Опорные сигналы информации состояния канала

Иллюстрации

Показать все

Изобретение относится к беспроводной связи и, более конкретно, к использованию опорных сигналов информации состояния канала и позволяет повысить эффективность использования опорных сигналов. В системе беспроводной связи из доступных элементов ресурсов данных (элементов RE) в подкадре элементы RE назначаются на передачи опорного сигнала, таким образом приводя к множеству оставшихся элементов RE данных. Кроме того, элементы RE из множества оставшихся элементов RE данных назначаются для передачи данных на беспроводное устройство в группах предварительно определенного количества элементов RE таким образом, чтобы все назначенные элементы RE данных в группе находились в пределах предварительно определенного количества символов друг друга во временной области и в пределах второго предварительно определенного количества поднесущих друг друга в частотной области, таким образом приводя по меньшей мере к одному не сгруппированному RE. 36 н. и 86 з.п. ф-лы, 48 ил., 3 табл.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СВЯЗАННЫЕ ЗАЯВКИ

[0001] Настоящая заявка испрашивает приоритет предварительной заявки США №61/307413, названной "CHANNEL STATE INFORMATION REFERENCE SIGNALS", поданной 23 февраля 2010, предварительной заявки США №61/307758, названной "CHANNEL STATE INFORMATION REFERENCE SIGNALS", поданной 24 февраля 2010, предварительной заявки США №61/374556, названной "CHANNEL STATE INFORMATION REFERENCE SIGNALS", поданной 17 августа 2010, и предварительной заявки США №61/438183, названной "CHANNEL STATE INFORMATION REFERENCE SIGNALS", поданной 31 января 2011, каждая из которых полностью включена здесь посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0002] Следующее описание в целом относится к беспроводной связи и, более конкретно, к использованию опорных сигналов информации состояния канала в системе беспроводной связи.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0003] Системы беспроводной связи широко применяются для обеспечения различных типов контента связи, таких как, например, голос, данные и т.д. Эти системы могут быть системами множественного доступа, способными поддерживать связь с множеством пользователей посредством совместного использования доступных ресурсов системы (например, полосы частот, мощности передачи…). Примеры таких систем множественного доступа могут включать в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением каналов (FDMA), системы проекта долгосрочного развития (LTE) 3GPP и системы множественного доступа с ортогональным частотным разделением каналов (OFDMA).

[0004] В целом, система беспроводной связи множественного доступа может одновременно поддерживать связь для множества беспроводных терминалов. Каждый терминал связывается с одной или более базовыми станциями с помощью передач по прямой и обратной линиям связи. Прямая линия связи (или нисходящая линия связи) относится к линии связи от базовых станций к терминалам, и обратная линия связи (или восходящая линия связи) относится к линии связи от терминалов к базовым станциям. Эта линия связи может быть установлена с помощью системы с единственным входом и единственным выходом, системы с множественными входами и единственным выходом, системы с множественными входами и множественными выходами (MIMO).

[0005] Система MIMO использует множество (NT) антенн передачи и множество (NR) антенн приема для передачи данных. Канал MIMO, сформированный посредством NT антенн передачи и NR антенн приема, может быть разделен на NS независимых каналов, которые также называются пространственными каналами, где NS≤ min{NT,NR}. Каждый из NS независимых каналов соответствует размерности. Система MIMO может обеспечить улучшенную производительность (например, более высокую пропускную способность и/или большую надежность), если используются дополнительные размерности, созданные множеством антенн передачи или антенн приема.

[0006] Дополнительно, базовая станция или мобильный терминал могут передавать опорные сигналы для поддержания или повышения производительности беспроводной системы. Опорными сигналами обычно являются сигналы, заранее известные приемнику. Устройство приема может принимать опорные сигналы и на основании принятых опорных сигналов может изменять некоторые рабочие параметры или генерировать обратную связь для изменения некоторых рабочих параметров беспроводной связи. В то время как опорные сигналы, таким образом, могут быть полезными, передача опорных сигналов может удалять полосу частот из других полезных сигналов, таких как сигналы данных или сигналы управления. Из-за повышения требования к беспроводной полосе частот данных существует большее требование к эффективности использования существующих опорных сигналов. Кроме того, назначение ресурсов передачи на новые опорные сигналы может, возможно, уменьшить ресурсы передачи, доступные для уже существующих опорных сигналов или сигналов данных. Кроме того, новые опорные сигналы могут быть переданы, используя ресурсы передачи, в которых унаследованное пользовательское оборудование может ожидать передачи данных.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0007] Системы и способы, обеспеченные в настоящем раскрытии, удовлетворяют вышерассмотренные потребности и др. Кратко и в общих чертах, описанные структуры в одном аспекте обеспечивают способы и устройства для использования опорных сигналов информации состояния канала (CSI-RS) и подавленные элементы ресурсов в сети беспроводной связи.

[0008] Нижеследующее представляет сущность изобретения одного или более вариантов осуществления для обеспечения основного понимания таких способов и вариантов осуществления. Эта сущность не является обширным кратким обзором всех рассмотренных вариантов осуществления и не предназначена ни для идентификации ключевых или критических элементов всех вариантов осуществления, ни для описания области каких-либо вариантов осуществления. Единственная цель состоит в том, чтобы представить некоторые понятия одного или более вариантов осуществления в упрощенной форме в качестве вступления к более подробному описанию, которое будет представлено ниже.

[0009] В одном аспекте способ для беспроводной связи содержит идентификацию множества доступных элементов (элементов RE) ресурсов данных в подкадре и назначение элементов RE из множества доступных элементов RE данных для передачи данных на беспроводное устройство в группах из предварительно определенного количества элементов RE таким образом, чтобы все назначенные элементы RE данных в группе находились в предварительно определенном количестве символов друг друга во временной области и во втором предварительно определенном количестве поднесущих друг друга в частотной области, таким образом, приводя по меньшей мере к одному не использованному RE.

[0010] В другом аспекте устройство для беспроводной связи содержит средство для идентификации множества доступных элементов (элементов RE) ресурсов данных в подкадре и средство для назначения элементов RE из множества доступных элементов RE данных для передачи данных на беспроводное устройство в группах из первого предварительно определенного количества элементов RE таким образом, чтобы все назначенные элементы RE данных в группе находились в предварительно определенном количестве символов друг друга во временной области и во втором предварительно определенном количестве поднесущих друг друга в частотной области, таким образом, приводя по меньшей мере к одному не сгруппированному RE.

[0011] В еще одном аспекте компьютерный программный продукт содержит энергонезависимый считываемый компьютером носитель, хранящий выполняемые компьютером команды. Команды содержат код для идентификации множества доступных элементов ресурсов (элементов RE) данных в подкадре и назначения элементов RE из множества доступных элементов RE данных для передачи данных на беспроводное устройство в группах из первого предварительно определенного количества элементов RE таким образом, чтобы все назначенные элементы RE данных в группах находились в предварительно определенном количестве символов друг друга во временной области и во втором предварительно определенном количестве поднесущих друг друга в частотной области, таким образом, приводя по меньшей мере к одному не сгруппированному RE.

[0012] В еще одном аспекте описан процессор беспроводной связи. Процессор беспроводной связи сконфигурирован для идентификации множества доступных элементов ресурсов (элементов RE) данных в подкадре и назначения элементов RE из множества доступных элементов RE данных для передачи данных на беспроводное устройство в группах первого предварительно определенного количества элементов RE таким образом, чтобы все назначенные элементы RE данных в группах находились в предварительно определенном количестве символов друг друга во временной области и во втором предварительно определенном количестве поднесущих друг друга в частотной области, таким образом, приводя по меньшей мере к одному не сгруппированному RE.

[0013] Для выполнения предшествующих и связанных задач один или более аспектов содержат признаки, полностью описанные ниже и конкретно указанные в формуле изобретения. Нижеследующее описание и приложенные чертежи подробно формулируют конкретные иллюстративные признаки одного или более аспектов и указывают только некоторые из различных путей, которыми могут быть использованы принципы различных аспектов. Другие преимущества и новые признаки будут очевидны из следующего подробного описания при рассмотрении совместно с чертежами, и раскрытые аспекты предназначены, чтобы включать в себя все такие аспекты и их эквиваленты.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0014] Признаки, сущность и преимущества настоящего описания станут более очевидны из подробного описания, сформулированного ниже при рассмотрении совместно с чертежами, в которых подобные ссылочные позиции идентифицируют соответственно по всему описанию и в которых:

[0015] Фиг. 1 иллюстрирует систему беспроводной связи множественного доступа в соответствии с одним вариантом осуществления.

[0016] Фиг. 2 иллюстрирует блок-схему системы связи.

[0017] Фиг. 3 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0018] Фиг. 4A является представлением в виде блок-схемы двух смежных блоков ресурсов, используемых в системе беспроводной связи.

[0019] Фиг. 4B является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0020] Фиг. 4C является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0021] Фиг. 5 является представлением в виде блок-схемы шаблона ресурсов, используемого в системе беспроводной связи, содержащей порты с 2 опорными сигналами информации о состоянии канала (CSI-RS).

[0022] Фиг. 6 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи, содержащей порты с 4 опорными сигналами информации о состоянии канала (CSI-RS).

[0023] Фиг. 7 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи, содержащей порты с 8 опорными сигналами информации о состоянии канала (CSI-RS).

[0024] Фиг. 8 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0025] Фиг. 9 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0026] Фиг. 10 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0027] Фиг. 11 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0028] Фиг. 12 является представлением в виде блок-схемы блока ресурсов, используемого в системе беспроводной связи.

[0029] Фиг. 13 является представлением в виде блок-схемы схем для распределения пар элементов ресурсов парам пространственно-частотного блочного кода (SFBC).

[0030] Фиг. 14 является представлением в виде блок-схемы схем для распределения пар элементов ресурсов парам пространственно-частотного блочного кода (SFBC).

[0031] Фиг. 15 является представлением в виде блок-схемы распределения шаблона ресурсов в системе беспроводной связи.

[0032] Фиг. 16 является представлением в виде блок-схемы распределения шаблона ресурсов в системе беспроводной связи.

[0033] Фиг. 17 является представлением в виде блок-схемы распределения шаблона ресурсов в системе беспроводной связи.

[0034] Фиг. 18 является представлением в виде блок-схемы распределения шаблона ресурсов в системе беспроводной связи.

[0035] Фиг. 19 является представлением в виде блок-схемы распределения шаблона ресурсов в системе беспроводной связи.

[0036] Фиг. 20 является представлением в виде блок-схемы распределения шаблона ресурсов в системе беспроводной связи.

[0037] Фиг. 21 является представлением в виде блок-схемы последовательности операций процесса для беспроводной связи.

[0038] Фиг. 22 является представлением в виде блок-схемы части устройства беспроводной связи.

[0039] Фиг. 23 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0040] Фиг. 24 является представлением в виде блок-схемы части устройства беспроводной связи.

[0041] Фиг. 25 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0042] Фиг. 26 является представлением в виде блок-схемы части устройства беспроводной связи.

[0043] Фиг. 27 является представлением блок-схемы последовательности операций обработки для беспроводной связи.

[0044] Фиг. 28 является представлением в виде блок-схемы части устройства беспроводной связи.

[0045] Фиг. 29 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0046] Фиг. 30 является представлением в виде блок-схемы части устройства беспроводной связи.

[0047] Фиг. 31 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0048] Фиг. 32 является представлением в виде блок-схемы части устройства беспроводной связи.

[0049] Фиг. 33 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0050] Фиг. 34 является представлением в виде блок-схемы части устройства беспроводной связи.

[0051] Фиг. 35 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0052] Фиг. 36 является представлением в виде блок-схемы части устройства беспроводной связи.

[0053] Фиг. 37 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0054] Фиг. 38 является представлением в виде блок-схемы части устройства беспроводной связи.

[0055] Фиг. 39 является представлением в виде блок-схемы последовательности операций обработки для беспроводной связи.

[0056] Фиг. 40 является представлением в виде блок-схемы части устройства беспроводной связи.

[0057] Фиг. 41 является представлением блок-схемы последовательности операций обработки для беспроводной связи.

[0058] Фиг. 42 является представлением блок-схемы части устройства беспроводной связи.

[0059] Фиг. 43 является представлением блок-схемы последовательности операций обработки для беспроводной связи.

[0060] Фиг. 44 является представлением блок-схемы части устройства беспроводной связи.

[0061] Фиг. 45 является представлением блок-схемы последовательности операций обработки для беспроводной связи.

[0062] Фиг. 46 является представлением блок-схемы части устройства беспроводной связи.

ОПИСАНИЕ

[0063] Различные аспекты описаны с ссылками на чертежи. В нижеследующем описании с целью объяснения сформулированы многочисленные конкретные подробности для обеспечения полного понимания одного или более аспектов. Однако должно быть очевидно, что различные аспекты могут быть применены на практике без этих конкретных подробностей. В других случаях известные структуры и устройства показаны в форме блок-схемы для облегчения описания этих аспектов.

[0064] Способы, описанные в настоящем описании, могут быть использованы для различных сетей беспроводной связи, таких как сети множественного доступа с кодовым разделением каналов (CDMA), сети множественного доступа с временным разделением каналов (TDMA), сети множественного доступа с частотным разделением каналов (FDMA), сети ортогонального FDMA (OFDMA), сети FDMA с единственной несущей (SC-FDMA) и т.д. Термины "сети" и "системы" часто используются взаимозаменяемо. Сеть CDMA может реализовывать радио технологию, такую как универсальная система наземного радио доступа (UTRA), cdma2000 и т.д. UTRA включает в себя широкополосный CDMA (W-CDMA) и системы с низкой скоростью передачи элементов сигнала (LCR). cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. Сеть TDMA может реализовывать радио технологию, такую как глобальная система мобильной связи (GSM). Сеть OFDMA может реализовывать радио технологию, такую как усовершенствованная UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, флеш-OFDMA и т.д. UTRA, E-UTRA и GSM являются частью универсальной системы мобильной связи (UMTS). Проект долгосрочного развития (LTE) является выпуском UMTS, которая использует E-UTRA. UTRA, E-UTRA, GSM, UMTS и LTE описаны в документах от организации "Проект партнерства третьего поколения" (3GPP). cdma2000 описан в документах от организации "Проект партнерства третьего поколения 2" (3GPP2). Эти различные радио технологии и стандарты известны в данной области техники. Для ясности, некоторые аспекты способов описаны ниже для LTE, и терминология LTE используется в большой части описания ниже.

[0065] Множественный доступ с частотным разделением каналов и единственной несущей (SC-FDMA) использует модуляцию с единственной несущей и уравнивание в частотной области. Сигнал SC-FDMA имеет более низкое отношение пиковой к средней мощности (PAPR) из-за своей присущей структуры с единственной несущей, которая может существенно помочь мобильному терминалу относительно эффективности мощности передачи. В настоящее время он используется для схемы множественного доступа восходящей линии связи в проекте долгосрочного развития (LTE) 3GPP.

[0066] Должно быть отмечено, что для ясности сущность изобретения рассмотрена относительно конкретных примеров некоторых сигналов и форматов сообщения, используемых в LTE, и относительно опорного сигнала (CSI-RS) информации состояния канала и технологии подавления шума. Однако специалистом в данной области техники будет оценена применимость раскрытых способов к другим системам связи и другой технологии передачи/приема опорного сигнала.

[0067] Кроме того, различные комбинации антенных портов и назначений ресурсов передачи изображены на Фиг. 3-13, используя способ отображения блока ресурсов, в котором двумерный график доступных ресурсов в блоке ресурсов (RB) передачи изображены с символами (или временем) вдоль горизонтального направления и частотой (или индексом поднесущей) вдоль вертикального направления. Кроме того, для ясности элементы ресурсов (элементы RE) каждого изображенного RB отмечены соответствующей группой антенных портов/индексом антенны, которые просто представляют логическую группировку антенн. Однако должно быть понятно, что перечисление, используя алфавитную последовательность и числа, предназначено только для ясности объяснения, и может иметь или может не иметь отношения к фактическому расположению антенн на устройстве.

[0068] CSI-RS является сигналами, переданными посредством eNB, чтобы позволить UE оценить канал DL и послать сигнал обратной связи о канале на eNB. CSI-RS запланированы для введения в LTE-A, который должен быть использован для обратной связи, чтобы поддержать SU-MIMO, MU-MIMO и CoMP. Так как оборудования UE Выпуска 8 LTE (унаследованные оборудования UE) не знают о CSI-RS, они продолжают вести себя так, как будто их нет, что затрудняет введение CSI-RS. CSI-RS запланирован, чтобы включаться в область PDSCH. Есть еще некоторые ограничения относительно того, где может быть размещен CSI-RS.

[0069] В некоторых исполнениях ресурсы передачи, распределенные на CSI-RS, могут предотвращать распределение элементов RE другим опорным сигналам, например, общему опорному сигналу (CRS). В дополнение, в некоторых исполнениях целого символа, которому распределяются элементы RE CRS, можно избежать для CSI-RS. Такое предотвращение символов CRS посредством CSI-RS может быть полезным для уменьшения оказания помех от передач CRS в передачи CSI-RS. Например, если CRS и CSI-RS для ячейки находятся в одном и том же символе, повышение мощности CRS может уменьшить мощность CSI-RS, и CRS соседних ячеек может перекрываться с CSI-RS в синхронных сетях, которые могут сделать оценку канала из CSI-RS ненадежной в заданной ячейке. В некоторых исполнениях назначения CSI-RS двух передающих антенн (2Tx) могут также избегать символов CRS для всех элементов RE четырех передающих антенн (4Tx), так как соседние ячейки могут использовать 4Tx антенны.

[0070] Кроме того, в некоторых исполнениях CSI-RS может избегать первые три символа OFDM в блоке ресурсов (RB), так как первые три символа могут быть использованы для передачи сигналов управления ("символов управления"). Избежание символов управления также может быть полезным в операции ретрансляции, так как узлу ретрансляции может быть необходимо как передавать, так и принимать CSI-RS. В исполнениях ретрансляции, где ретрансляция уведомляет о своих подкадрах DL обратной передачи в качестве MBSFN свои оборудования UE 120, ретрансляция может быть не в состоянии "прослушать" первые несколько (от одного до трех) символов OFDM.

[0071] В некоторых режимах передачи специфичные для UE опорные сигналы (UE-RS), также называемые опорным сигналом демодуляции (DM-RS), могут быть переданы посредством eNB 110 на UE 120, чтобы помочь UE 120 оценить канал для демодуляции данных. В некоторых исполнениях шаблон CSI-RS может не зависеть от того, запланированы ли основанные на UE-RS передачи или нет. Поэтому, в некоторых исполнениях элементы RE, распределенные на CSI-RS, могут быть выбраны, чтобы избежать UE-RS. Используемое в настоящем описании распределение или назначение элементов RE передачам CSI-RS подразумевает обозначение некоторых элементов RE как доступных для передач опорного сигнала. Как дополнительно объяснено ниже, обозначенные элементы RE могут быть или могут не быть использованы для фактических передач опорного сигнала в зависимости от других факторов, таких как подавление. В некоторых исполнениях для CSI-RS назначаются ресурсы передачи посредством избегания перекрывания с элементами RE, распределенными другим сигналам, таким как CRS и UE-RS. В результате в некоторых исполнениях в общей сложности 60 портов RE, поэтому, могут быть доступны в подкадрах, не содержащих элементы RE, распределенные другим сигналам управления или опорным сигналам (например, в обычном подкадре с обычным CP). Дополнительно, в некоторых исполнениях CSI-RS может избежать наложения с сигналами синхронизации и PBCH, и блоками SIB. В некоторых исполнениях, как объяснено более подробно ниже, распределение RE CSI-RS может также избежать перекрывания с пейджинговым каналом унаследованных оборудований UE 120.

[0072] Фиг. 3 является представлением в виде блок-схемы блока 300 ресурсов, используемого в системе беспроводной связи. Горизонтальная ось 302 представляет время (или индекс символа), и вертикальная ось 304 представляет частоту. Каждый квадрат представляет элемент ресурсов (RE), представляющий квант временных и частотных ресурсов передачи. Элементы RE, отмеченные "C" (например, RE 306), могут представлять элементы RE, распределенные передачам CRS. Элементы RE, отмеченные "U" (например, RE 308), могут представлять элементы RE, распределенные передачам UE-RE. Элементы RE, пронумерованные от 1 до 60 (например, элементы RE 310), могут соответствовать элементам RE, доступным для передач CSI-RS. В заданной ячейке eNB 110 может выбрать поднабор из числа всех возможных элементов RE и распределить элементы RE в выбранном поднаборе передаче CSI-RS в этой ячейке. Оставшиеся элементы RE могут быть использованы для передач данных, как дополнительно описано ниже.

[0073] В некоторых исполнениях передачи CSI-RS могут быть использованы в качестве общего пилот-сигнала для нескольких оборудований UE 120. Так как обратная связь может быть желаемой для всей полосы частот, занимаемой беспроводным каналом, CSI-RS обычно может быть передан по широкой полосе частот в подкадрах, где есть CSI-RS. В системах с множественными антеннами CSI-RS может быть передан, чтобы обеспечить оценку независимого канала всех антенн передачи. В различных исполнениях передачи CSI-RS различных антенных портов могут быть мультиплексированы во временной области, частотной области и/или области кода. Например, в объединенном исполнении мультиплексирования во временной/частотной области элементы RE, распределенные передачам CSI-RS от различных антенных портов, могут содержать различные шаблоны RE. Однако в некоторых исполнениях всем передачам CSI-RS (для всех антенн) ячейки могут быть распределены ресурсы передачи в одном и том же подкадре таким образом, чтобы со стороны UE 120 оценка канала для всех антенных портов могла быть выполнена посредством приема передач CSI-RS во время используемого подкадра. Такая выборочная обработка CSI-RS из одного и того же подкадра может помочь управлению мощностью (например, UE 120 может не нуждаться оставаться включенным для приема множественных подкадров передач CSI-RS).

[0074] В некоторых беспроводных системах, таких как кооперативная многоточка (CoMP) или гетерогенные сети (HetNet), eNB 110 может желать для UE 120 измерить каналы соседних ячеек. В таких исполнениях передачи CSI-RS некоторых ячеек могут быть ортогональными (например, использовать отличный набор элементов RE). Например, в некоторых исполнениях eNB 110 может "удалить" элементы RE (например, отсутствие передачи или подавление), распределенные передачам CSI-RS в соседней ячейке. Распределенные шаблоны RE различных соседних ячеек могут быть скоординированы узлами eNB 110 друг с другом.

[0075] В некоторых исполнениях CSI-RS элементы RE, распределенные конкретному антенному порту передачи, могут быть выбраны таким образом, чтобы вся полоса частот канала была равномерно дискретизирована элементами RE, назначенными на антенный порт передачи. Из-за временных изменений в характеристиках канала может быть желательно иметь все элементы RE CSI-RS конкретного антенного порта, которые должны быть близко расположены друг к другу или в одном и том же символе OFDM. Например, в некоторых исполнениях элементы RE, отмеченные 1, 7, 19, 23, 25, 31, 55 и 59 на Фиг. 3, могут быть использованы для различных портов с 8 антеннами, таким образом, обеспечивая шаблон, повторяющий каждый RB, который равномерно расположен с промежутками в диапазоне частот.

[0076] В некоторых исполнениях ресурсы передачи могут быть распределены для передачи CSI-RS антенне в символах OFDM, в которых CSI-RS передается, чтобы обеспечить использование полной мощности. Например, так как CSI-RS может быть обычно передан в заданное время только от порта с единственной антенной, мощность, распределенная другим антенным портам, может быть не использована. Однако если множественные элементы RE антенного порта CSI-RS распределены в одном символе OFDM, CSI-RS активного антенного порта (то есть антенного порта, фактически передающего сигнал), может также использовать мощность, распределенную этому антенному порту, который не используется для фактической передачи сигнала.

[0077] Унаследованное UE 120 (такое, как UE 120 Rel-8 в сети Rel-10) может не знать о передачах CSI-RS и может предполагать, что данные передаются в элементах RE, распределенных для CSI-RS. В некоторых исполнениях унаследованные оборудования UE 120 могут предполагать, что передачи данных используют пространственно-частотное блочное кодирование (SFBC), когда сконфигурированы 2 порта CRS, и SFBC-FSTD, когда сконфигурированы 4 антенных порта CRS. В некоторых исполнениях схемы временного разнесения со смещением по частоте (FSTD) SFBC и SFBC могут содержать передачу 2 символов данных в 2 смежных по частоте элементах RE данных (пропуская любые промежуточные элементы RE CRS), используя схему Аламоути (Alamouti). Для уменьшения влияния прореживания RS в запланированных оборудованиях UE 120, использующих эти схемы, может быть уменьшено количество пар элементов RE, включенных в схему Аламоути, на которые влияет прореживание. Как дополнительно объяснено ниже, вместо прореживания 2 элементов RE в двух различных парах RE, могут быть прорежены оба элемента RE в одной паре.

[0078] В некоторых исполнениях SFBC-FSTD может использовать SFBC, используя антенный порт 0, 2 в первых 2 элементах RE данных и антенные порты 1, 3 в следующих 2 элементах RE данных в заданной группе из четырех элементов RE данных. Термин "RE данных" в целом относится к элементу ресурсов, который понимается унаследованным UE 120 как доступный для передачи данных. Однако в зависимости от назначения ресурсов передачи опорного сигнала и подавления в некоторых случаях RE данных может быть использован для передачи других сигналов или может не быть использован для передачи вообще. В некоторых исполнениях два элемента RE, используемые в SFBC, могут быть выбраны, чтобы близко располагаться друг к другу, таким образом, чтобы оценки канала в двух элементах RE были почти одними и теми же. В некоторых исполнениях запланированные оборудования UE 120 Rel-10, использующие такую схему, могут использовать смежные элементы RE данных по частоте (пропуская любые промежуточные элементы RE CSI-RS и элементы RE CRS). Отображение может быть сделано в группах из 4 элементов RE по частоте для SFBC-FSTD (2 элемента RE по частоте для SFBC). В случае, когда количество доступных элементов RE данных не является кратным 4, например, когда оно равно 4n+2, FSTD может быть использовано n раз, и SFBC, использующее порты с двумя антеннами, может быть использовано для оставшихся 2 элементов RE. Это может ввести дисбаланс мощности. Может быть желательно ввести CSI-RS таким образом, чтобы количество доступных элементов RE данных в каждом символе RB могло быть кратно 4 для 4-CRS (и 2 для 2-CRS) при планировании, используя этот режим.

[0079] Когда количество доступных элементов RE данных (для каждого RB или, альтернативно, для каждого распределения данных) имеет форму 4n+2 для SFBC-FSTD (или 2n+1 для SFBC) в двух соседних символах (n целое число) SFBC/SFBC-FSTD могут быть использованы в комбинации с STBC, где схема Аламоути применяется во времени. Это позволяет использовать все доступные элементы RE, в то же время сохраняя мощность сбалансированной.

[0080] Фиг. 4 A является представлением 400 блок-схемы двух смежных блоков ресурсов, изображающей элементы RE, назначенные на CSI-RS, в некоторых исполнениях. Распределенные элементы RE обозначены, используя двухсимвольную комбинацию из буквы (a, b, c, d или f), представляющего группу антенных портов, и числа (1 - 8), представляющего индекс антенного порта. eNB 110 с портами с восьми передающими антеннами (8Tx) может выбрать одну из групп от "a" до "f" и может использовать оставшиеся элементы RE CSI-RS для передач данных. Шаблон назначения RE, изображенный на Фиг. 4B, разрешает ортогональное мультиплексирование 6 различных узлов eNB 110 с 8Tx антеннами каждый (каждый eNB 110, использующий одну из шести групп от «а» до «f»). Это исполнение предполагает, что плотность ресурсов 1 RE/RB является использованием для CSI-RS.

[0081] Должно быть отмечено, что в символах OFDM, содержащих опорный сигнал пользовательского оборудования или UE-RS (например, символы 450, 452), 6 элементов RE (вместо 8) могут быть доступны для передач CSI-RS. В некоторых исполнениях для приспособления антенных портов с 8CSI-RS антенные порты 1-4 могут быть размещены на первый символ OFDM (например, символ 450) из пары символов OFDM (например, 450, 452), содержащей UE-RS, и антенным портам 5-8 могут быть распределены элементы RE в следующем смежном символе OFDM (например, символе 452). Для разрешения повышения полной мощности отображение антенного порта для символов 450, 452 может быть изменено в следующем RB таким образом, чтобы все порты охватывались в одном и том же местоположении символа в соседнем RB. Соседние символы могут быть выбраны в некотором исполнении для распределения ресурсов CSI-RS одной и той же группе антенн, чтобы преимущественно использовать тот факт, что временное изменение в характеристиках канала между смежными символами может быть относительно маленьким.

[0082] В некоторых исполнениях 4Tx (4 передающих) узла eNB 110 могут выбрать порты CSI-RS {1, 2, 3, 4} или {5, 6, 7, 8} одной группы антенн "a"-"f". В некоторых исполнениях 2Tx узла eNB 110 могут выбрать пары RE {1, 2}, {3, 4}, {5, 6}, {7, 8} в одной группе для передачи CSI-RS. Поэтому назначение антенного порта может быть выбрано таким образом, чтобы даже с меньшим количеством антенных портов RS-CSI все символы OFDM, содержащие элементы RE CSI-RS конкретного eNB 110, имели элементы RE CSI-RS, соответствующие всем антенным портам. В одном аспекте такое назначение элементов RE на антенные порты может облегчить ортогональное мультиплексирование узлов eNB 110 с различными конфигурациями антенны.

[0083] Теперь, ссылаясь на Фиг. 4C, блок 480 ресурсов показывает, что другой содержал назначение шаблона ресурсов на 4 порта CSI-RS для 4Tx узлов eNB 110. В некоторых исполнениях изображенный шаблон согласно Фиг. 4C может быть повторен для каждого RB, в котором назначен CSI-RS. Можно заметить, что назначения 4Tx вписываются в назначение 8Tx посредством разбиения назначений 8Tx, изображенных на Фиг. 4B, на две группы для 4Tx. Назначения 4Tx могут быть дополнительно разбиты на назначения RE для 2Tx узлов eNB 110.

[0084] Должно быть оценено, что в изображенном назначении RE, согласно Фиг. 4C, элементы RE CSI-RS были выбраны таким образом, чтобы они прореживали оба элемента RE данных в паре SFBC для унаследованных оборудований UE 120. Например, если шаблон назначения CSI-RS был смещен вниз в вертикальном направлении на одно местоположение RE в символах DM-RS 482, 484, будут прорежены два элемента RE в различных парах SFBC.

[0085] Обычно количество портов CSI-RS больше или равно количеству портов CRS. Может быть также оценено, что, когда количество CRS равно 4, назначение портов CSI-RS может быть для 4 или 8 антенных портов, и количество элементов RE, используемых посредством CSI-RS в любом символе, может быть 0, 4 или 8. В одном аспекте такое назначение может гарантировать, что кратное число 4 элементов RE повторно распределяется на CSI-RS из доступных элементов RE данных, и, следовательно, никакие элементы RE не остаются не сгруппированными (то есть изолированными элементами RE). Аналогично, когда количество CRS равно 2, количество антенных портов CSI-RS может быть (2, 4, 8). В таком случае элементы RE CSI-RS в любом символе могут быть любым из 0, 2, 4 или 8, гарантируя, что не остается изолированных элементов RE, если используется SFBC. В некоторых исполнениях, где местоположение антенного порта 3 и 4 заменяется местоположением антенных портов 5, 6, может не быть удовлетворено условие, что не остаются изолированные элементы RE. Должно быть отмечено, что некоторые элементы RE, которые могут быть использованы для CSI-RS, могут оставаться не использованными для CSI-RS, чтобы сохранить это условие неизолированных элементов RE данных.

[0086] Ссылаясь на Фиг. 4C, изображается представление в виде блок-схемы блока 480 ресурсов, показывающее другое примерное назначение элементов RE на передачи CSI-RS. В одном аспекте назначение RE в RB 480 отличается от такового в RB 450 тем, что пары RE 482 и 484 назначаются на CSI-RS в RB 480 и остались не назначенными (то есть доступными для передач данных) в RB 450, изображенном на Фиг. 4B. Дополнительно объясняется ниже проблема, когда эти элементы RE 482, 484 используются для CSI-RS, и как эта проблема может быть преодолена посредством использования STBC.

[0087] В некоторых исполнениях, когда 2 элемента RE доступны для 4-CRS, использование SFBC по 2 лучам, о которых знает UE 120, может быть преимущественно использовано для использования полной мощности вместо SFBC-FSTD. В некоторых исполнениях, когда <4 элементов RE доступны для 4-CRS или 1 RE доступен для 2 CRS, может быть передан один символ модуляции вдоль лучей, которые UE 120 может оценить, используя CRS. В некоторых исполнениях могут просто быть пропущены дополнительные элементы RE 482, 484. Должно быть отмечено, что в некоторых исполнениях могут быть разрешены элементы RE, которые нарушают группировку SFBC. Использовать ли элементы RE для CSI-RS или защитить ли SFBC вместо этого, может быть решено на сетевом уровне во время настройки сети (например, посредством eNB 110).

[0088] В некоторых исполнениях для выяснения качества канала других ячеек UE 120 может быть снабжено информацией относительно того, где искать CSI-RS соседней ячейки, на основании минимальной информации в UE 120. Чтобы разрешить это, шаблоны антенны CSI-RS могут быть функциями одного или более из: индекса подкадра, индекса радио кадра, номера сети с единственной частотой (SFN) и ID ячейки. На основании этой информации UE 120 может быть в состоянии определить передачи CSI-RS от соседнего eNB 110.

[0089] В некоторых исполнениях, как рассмотрено выше, изменение шаблонов антенны CSI-RS по блокам RB в одном аспекте может обеспечить использование полной мощности при передачи сигнала CSI-RS от антенны.

[0090] В некоторых исполнениях группировка антенных портов CSI-RS может быть скомпонована ортогонально друг с другом таким образом, чтобы группы заданного размера порта (например, 8, 4, 2 или 1) могли быть ортогональными друг другу (например, из-за временно-частотного разделения). В дополнение, группа с меньшим количеством антенн может сформировать подгруппу группы