией нетеплового скользящего разряда, и температуру Тv можно регулировать в пределах 1300-10000 К (1026,85-9726,85°С). Путем управления температурой Тv регулируют энергию активации и таким образом управляют ходом реакции. Однако обычно электронная температура Те нетепловой плазмы является высокой. Например, согласно некоторым вариантам реализации температура Те превышает 10000 К (9726,85°С). Таким образом, желательная температура Тv может быть выбрана путем соответствующего управления удельной энергией плазмы в пределах примерно 0,1-3 Дж/см3. Согласно различным вариантам реализации соответствующая удельная энергия нетепловой плазмы повторяющегося импульсного искрового разряда составляет примерно 0,2-2,5 Дж/см3, примерно 0,2-0,5 Дж/см3, примерн