Системы и способы формирования подземных стволов скважин
Иллюстрации
Показать всеГруппа изобретений относится к области формирования подземных стволов скважин. Система для формирования подземного ствола скважины cодержит систему реечной передачи, содержащую систему привода с зажимным устройством, выполненную с возможностью управления бурильной колонной; и систему автоматического регулирования по положению, содержащую по меньшей мере один измерительный датчик, соединенный с системой реечной передачи, причем система автоматического регулирования по положению выполнена с возможностью измерять и отслеживать увеличивающееся угловое положение по меньшей мере одной трубы и управлять положением указанной по меньшей мере одной трубы с использованием системы реечной передачи. Обеспечивается формирование ствола скважины без прерывания процесса бурения. 4 н. и 14 з.п. ф-лы, 8 ил.
Реферат
Область техники, к которой относится изобретение
В общем, настоящее изобретение касается способов и систем, предназначенных для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды. В частности, настоящее изобретение касается систем и способов формирования подземных стволов скважин.
Уровень техники
Углеводороды, добываемые из подземных пластов, часто используются в качестве энергетических ресурсов, сырья и потребительских товаров. Озабоченность по поводу истощения углеводородных ресурсов и ухудшения общего качества добываемых углеводородов привела к разработке способов более эффективной добычи, обработки и/или использования доступных углеводородных ресурсов. Для извлечения углеводородных материалов из подземных пластов могут быть использованы процессы in situ (проходящие внутри пласта). Для того чтобы легче извлекать углеводородный материал из подземного пласта, может потребоваться изменить химические и/или физические свойства углеводородного материала. Изменения химических и физических свойств могут включать в себя реакции in situ, в результате которых добывают извлекаемые флюиды, происходят изменения состава, изменения растворяющей способности, изменения плотности, фазовые превращения и/или изменения вязкости углеводородного материала пласта. Флюид может представлять собой, помимо прочего, газ, жидкость, эмульсию, суспензию и/или поток твердых частиц, характеристики которого аналогичны характеристикам потока жидкости.
Нагреватели, предназначенные для нагревания пласта при осуществлении процесса in situ, могут быть размещены в стволах скважин. Нагревание может быть применено к пласту нефтяного сланца с целью осуществления в этом пласте процесса пиролиза керогена. Нагревание также может создать разрыв в пласте для повышения его проницаемости. Повышенная проницаемость может позволить пластовому флюиду перемещаться к добывающей скважине, где этот пластовый флюид извлекается из пласта нефтяного сланца. Для нагревания подземного пласта может быть использован источник тепла. При этом для нагревания пласта посредством излучения и/или теплопроводности могут быть использованы электрические нагреватели. Электрический нагреватель может содержать резистивный нагревательный элемент.
Из-за того что нефтеносный сланец часто по существу непроницаем, трудно получить проницаемость пласта нефтеносного сланца между нагнетательными и добывающими скважинами. Бурение таких скважин может быть дорогостоящим и требует большого количества времени. Для соединения нагнетательных и добывающих скважин предложено большое количество способов.
Бурить стволы для нагревательных, нагнетательных и добывающих скважин можно с помощью вращения бурового долота в пласте. Буровое долото может быть подвешено в стволе скважины на бурильной колонне, которая доходит до поверхности. В некоторых случаях буровое долото может вращаться благодаря вращению бурильной колонны, осуществляемому на поверхности. Для промывания ствола скважины при бурении может быть использован буровой раствор. Промывание ствола скважины может удалить грязь и/или металлическую обрезь, получающуюся при бурении. В некоторых случаях в стволе скважины может поддерживаться большее гидростатическое давление бурового раствора по сравнению с поровым давлением пласта. В других случаях давление в открытом участке ствола скважины может поддерживаться ниже пластового давления, чтобы при бурении пластовый флюид тек в ствол скважины.
К системам бурения могут быть прикреплены датчики, предназначенные для помощи в определении направления, рабочих параметров и/или рабочих условий при бурении ствола скважины. Использование датчиков может уменьшить количество времени, требующееся для определения положения системы бурения. Например, в патенте США №7093370, Хенсберри (Hansberry), описана навигационная система для ствола скважины, которая может определить положение и высоту для любой ориентации в стволе скважины с использованием нескольких карданных подвесов, содержащих пьезоэлектрические вибрационные гироскопы на твердом теле или другие гироскопы и измерители ускорений, которые помещаются в бурильной трубе малого диаметра, предназначенной для бурения ствола скважины. В патентной публикации №2009-027041, Запер (Zaeper) и другие, описан способ измерения при бурении, который включает в себя расположение по меньшей мере одного датчика в скважине и передачу полученных при бурении данных по меньшей мере от одного датчика на поверхность без обработки полученных данных в скважине.
Как отмечено выше, прилагаются значительные усилия, направленные на разработку способов и систем, использующих навигационные системы и/или датчики при бурении стволов скважины в пластах, содержащих углеводороды. Тем не менее, в настоящее время все еще существует множество содержащих углеводороды пластов, в которых трудно, дорого и/или долго бурить стволы скважин. Таким образом, существует необходимость в улучшенных способах и системах бурения стволов скважины с целью добычи углеводородов, водорода и/или других продуктов из различных пластов, содержащих углеводороды.
Раскрытие изобретения
Описанные здесь варианты осуществления изобретения, в общем, касаются систем и способов, предназначенных для формирования подземного ствола скважины. В конкретных вариантах осуществления изобретения предложена одна или несколько систем и один или несколько способов обработки подземного пласта.
В некоторых вариантах осуществления изобретения предложена система, предназначенная для формирования подземного ствола скважины и содержащая: систему реечной передачи, которая включает в себя систему привода с зажимным устройством, которая выполнена так, чтобы управлять бурильной колонной; и систему автоматического регулирования положения, содержащую, по меньшей мере, один измерительный датчик, соединенный с системой реечной передачи, при этом система автоматического регулирования положения выполнена так, чтобы управлять системой реечной передачи с целью определения положения бурильной колонны.
В некоторых вариантах осуществления изобретения предложен способ формирования подземного ствола скважины, включающий в себя следующее: получают данные о положении для трубы, по меньшей мере, от одного измерительного датчика, соединенного с системой автоматического регулирования положения, и управляют направлением трубы в пласте с использованием системы реечной передачи, что делают на основе данных о положении, полученных от измерительного датчика.
В некоторых вариантах осуществления изобретения предложена система, предназначенная для формирования подземного ствола скважины и содержащая: нижнюю систему привода, предназначенную для соединения с существующей трубой бурильной колонны, которая находится, по меньшей мере, частично в подземном пласте, и предназначенную для управления операцией бурения в стволе скважины, при этом нижняя система привода содержит циркуляционную гильзу, предназначенную для размещения новой трубы во время операции бурения; и верхнюю систему привода, предназначенную для соединения с новой трубой и для принятия управления операцией бурения при соединении новой трубы с имеющейся трубой.
В некоторых вариантах осуществления изобретения предложен способ добавления новой трубы к бурильной колонне, который включает в себя следующее: соединяют верхний конец новой трубы с верхней системой привода; располагают нижний конец новой трубы в отверстии циркуляционной гильзы нижней системы привода, когда нижняя система привода управляет операцией бурения; в то время как продолжается выполнение операции бурения, соединяют новую трубу с существующей трубой с целью формирования связанной трубы; передают управление операцией бурения от нижней системы привода верхней системе привода; в то время как продолжается выполнение операции бурения, перемещают нижнюю систему привода вверх относительно связанной трубы по направлению к верхней системе привода; в то время как продолжается выполнение операции бурения, соединяют нижнюю систему привода с верхней частью связанной трубы; передают управление операцией бурения от верхней системы привода нижней системе привода и отсоединяют верхнюю систему привода от связанной трубы.
В других вариантах осуществления изобретения свойства конкретных вариантов осуществления изобретения могут быть объединены со свойствами других вариантов осуществления изобретения. Например, свойства одного варианта осуществления изобретения могут быть объединены со свойствами любого другого варианта осуществления изобретения.
В других вариантах осуществления изобретения к описанным конкретным вариантам осуществления изобретения могут быть добавлены дополнительные свойства.
Краткое описание чертежей
Достоинства настоящего изобретения будут ясны специалистам в рассматриваемой области после прочтения подробного описания, содержащего ссылки на приложенные чертежи, на которых:
фиг.1 - схематический вид варианта осуществления части системы тепловой обработки in situ (внутри пласта), предназначенной для обработки пласта, содержащего углеводороды;
фиг.2 - схематический вид варианта осуществления системы бурения с механизмом реечной передачи;
фиг.3А-3D - схематические виды варианта осуществления изобретения, показывающие последовательность действий при непрерывном бурении;
фиг.4 - разрез в варианте осуществления циркуляционной гильзы нижней системы привода, показанной на фиг.3А-3D;
фиг.5 - схематический вид клапанной системы циркуляционной гильзы нижней системы привода, показанной на фиг.3А-3D.
Хотя изобретение не исключает различные модификации и альтернативные формы, далее для примера на чертежах показаны и подробно описаны конкретные варианты осуществления изобретения. Чертежи могут быть выполнены не в масштабе. Тем не менее, необходимо понимать, что чертежи и подробное описание не ограничивают изобретение конкретной описанной формой, а наоборот, изобретение подразумевает все модификации, эквиваленты и альтернативы, не выходящие за рамки объема настоящего изобретения, который определен в прилагаемой формуле изобретения.
Осуществление изобретения
Последующее описание в общем относится к системам и способам, предназначенным для формирования стволов скважины в подземных пластах. Здесь описано использование стволов скважины для обработки углеводородов в пластах с целью добычи углеводородных продуктов, водорода и других продуктов.
Под «плотностью в градусах АНИ» понимается плотность в градусах Американского нефтяного института (АНИ) при 15,5°С (60°F). Плотность в градусах АНИ определяют согласно способу Американского общества по испытанию материалов (ASTM) D6822 или способу ASTM D1298.
«Конденсируемые углеводороды» - это углеводороды, которые конденсируются при температуре 25°С при одной атмосфере абсолютного давления. Конденсируемые углеводороды могут содержать смесь углеводородов с углеродными числами, большими 4. «Неконденсируемые углеводороды» - это углеводороды, которые не конденсируются при температуре 25°С при одной атмосфере абсолютного давления. Неконденсируемые углеводороды могут содержать смесь углеводородов с углеродными числами, меньшими 5.
«Давление флюида» - это давление, создаваемое флюидом в пласте. «Литостатическое давление» (иногда называемое «литостатическим напряжением») представляет собой давление в пласте, равное весу на единицу площади вышележащей породы. «Гидростатическое давление» представляет собой давление в пласте, создаваемое столбом воды.
«Пласт» включает в себя один или несколько слоев, содержащих углеводороды, один или несколько неуглеводородных слоев, покрывающий слой и/или подстилающий слой. «Углеводородными слоями» называются слои пласта, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородные материалы и углеводородные материалы. «Покрывающий слой» и/или «подстилающий слой» содержат один или несколько различных типов непроницаемых материалов. Например, покрывающий и/или подстилающий слои могут представлять собой скальную породу, сланцы, алевритоглинистую породу или влажную плотную карбонатную породу. В некоторых вариантах осуществления процессов тепловой обработки in situ покрывающий и/или подстилающий слои могут включать в себя содержащий углеводороды слой или содержащие углеводороды слои, которые сравнительно непроницаемы и не подвергаются воздействию температур в процессе тепловой обработки in situ, в результате которой характеристики содержащих углеводороды слоев покрывающего и/или подстилающего слоев значительно изменяются. Например, подстилающий слой может содержать сланцы или алевритоглинистую породу, но при осуществлении процесса тепловой обработки in situ подстилающий слой не нагревают до температуры пиролиза. В некоторых случаях покрывающий и/или подстилающий слои могут быть до некоторой степени проницаемыми.
«Пластовыми флюидами» называются флюиды, присутствующие в пласте, они могут содержать флюид, полученный в результате пиролиза, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут содержать углеводородные флюиды, а также неуглеводородные флюиды. Под «подвижными флюидами» понимают флюиды пласта, содержащего углеводороды, которые способны течь в результате тепловой обработки пласта. «Добытыми флюидами» называются флюиды, извлеченные из пласта.
«Источник тепла» представляет собой любую систему, подводящую теплоту по меньшей мере к части пласта, теплота передается в основном в результате кондуктивного и/или радиационного теплообмена. Например, источник тепла может содержать электропроводящие материалы и/или электрические нагреватели, такие как изолированный проводник, удлиненный элемент и/или проводник, расположенный в трубе. Также источник тепла может содержать системы, вырабатывающие теплоту в результате горения топлива вне пласта или в нем. Эти системы могут быть горелками, расположенными на поверхности, забойными газовыми горелками, беспламенными распределенными камерами сгорания и природными распределенными камерами сгорания. В некоторых вариантах осуществления изобретения теплота, подведенная к одному или нескольким источникам тепла или выработанная в них, может подводиться от других источников энергии. Другие источники энергии могут непосредственно нагревать пласт, или энергия может сообщаться передающей среде, которая непосредственно или косвенно нагревает пласт. Ясно, что один или несколько источников тепла, которые передают теплоту пласту, могут использовать различные источники энергии. Таким образом, например, для заданного пласта некоторые источники тепла могут подводить теплоту от электропроводящих материалов, резистивных нагревателей, некоторые источники тепла могут обеспечивать нагревание благодаря камере сгорания, а другие источники тепла могут подводить теплоту из одного или нескольких источников энергии (например, энергия от химических реакций, солнечная энергия, энергия ветра, биомасса или другие источники возобновляемой энергии). Химическая реакция может включать в себя экзотермические реакции (например, реакцию окисления). Также источник тепла может включать в себя электропроводящий материал и/или нагреватель, который подводит теплоту в зону, расположенную рядом с нагреваемым местом, таким как нагревательная скважина, или окружающую это место.
«Нагреватель» - это любая система или источник тепла, предназначенная для выработки теплоты в скважине или рядом со стволом скважины. К нагревателям относят, помимо прочего, электрические нагреватели, горелки, камеры сгорания, в которых в реакцию вступает материал пласта или материал, добываемый в пласте, и/или их комбинации.
«Тяжелые углеводороды» представляют собой вязкие углеводородные флюиды. К тяжелым углеводородам могут относиться вязкие углеводородные флюиды, такие как тяжелая нефть, битум и/или асфальтовый битум. Тяжелые углеводороды могут содержать углерод и водород, а также еще более маленькие концентрации серы, кислорода и азота. Также в тяжелых углеводородах может присутствовать незначительное количество дополнительных элементов. Тяжелые углеводороды можно классифицировать по плотности в градусах АНИ. В общем, плотность тяжелых углеводородов в градусах АНИ составляет менее примерно 20°. Например, плотность тяжелой нефти в градусах АНИ составляет примерно 10-20°, а плотность битума в градусах АНИ в целом составляет менее примерно 10°. Вязкость тяжелых углеводородов в целом составляет более примерно 0,1 Па·с при 15°С. Тяжелые углеводороды могут содержать ароматические и другие сложные циклические углеводороды.
Тяжелые углеводороды могут быть найдены в сравнительно проницаемых пластах. Сравнительно проницаемые пласты могут содержать тяжелые углеводороды, расположенные, например, в песке или карбонатных породах. По отношению к пласту или его части термин «сравнительно проницаемый» означает, что средняя проницаемость составляет от 10 мД или более (например, 10 или 100 мД). По отношению к пласту или его части термин «сравнительно мало проницаемый» означает, что средняя проницаемость составляет менее примерно 10 мД. 1 Д равен примерно 0,99 квадратного микрометра. Проницаемость непроницаемого слоя в общем составляет менее 0,1 мД.
Определенные типы пластов, содержащих тяжелые углеводороды, также могут содержать, помимо прочего, природные минеральные воски или природные асфальтиты. Обычно «природные минеральные воски» расположены, по существу, в цилиндрических жилах, ширина которых составляет несколько метров, длина равна нескольким километрам, а глубина составляет сотни метров. К «природным асфальтитам» относятся твердые углеводороды ароматического состава, и они обычно расположены в больших жилах. Добыча in situ из пластов углеводородов, таких как природные минеральные воски и природные асфальтиты, может включать в себя расплавление с целью получения жидких углеводородов и/или добычу растворением углеводородов из пластов.
Под «углеводородами» обычно понимают молекулы, образованные в основном атомами углерода и водорода. Углеводороды также могут содержать другие элементы, такие как, например, галогены, металлические элементы, азот, кислород и/или серу. Углеводородами являются, например, кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты. Углеводороды могут располагаться в природных вмещающих породах в земле или рядом с ними. Вмещающими породами, помимо прочего, являются осадочные породы, пески, силицилиты, карбонатные породы, диатомиты и другие пористые среды. «Углеводородные флюиды» - это флюиды, содержащие углеводороды. Углеводородные флюиды могут содержать, увлекать с собой или быть увлеченными неуглеводородными флюидами, такими как водород, азот, оксид углерода, диоксид углерода, сероводород, вода и аммиак.
Под «процессом переработки in situ» (в пласте) понимается процесс нагревания пласта, содержащего углеводороды, от источников тепла, при этом указанный процесс направлен на повышение температуры по меньшей мере части пласта выше температуры пиролиза с целью получения в пласте флюида, являющегося результатом пиролиза.
Под «процессом тепловой обработки in situ» (в пласте) понимается процесс нагревания пласта, содержащего углеводороды, с помощью источников тепла, направленный на повышение температуры по меньшей мере части пласта выше температуры, в результате которой получается подвижный флюид, происходит легкий крекинг и/или пиролиз материала, содержащего углеводороды, так что в пласте вырабатываются подвижные флюиды, флюиды, являющиеся результатом легкого крекинга, и/или флюиды, являющиеся результатом пиролиза.
«Пиролизом» называется разрушение химических связей под действием теплоты. Например, пиролиз может включать в себя превращение соединения в одно или несколько других веществ с помощью только тепла. Чтобы вызвать пиролиз в участок пласта могут передавать теплоту.
«Флюидами, являющимися результатом пиролиза» или «продуктами пиролиза» называются флюиды, полученные, по существу, во время процесса пиролиза углеводородов. Флюид, полученный в результате реакций пиролиза, может смешиваться в пласте с другими флюидами. Эта смесь будет считаться флюидом, являющимся результатом пиролиза или продуктом пиролиза. Здесь под «зоной пиролиза» понимается объем пласта (например, сравнительно проницаемого пласта, такого как пласт битуминозных песков), в котором происходит или происходила реакция, направленная на образование флюида, являющегося результатом пиролиза.
«Пласт битуминозных песков» - это пласт, в котором углеводороды преимущественно являются тяжелыми углеводородами и/или битумом, захваченными в минеральной зернистой структуре или другой вмещающей породе (например, песке или карбонатной породе). Примерами пластов битуминозных песков являются пласт Athabasca, пласт Grosmont и пласт PeaceRiver, все три указанных пласта находятся в Канаде, провинция Альберта, и пласт Faja, который находится в поясе Ориноко в Венесуэле.
Под «U-образным стволом скважины» понимают ствол скважины, который начинается от первого отверстия в пласте, проходит по меньшей мере часть пласта и заканчивается вторым отверстием в пласте. В этом случае форма ствола скважины, который считается «U-образным», может иметь вид буквы «V» или «U», при этом ясно, что «ножки» буквы «U» не обязательно параллельны друг другу или перпендикулярны «нижней части» буквы «U».
Под термином «ствол скважины» понимается отверстие в пласте, изготовленное бурением или введением трубы в пласт. Поперечное сечение ствола скважины может быть, по существу, круглым или каким-либо другим. Здесь термины «скважина» и «отверстие», когда говорится об отверстии в пласте, могут быть заменены термином «ствол скважины».
С целью добычи многих различных продуктов пласт может быть обработан разными способами. Для обработки пласта в ходе процесса тепловой обработки in situ могут быть использованы различные этапы или процессы. В некоторых вариантах осуществления изобретения для одного или нескольких участков пласта используется добыча растворением с целью извлечения из участков растворимых минеральных веществ. Добыча минеральных веществ с помощью растворения может быть осуществлена до, во время и/или после процесса тепловой обработки in situ. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков, из которых добывают с помощью растворения, может поддерживаться на уровне ниже примерно 120°С.
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают с целью извлечения из участков воды и/или метана и других летучих углеводородов. В некоторых вариантах осуществления изобретения при извлечении воды и летучих углеводородов среднюю температуру пласта поднимают от температуры окружающей среды до температур, меньших примерно 220°С.
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, при которых углеводороды в пласте могут перемещаться и/или может происходить легкий крекинг углеводородов в пласте. В некоторых вариантах осуществления изобретения среднюю температуру одного или несколько участков пласта поднимают до температур придания подвижности углеводородам в участках (например, до температур, находящихся в диапазоне от 100°С до 250°С, от 120°С до 240°С или от 150°С до 230°С).
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, при которых происходят реакции пиролиза в пласте. В некоторых вариантах осуществления изобретения средняя температура одной или нескольких участков пласта может быть увеличена до температур пиролиза углеводородов в участках (например, до температур, находящихся в диапазоне от 230°С до 900°С, от 240°С до 400°С или от 250°С до 350°С).
Нагревание пласта, содержащего углеводороды, несколькими источниками тепла может установить перепады температур вокруг источников тепла, благодаря которым температура углеводородов в пласте поднимется до нужных температур с нужной скоростью нагревания. Скорость увеличения температуры в диапазоне температур придания подвижности и/или температур пиролиза для получения нужных продуктов может влиять на качество и количество пластовых флюидов, добываемых из содержащего углеводороды пласта. Медленное увеличение температуры в диапазоне температур придания подвижности и/или температур пиролиза может позволить добывать из пласта углеводороды высокого качества, с большой плотностью в градусах АНИ. Медленное увеличение температуры в диапазоне температур придания подвижности и/или температур пиролиза может позволить добывать в качестве углеводородного продукта большое количество углеводородов, присутствующих в пласте.
В некоторых вариантах осуществления тепловой обработки in situ, вместо того чтобы медленно нагревать в нужном диапазоне температур, до нужной температуры нагревают часть пласта. В некоторых вариантах осуществления изобретения нужная температура составляет 300°С, 325°С или 350°С. В качестве нужной температуры могут быть выбраны другие значения температуры.
Наложение теплоты от источников тепла позволяет сравнительно быстро и эффективно установить в пласте нужную температуру. Можно регулировать подведение энергии в пласт из источников тепла с целью поддержания, по существу, нужного значения температуры в пласте.
Продукты, полученные в результате придания подвижности и/или пиролиза, могут быть добыты из пласта через добывающие скважины. В некоторых вариантах осуществления изобретения средняя температура одного или несколько участков пласта поднята до температур придания подвижности, и углеводороды добывают из добывающих скважин. Средняя температура одного или нескольких участков может быть поднята до температур пиролиза после того, как добыча, возможная благодаря приданию подвижности, уменьшится ниже выбранного значения. В некоторых вариантах осуществления изобретения средняя температура одного или несколько участков пласта может быть поднята до температур пиролиза, при этом до достижения указанных температур не происходит добычи значительных количеств углеводородов. Через добывающие скважины могут быть добыты пластовые флюиды, в том числе продукты пиролиза.
В некоторых вариантах осуществления изобретения средняя температура одного или несколько участков пласта может быть поднята до температур, достаточных для получения синтез-газа, что делается после придания подвижности и/или осуществления пиролиза. В некоторых вариантах осуществления изобретения при повышении температуры углеводородов до значений, достаточных для получения синтез-газа, до достижения температур, достаточных для получения синтез-газа, не происходит добычи значительных количеств углеводородов. Например, синтез-газ может быть получен в диапазоне температур, составляющем примерно от 400°С до примерно 1200°С, примерно от 500°С до примерно 1100°С или примерно от 550°С до примерно 1000°С. Флюид для получения синтез-газа (например, пар и/или вода) может быть введен в участки с целью получения синтез-газа. Синтез-газ может быть добыт через добывающие скважины.
В ходе выполнения процесса тепловой обработки in situ может быть осуществлена добыча с помощью растворения, извлечение летучих углеводородов и воды, придание углеводородам подвижности, пиролиз углеводородов, получение синтез-газа и/или другие процессы. В некоторых вариантах осуществления изобретения некоторые процессы могут быть осуществлены после процесса тепловой обработки in situ. Такими процессами могут быть, помимо прочего, рекуперирование теплоты из обработанных участков, сохранение флюидов (например, воды и/или углеводородов) в ранее обработанных участках и/или блокирование углекислого газа в ранее обработанных участках.
На фиг.1 показан схематический вид варианта осуществления части системы тепловой обработки in situ, предназначенной для обработки содержащего углеводороды пласта. Система тепловой обработки in situ может содержать барьерные скважины 100. Барьерные скважины используют для образования барьера вокруг области обработки. Барьер препятствует течению флюида в область обработки и/или из нее. Барьерные скважины включают в себя, помимо прочего, водопонижающие скважины, скважины создания разрежения, коллекторные скважины, нагнетательные скважины, скважины для заливки раствора, замораживающие скважины или их комбинации. В некоторых вариантах осуществления изобретения барьерные скважины 100 представляют собой водопонижающие скважины. Водопонижающие скважины могут удалять жидкую воду и/или препятствовать проникновению жидкой воды в часть пласта, которую будут нагревать, или в нагреваемый пласт. В варианте осуществление изобретения с фиг.1 показаны барьерные скважины 100, расположенные только вдоль одной стороны источников 102 тепла, но барьерные скважины могут окружать все источники 102 тепла, используемые или планируемые к использованию для нагревания области обработки пласта.
Источники 102 тепла расположены по меньшей мере в части пласта. Источники 102 тепла могут содержать электропроводящие материалы. В некоторых вариантах осуществления изобретения источники тепла содержат нагреватели, такие как изолированные проводники, нагревательные устройства с проводником в трубе, горелки, расположенные на поверхности, беспламенные распределенные камеры сгорания и/или природные распределенные камеры сгорания. Источники 102 тепла могут также представлять собой нагреватели других типов. Источники 102 тепла подводят теплоту, по меньшей мере, в часть пласта с целью нагревания углеводородов в пласте. Энергия может подаваться к источнику 102 тепла по линиям 104 питания. Линии 104 питания могут конструктивно различаться в зависимости от типа источника тепла или источников тепла, используемых для нагревания пласта. Линии 104 питания для источников тепла могут передавать электричество для электропроводящего материала или электрических нагревателей, могут транспортировать топливо для камер сгорания или могут перемещать теплообменную среду, циркулирующую в пласте. В некоторых вариантах осуществления изобретения электричество для процесса тепловой обработки in situ может поставляться атомной электростанцией или атомными электростанциями. Использование атомной энергии может позволить уменьшить или полностью исключить выбросы диоксида углерода в ходе процесса тепловой обработки in situ.
При нагревании пласта подвод теплоты в пласт может привести к расширению пласта и геомеханическому перемещению. Источники тепла могут быть включены до осуществления процесса водопонижения, одновременно с ним или во время его осуществления. Компьютерное моделирование может смоделировать ситуацию, как пласт будет реагировать на нагревание. Компьютерное моделирование может быть использовано для разработки шаблона и временной последовательности введения в действие источников тепла в пласте, чтобы геомеханическое перемещение пласта не оказывало неблагоприятного воздействия на работу источников тепла, добывающих скважин и другого оборудования в пласте.
Нагревание пласта может привести к увеличению проницаемости и/или пористости пласта. Увеличение проницаемости и/или пористости может привести к уменьшению массы в пласте из-за испарения и извлечения воды, извлечения углеводородов и/или создания разломов. Благодаря увеличенной проницаемости и/или пористости пласта в нагретой части пласта флюид может течь легче. Благодаря увеличенной проницаемости и/или пористости флюид в нагретой части пласта может перемещаться в пласте на значительные расстояния. Значительное расстояние может превышать 1000 м в зависимости от различных факторов, таких как проницаемость пласта, свойства флюида, температура пласта и перепад давлений, которые дают возможность флюиду перемещаться. Способностью флюида к перемещению в пласте на значительные расстояния позволяет размещать добывающие скважины 106 на сравнительно больших расстояниях друг от друга.
Добывающие скважины 106 используются для извлечения пластового флюида из пласта. В некоторых вариантах осуществления изобретения добывающая скважина 106 может содержать источник тепла. Источник тепла, расположенный в добывающей скважине, может нагревать одну или несколько частей пласта у добывающей скважины или рядом с ней. В некоторых вариантах осуществления процесса тепловой обработки in situ количество теплоты, подводимое в пласт от добывающей скважины, на метр добывающей скважины меньше количества теплоты, подводимого в пласт от источника тепла, который нагревает пласт, на метр источника тепла. Теплота, подаваемая к пласту из добывающей скважины, может увеличивать проницаемость пласта рядом с добывающей скважиной благодаря испарению и извлечению флюида, находящегося в жидкой фазе, рядом с добывающей скважиной и/или благодаря увеличению проницаемости пласта рядом с добывающей скважиной, имеющему место вследствие образования макро- и/или микроразломов.
В добывающей скважине может быть расположено более одного источника тепла. Источник тепла в нижней части добывающей скважины может быть выключен, когда благодаря наложению теплоты из прилегающих источников тепла пласт нагревается достаточно, чтобы перекрыть преимущества от нагревания пласта с помощью добывающей скважины. В некоторых вариантах осуществления изобретения источник тепла в верхней части добывающей скважины может оставаться включенным после прекращения действия источника тепла в нижней части добывающей скважины. Источник тепла в верхней части скважины может препятствовать конденсации пластового флюида и его обратному потоку.
В некоторых вариантах осуществления изобретения источник тепла в добывающей скважине 106 позволяет извлекать из пласта паровую фазу пластовых флюидов. Подвод теплоты к добывающей скважине или через добывающую скважину может: (1) препятствовать конденсации и/или обратному потоку добываемого флюида, когда такой добываемый флюид перемещается по направлению к добывающей скважине близко к покрывающему слою, (2) увеличить подвод теплоты в пласт, (3) увеличить темп добычи для добывающей скважины по сравнению с добывающей скважиной без источника тепла, (4) препятствовать конденсации соединений с большим количеством атомов углерода (С6 и больше) в добывающей скважине и/или (5) увеличить проницаемость пласта у добывающей скважины или рядом с ней.
Подземное давление в пласте может соответствовать давлению флюида в пласте. Когда температура в нагретой части пласта увеличивается, то давление в нагретой части может увеличиваться в результате теплового расширения флюидов in situ, увеличенного получения флюидов и испарения воды. Управление скоростью извлечения флюидов из пласта может позволить управлять давлением в пласте. Давление в пласте может быть определено в нескольких различных местах, например рядом с добывающими скважинами или у них, рядом с источниками тепла или у них или у контрольных скважин.
В некоторых содержащих углеводороды пластах добыча углеводородов из пласта сдерживается до тех пор, пока, по меньшей мере, некоторое количество углеводородов пласта не стало подвижным и/или не подверглось пиролизу. Пластовый флюид можно добывать из пласта тогда, когда качество пластового флюида соответствует выбранному уровню. В некоторых вариантах осуществления изобретения выбранный уровень качества представляет собой плотность в градусах АНИ, которая составляет, по меньшей мере, примерно 20°, 30° или 40°. Запрет на добычу до тех пор, пока, по меньшей мере, часть углеводородов не стала подвижной и/или не подверглась пиролизу, может увеличить переработку тяжелых углеводородов в легкие углеводороды. Запрет на добычу в начале может минимизировать добычу тяжелых углеводородов из пласта. Добыча значительных объемов тяжелы