Состав для поглощения кислорода, тара, упаковка и укупорочное средство, содержащее указанный состав

Иллюстрации

Показать все

Укупорочное средство для тары содержит гидрид кальция и материал матрицы в качестве генерирующего водород состава. При использовании генерируется водород, который реагирует с кислородом, проникающим в тару, связанную с укупорочным средством, при этом катализатор, связанный с укупорочным средством, и катализатор, связанный с тарой, катализируют реакцию водорода и кислорода, в результате которой получается вода, таким образом, поглощая кислород. Изобретение обеспечивает высокую скорость реакции и высокую способность инициировать реакцию поглощения во время наполнения тары. 5 н. и 16 з.п. ф-лы, 4 ил., 2 табл., 9 пр.

Реферат

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к поглощению кислорода и, в частности, хотя не исключительно, к поглощению кислорода в таре, например таре для пищевых продуктов или напитков.

Полимеры, такие как полиэтилентерефталат (PET), - это универсальные материалы, которые находят широкое применение для волокон, пленок и трехмерных структур. Особенно важным применением для полимеров является применение для тары, особенно для пищевых продуктов и напитков. За последние 20 лет это применение претерпело огромный рост и продолжает пользоваться растущей популярностью. Несмотря на этот рост, полимеры обладают некоторыми серьезными недостатками, ограничивающими их применимость. Одним таким недостатком является то, что все полимеры обладают некоторой степенью проницаемости для кислорода. Способность кислорода проникать через полимеры, такие как PET, вовнутрь тары являет собой серьезную проблему, особенно для пищевых продуктов и напитков, которые портятся в присутствии даже малых количеств кислорода. Для цели настоящего описания термин «проницаемый» означает диффузию малых молекул через полимерную матрицу путем миграции мимо отдельных полимерных цепей и отличается от утечки, которая представляет собой транспорт через макроскопические или микроскопические отверстия в структуре тары.

Помимо пищевых продуктов и напитков, к другим продуктам, на которые оказывает влияние кислород, относятся многие лекарственные средства, а также ряд химических веществ и даже электроника. Для того чтобы упаковать эту чувствительную к кислороду продукцию, владельцы брендов исторически полагаются на использование стеклянной или металлической упаковки. В последнее время владельцы брендов начали упаковывать свою продукцию в пластиковые упаковки, которые содержат пассивные барьеры кислороду и/или поглотители кислорода. Обычно больший успех достигается при использовании поглотителей кислорода; однако до настоящего времени поглощающие кислород материалы имеют ряд недостатков. В частности, поглотители кислорода, использовавшиеся до настоящего времени, предполагают включение в упаковку окисляющегося твердого материала. Используемые для этого технологии включают окисление железа (включенного либо в пакетиках, либо в боковую стенку тары), окисление гидросульфита натрия или окисление окисляющегося полимера (особенно полибутадиена или m-ксилилендиамин-адипамида). Всем этим технологиям присущи низкие скорости реакции, ограниченная емкость, ограниченная способность инициировать реакцию поглощения во время наполнения тары, образование матовости на боковой стенке тары и/или изменение цвета упаковочного материала. Эти проблемы ограничивают использование поглотителей кислорода вообще и особенно серьезны в случае прозрачной пластиковой упаковки (такой как из PET) и/или если утилизация пластика считается важной.

В совместно рассматриваемой публикации номер WO 2008/090354 A1 раскрыта тара, содержащая активное вещество, которое включено в тару и расположено так, чтобы реагировать с влагой в таре для высвобождения молекулярного водорода. Документ описывает широкий диапазон потенциально активных веществ, включая металлы и/или гидриды. Потенциально активные гидриды являются неорганическими, например, содержащими гидриды металлов или борогидриды, или могут быть органическими. Кроме того, активное вещество может содержать полимерную матрицу, например полимерный гидрида кремния. В документе также указано, что активный материал может быть также заключен в полимерную матрицу с предпочтительным содержанием 4-8 вес.% активного вещества. Конкретные примеры в данном документе фокусируются на использовании борогидрида натрия в качестве активного материала.

Одна проблема, связанная с использованием борогидрида натрия, заключается в том, что начальная скорость производства водорода может быть достаточно низкой. Это может быть невыгодно, поскольку предпочтительно, чтобы начальная скорость производства водорода была повышенной, чтобы таким образом поглощать кислород в пространстве над продуктом, присутствующий в таре после первоначального заполнения тары. Затем скорость может спадать и быть достаточной для поглощения кислорода, проходящего через стенки тары.

Также было обнаружено, что активные вещества, описанные в документе WO 2008/090354A, особенно борогидрид натрия, могут реагировать с альдегидами, которые являются важными вкусовыми компонентами еды и напитков. Увеличенная потеря данных вкусовых компонентов из-за реакции с активным веществом может оказывать отрицательное воздействие на вкус еды или напитка, т.е. вкус ослабевает и такое ослабевание может со временем стать еще сильнее. Кроме того, соединения бора, за исключением тех случаем, когда они, предпочтительно, сдерживаются, могут мигрировать в еду или напитки. Такая миграция требует контроля для обеспечения соответствия любым действующим ограничительным нормам применительно к соединениям бора. Кроме того, также было обнаружено, что включение некоторых активных веществ, таких как борогидрид натрия, в определенные полимеры может быть трудным вследствие реакции между борогидридом и полимером.

Целью настоящего изобретения является решение вышеописанных проблем.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В соответствии с первым аспектом изобретения, предлагается генерирующий водород состав, содержащий гидрид кальция, связанный с материалом матрицы.

ПОДРОБНОЕ ОПИСАНИЕ

Указанный гидрид кальция может быть заключен или, предпочтительно, диспергирован в указанном материале матрицы. Указанный материал матрицы может содержать материал полимерной матрицы, выбранный, исходя из растворимости влаги в блочном полимере, и который предпочтительно является химически инертным к гидриду кальция. Подходящие материалы матрицы имеют проницаемость для водяного пара более 0,2 г·мм/м2·сутки, предпочтительно более 0,4 г·мм/м2·сутки, предпочтительно более 0,6 г·мм/м2·сутки, предпочтительнее более 0,8 г·мм/м2·сутки и особенно более 1.0 г·мм/м2·сутки. Указанный материал матрицы может содержать смесь, содержащую по меньшей мере два полимерных материала.

Проницаемость материала матрицы в указанном составе для водяного пара может быть менее 5 г·мм/м2·сутки, менее 4 г·мм/м2·сутки или менее 3 г·мм/м2·сутки.

Материал матрицы в указанном составе предпочтительно содержит органический полимер. Он может содержать смесь из более чем одного полимера. Он предпочтительно содержит, наиболее предпочтительно состоит преимущественно из термопластичного полимерного материала.

Если не указано иначе, водопроницаемость, описываемая в настоящем документе, измеряется с использованием процедуры (Американского общества по испытанию материалов) ASTM E96 при температуре 38°С и относительной влажности воздуха 90%.

К числу подходящих материалов полимерной матрицы относятся среди прочих гомополимеры полиолефинов, статистические или блок-сополимеры, такие как сополимеры полиэтилена или этилена, сополимеры полипропилена и пропилена, сополимеры бутилена, полимеры и сополимеры этиленвинилацетата, стирол-этилен-бутилен-стирол сополимеры, полимеры полистирола и стирола, полиэфиры, например терефталаты, такие как полибутилентерефталат, полиуретаны, сополимеры эфира метакрилата и нейлон 6.

Размер частиц и распределение частиц по крупности, описанные в данном описании, могут измеряться посредством способов, таких как описанные в источнике "Size Measurement of Particles entry of Kirk-Othmer Encyclopedia of Chemical Technology, Vol.22, 4th ed., (1997) pp.256-278", данной ссылкой полностью включенном в данное описание. Например, размер частиц и распределение частиц по крупности могут определяться с использованием молекулярного сита Фишера или Microtrac анализатора размера частиц, изготовленного фирмой "Leeds and Northrop Company", или посредством микроскопических способов, таких как сканирующая электронная микроскопия или трансмиссионная электронная микроскопия.

Гидрид кальция указанного состава может быть в форме мелкодисперсного порошка, предпочтительно со средним размером частиц, находящимся в диапазоне от приблизительно 0,5 мкм до 500 мкм, более предпочтительно от приблизительно 1 мкм до 300 мкм и наиболее предпочтительно от приблизительно 3 мкм до 200 мкм. [Как используется в данном описании, размер d50 частиц является срединным диаметром, где 50% объема состоит из частиц больших, чем заявленный размер d50, и 50% объема состоит из частиц меньших, чем заявленное значение d50. Как используется в данном описании, срединный размер частиц является точно таким же, что и размер d50 частиц.]

Для осуществления дополнительного контроля над скоростью освобождения водорода из гидрида кальция указанного состава, может быть полезно осуществление контроля распределения по крупности частиц гидрида кальция.

Может быть полезен ряд распределений частиц по крупности. Распределение частиц по крупности, как используется в данном описании, может выражаться "шагом (S)", где S вычисляется согласно следующей формуле:

S = d 90 − d 10 d 50

где d90 представляет диаметр частиц, в которых 90% объема состоит из частиц, диаметр которых меньше, чем указанный размер d90; и d10 представляет размер частиц, в которых 10% объема состоит из частиц, диаметр которых меньше чем указанный размер d10.

Например, могут использоваться распределения частиц гидрида кальция по крупности, в которых шаг менее 10 или менее 5, или менее 2. Альтернативно, распределение (S) частиц по крупности может находиться даже в более широком диапазоне, таком как менее 15, менее 25 или менее 50.

Указанный гидрид кальция является одним активным веществом в указанном составе, предназначенным для освобождения молекулярного водорода в результате контакта с водой. Указанный генерирующий водород состав может включать гидрид кальция и дополнительное активное вещество, предназначенное для освобождения молекулярного водорода в результате контакта с водой. Указанное дополнительное активное вещество может представлять собой металл или гидрид. Оно может быть выбрано из металла натрия, металла лития, металла калия, металла натрия, гидрида лития, гидрида калия, гидрида магния, борогидрида натрия и алюмогидрида лития.

Гидрид кальция предпочтительно составляет приблизительно 50 вес.%, по меньшей мере 60 вес.%, по меньшей мере 70 вес.%, по меньшей мере 80 вес.% или по меньшей мере 90 вес.% всего активного вещества (веществ) в указанном генерирующем водород составе, которое предназначено для освобождения молекулярного водорода в результате контакта с водой. Предпочтительно гидрид кальция составляет более 95 вес.% или более 98 вес.% активного вещества (веществ) в указанном составе, которое предназначено для освобождения молекулярного водорода в результате контакта с водой. Предпочтительно гидрид кальция является единственным активным веществом в указанном составе, предназначенном для освобождения молекулярного водорода в результате контакта с водой.

Общее количество активных веществ в указанном составе, которые предназначены для освобождения молекулярного водорода в результате контакта с водой, может составлять по меньшей мере 1 вес.%, предпочтительно по меньшей мере 2 вес.%. Состав может содержать менее 70 вес.% указанных активных веществ. Состав может содержать 1-60 вес.%, предпочтительно 2-40 вес.%, более предпочтительно 4-30 вес.% указанных активных веществ.

В предпочтительном варианте осуществления сумма количества (количеств) активного вещества (веществ) в указанном генерирующем водород составе, которое предназначено для освобождения молекулярного водорода в результате контакта с водой, составляет более 16 вес.% или более 17 вес.%. Сумма количества (количеств) предпочтительно составляет менее 50 вес.%, менее 40 вес.%, менее 30 вес.% или менее 25 вес.%.

В предпочтительном варианте осуществления указанный генерирующий водород состав содержит более 16 вес.% или более 17 вес.% гидрида кальция. Указанный состав может содержать 16,5-40 вес.%, предпочтительно 16,5-30 вес.%, предпочтительно 16,5-25 вес.% гидрида кальция.

Указанный генерирующий водород состав может содержать по меньшей мере 60 вес.%, предпочтительно 70 вес.%, предпочтительно 75 вес.% материала матрицы, при этом материал матрицы может содержать один или более органических полимеров, как было описано ранее. Указанный состав может содержать менее 98 вес.%, менее 95 вес.%, менее 90 вес.% или 83,5 вес.% или менее материала матрицы.

В указанном составе сумма количеств материала матрицы и активного вещества(веществ), которые предназначены для освобождения молекулярного водорода в результате контакта с водой, предпочтительно составляет по меньшей мере 85 вес.%, предпочтительно по меньшей мере 90 вес.%, более предпочтительно по меньшей мере 95 вес.%, особенно предпочтительно по меньшей мере 98 вес.%. Остальной материал в генерирующем водород составе может содержать добавки, такие как дисперганты, поверхностно активные вещества, стабилизаторы и пластификаторы для способствования смешиванию и эффективному диспергированию гидрида кальция в материале матрицы. Кроме того, другие стандартные добавки, такие как красящие вещества (пигменты и краски), смазывающие вещества, а также добавки, снижающие трение, могут включаться в генерирующий водород состав для модификации физических и эксплуатационных свойств состава.

Сумма количеств материала матрицы и гидрида кальция в указанном составе предпочтительно составляет по меньшей мере 85 вес.%, предпочтительно по меньшей мере 90 вес.%, более предпочтительно по меньшей мере 95 вес.%, особенно предпочтительно по меньшей мере 98 вес.%.

В указанном генерирующем водород составе первое соотношение, определенное как сумма вес.% материала матрицы, деленная на сумму вес.% активного вещества (веществ), которое (которые) предназначено (предназначены) для генерирования молекулярного водорода в результате контакта с водой, предпочтительно составляет по меньшей мере 2, более предпочтительно по меньшей мере 3, особенно предпочтительно по меньшей мере 4. Указанное первое соотношение может быть менее 20. Указанное первое соотношение может находиться в диапазоне 2-16, предпочтительно 3-12, более предпочтительно 3-8, наиболее предпочтительно 3-6.

В указанном генерирующем водород составе второе соотношение, определенное как сумма вес.% материала матрицы, деленная на сумму вес.% гидрида кальция, предпочтительно составляет по меньшей мере 2, более предпочтительно по меньшей мере 3, особенно предпочтительно по меньшей мере 4. Указанное второе соотношение может быть менее 20. Указанное второе соотношение может находиться в диапазоне 2-16, предпочтительно 3-12, более предпочтительно 3-8, наиболее предпочтительно 3-6.

В предпочтительном варианте осуществления указанный генерирующий водород состав содержит 16,5-30 вес.% гидрида кальция и 70-83,5 вес.% материала матрицы.

В некоторых случаях указанные генерирующие водород составы могут включать катализатор для содействования реакции между молекулярным водородом и молекулярным кислородом, как описано далее в данном описании. Катализатор может быть включен в материал матрицы.

Состав согласно первому аспекту может быть в виде пеллет или гранул для использования при производстве генерирующих водород компонентов. Состав может быть в листовой форме. Состав может быть в виде компонента, обладающего объемом в диапазоне 0,1-5 см3, предпочтительно в диапазоне 0,1-3 см3, предпочтительно в диапазоне 0,2-2 см3.

В соответствии со вторым аспектом изобретения, предлагается способ изготовления состава согласно первому аспекту, при этом способ содержит контакт гидрида кальция и материала матрицы.

Гидрид кальция может быть предварительно диспергирован в среде носителя перед смешиванием с материалом матрицы для улучшения дисперсии твердых частиц в составе. Дополнительным преимуществом включения гидрида в инертный носитель является то, что его реакционная способность значительно уменьшается. Это происходит потому, что реагирующие твердые частицы окружаются фазой гидрофобного носителя, что замедляет реакцию с водой (при атмосферном или ином воздействии).

Подходящие носители включают сухие неводные среды, которые не реагируют с гидридом для освобождения водорода и являются жидкими при комнатной температуре. Примеры включают сухие минеральные масла на основе углеводорода, масла на основе силикона, гликоли с алкильной группой на конце (т.е. PEG, PPG, THF с алкильной группой на конце). Носитель предпочтительно полностью совместим с окончательной полимерной матрицей для полной дисперсии гидрида. Носитель может обладать такой температурой кипения, что он может быть удален во время стадии компаундирования таким образом, чтобы не влиять на свойства конечного соединения. Носитель может быть полимеризуемым мономером или олигомером, который во время стадии компаундирования подвергается полимеризации и образует полимерную матрицу, по меньшей мере, частично.

Для улучшения дисперсии гидрида кальция в матрице во время компаундирования может быть предпочтительно использование подходящего дисперганта. Подходящие дисперганты должны, фактически, не содержать влаги и не должны химически реагировать с гидридом кальция для освобождения водорода при процессе компаундирования. В идеальном случае, молекула дисперганта должна содержать часть, способную взаимодействовать или впитываться поверхностью частицы гидрида кальция и часть, растворимую в полимерной матрице. Молекула дисперганта предпочтительно не содержит химические группы, которые могут реагировать с гидридом кальция для формирования водорода при компаундировании, например предпочтительными являются дисперганты, не содержащие реагирующие карбоксильные кислотные группы или реагирующие O-H связи. Примеры подходящих диспергантов включают эфиры жирной кислоты полиэтилегликоля (PEG), полипропиленгликоль (PPG) и PEG с диалкильной группой на конце.

Диспергатор может присутствовать при концентрации 0-10 вес.% в смеси, составленной с целью образования генерирующего водород состава. Диспергатор предпочтительно добавляется в носитель/смесь твердых частиц под воздействием высокой сдвигающей силы для обеспечения получения первичных частиц.

Когда генерирующий водород состав содержит катализатор, способ может содержать включение катализатора в материал матрицы.

Большое количество неорганических твердых частиц, добавленное в матрицу, может влиять на физические свойства матрицы. Неорганический наполнитель может усилить матрицу, сделать ее более крепкой, что может отрицательно повлиять на способность материала образовывать гибкий листовой материал. Таким образом, пластификатор может добавляться в смешиваемый состав для образования генерирующего водород состава для того, чтобы улучшить гибкость производимого генерирующего водород состава. Пластификатор предпочтительно инертный и не содержит групп с ОН связями. Примеры стандартных пластификаторов, которые могут использоваться, включают: адипат, фталат, себацат, малеаты, бензоаты, тримеллитат. Эпоксидированные растительные масла, полибутен или другие полимерные пластификаторы могут использоваться для предотвращения побочных реакций с гидридом.

Способ может содержать экструдирование или прессование состава в форму, которая может вмещаться в упаковочную тару. Состав может прессоваться (т.е. формироваться посредством компрессионного формования), штамповаться или ламинироваться с другим компонентом упаковочной тары, например укупорочным устройством.

Перед использованием, при изготовлении компонента для включения в тару, предпочтительно хранить генерирующий водород состав, согласно первому аспекту, в среде, где предотвращено преждевременное реагирование влаги с гидридом кальция. Таким образом, в третьем аспекте предлагается упаковка, содержащая генерирующий водород состав согласно первому аспекту, при этом упаковка предназначена для предотвращения прохождения влаги к гидриду кальция в составе.

Упаковка может содержать инертный газ или смесь инертного газа с газообразным водородом. Альтернативно, упаковка может содержать главным образом вакуум, в котором расположен состав.

В соответствии с четвертым аспектом изобретения, предлагается тара, содержащая генерирующее водород средство, содержащее генерирующий водород состав согласно первому аспекту.

Генерирующее водород средство может предусматриваться для медленного высвобождения молекулярного водорода внутри тары на протяжении продолжительного периода времени. В присутствии подходящего катализатора молекулярный водород будет реагировать с любым кислородом, присутствующим во внутреннем пространстве тары или в стенке тары. Предпочтительно, скорость высвобождения водорода подбирается соответствующей скорости проникновения кислорода в тару. Кроме того, предпочтительно начальное относительно быстрое высвобождение водорода с последующим медленным высвобождением на протяжении месяцев или даже лет. Кроме того, предпочтительно, чтобы существенное высвобождение водорода надежно начиналось только после наполнения упаковки. Наконец, предпочтительно, чтобы вещество, высвобождающее водород, не загрязняло содержимое тары.

Тара предпочтительно содержит катализатор для катализации реакции между указанными молекулярным водородом и молекулярным кислородом. В результате этой реакции молекулярный кислород в указанной таре, например, который проходит в указанную тару через ее стенку, может поглощаться с водой в качестве побочного продукта.

В целях настоящего описания тара включает любую упаковку, окружающую продукт и не содержащую намеренных микроскопических или макроскопических отверстий, допускающих транспорт малых молекул между внутренним пространством и окружением упаковки. Указанная тара факультативно содержит укупорочное средство. В целях настоящего описания катализатор представляет собой любое вещество или субстанцию, которое катализирует или способствует реакции между молекулярным водородом и молекулярным кислородом.

Тара может иметь боковую стенку, изготовленную из состава, содержащего первый компонент из полимерной смолы и второй компонент, содержащий катализатор, способный катализировать реакцию между молекулярным водородом и молекулярным кислородом. Генерирующее водород средство предпочтительно находится во внутреннем пространстве тары или возле внутренней поверхности тары. Генерирующее водород средство предпочтительно находится в укупорочном средстве указанной тары или на нем.

Генерирующее водород средство может быть связано с тарой различными путями. Если тара содержит съемную деталь, например укупорочное средство, оно может удобно объединяться с укупорочным средством. Укупорочное средство может с возможностью снятия крепиться к корпусу тары, чтобы его можно было снять и установить на место, например, имея винтовую резьбу; или может крепиться так, чтобы его можно было снять, но не устанавливать на место, например, имея пленку, прилипающую к корпусу тары. В последнем случае укупорочное средство может содержать пленку, содержащую эластичный «укупорочный» материал, описание которого приводится ниже. В одном варианте осуществления тара может содержать как пленочное укупорочное средство, которое может обеспечивать асептическое уплотнение для тары, так и укупорочное средство, которое может крепиться с возможностью снятия, оба из которых могут независимо содержать генерирующее водород средство. После начального снятия как укупорочного средства, которое может крепиться с возможностью снятия, так и пленочного укупорочного средства, укупорочное средство, которое может крепиться с возможностью снятия, может устанавливаться на место и может генерировать водород и, следовательно, продлевать срок хранения содержимого тары.

Если генерирование водорода будет происходить путем реакции активного вещества с водой, начало значительного генерирования водорода произойдет лишь тогда, когда генератор водорода будет помещен в среду, содержащую влагу, такую, какая встречается в большинстве чувствительных к кислороду пищевых продуктах и напитках. Таким образом, начало генерирования водорода будет обычно совпадать с заполнением тары и/или помещением генератора водорода вовнутрь или рядом с внутренним пространством тары. Для того чтобы предотвратить или минимизировать генерирование водорода до этого момента, достаточно минимизировать контакт генератора водорода с влагой. В отличие от исключения молекулярного кислорода, исключение влаги легко достигается рядом методов, включая, без ограничения, упаковывание генератора водорода и/или структур, содержащих генератор водорода, в металлическую фольгу, металлизированный пластик или полиолефиновые пакеты. Например, упаковывание навалом укупорочных средств, содержащих генерирующее водород средство, в герметичные полиэтиленовые пакеты является целесообразным путем ограничения генерирования водорода до помещения отдельных укупорочных средств на тару. Еще один способ ограничить контакт генератора водорода с влагой до помещения отдельных укупорочных средств на тару - поместить в упаковку с укупорочными средствами один или более влагопоглотителей.

Хотя в предпочтительных вариантах осуществления источником влаги в таре для инициирования генерирования водорода является пищевой продукт или напиток, предусматриваются и другие источники влаги. Например, генерирующее влагу средство, отдельное от пищевого продукта или напитка, может быть объединено с тарой. Это генерирующее влагу средство предпочтительно содержит высокий уровень влаги. Оно может содержать гидрогель, объединенный с тарой и/или являющийся частью тары или иного компонента в таре (например, гидратированная соль), который высвобождает влагу при сушке или в ответ на иной возбудитель, нагревание, воздействие видимого или УФ-излучения, изменение давления, сверхвысокочастотное излучение, рН, электрическое, магнитное поле, ультразвук и т.д.

Поскольку после высвобождения молекулярный водород будет быстро рассеиваться во всем внутреннем пространстве тары и проникать через все проницаемые части стенок тары, расположение генерирующего водород средства в таре не является критичным. Однако обычно генерирующее водород средство необходимо располагать во внутреннем пространстве тары, чтобы максимально увеличить количество водорода, доступного для поглощения кислорода, и минимизировать количество генератора водорода, требуемое для получения требуемой степени поглощения кислорода. В таре обычно предпочтительно располагать генерирующее водород средство в непрозрачной части тары. Например, в таре для напитков, изготовленной из PET, предпочтительно расположение генерирующего водород средства в укупорочном средстве тары. Кроме того, обычно предпочтительно располагать генератор водорода сзади средства управления, которое будет описано далее в данном описании.

В одном варианте осуществления, генерирующее водород средство может включаться в пленку, являющуюся частью тары и предназначенную для удаления (и предпочтительно не установки на место) для обеспечения доступа к содержимому тары. Пленка может содержать ламинат. Она может включать слой, практически не проницаемый для кислорода, например металлический слой, такой как алюминиевый слой. Пленка может содержать генерирующий водород слой, содержащий указанное генерирующее водород средство. Расстояние между генерирующим водород слоем и содержимым тары предпочтительно менее расстояния между указанным непроницаемым слоем пленки и содержимым тары. Пленка может содержать слой, который является указанным средством управления, причем расстояние между слоем, являющимся указанным средством управления, и содержимым тары менее расстояния между генерирующим водород слоем и содержимым тары. Пленка может быть укупорочной фольгой, прилипающей к корпусу тары для образования тары.

Поскольку генерированный водород будет проникать через стенки тары, количество водорода, присутствующего в таре, в любой момент времени будет минимальным. Кроме того, чем быстрее водород генерируется, тем быстрее он будет проникать; следовательно, значительные повышения скорости генерирования водорода (вызванные, например, повышенными температурами хранения тары) приведут лишь к умеренным повышениям концентрации водорода в таре. Поскольку проницаемость водорода через полимер намного выше проницаемости кислорода, требуемое количество водорода в свободном пространстве тары над продуктом может не превышать 4 об.%, что ниже предела воспламеняемости для водорода в воздухе. Кроме того, растворимость водорода в пищевых продуктах или напитках низка; следовательно, в любой момент времени основная часть водорода в таре будет находиться в свободном пространстве тары над продуктом. Следовательно, количество водорода, которое может присутствовать в таре, может быть очень малым. Например, для тары из PET емкостью 500 мл с объемом свободного пространства над продуктом 30 мл и скорости проникновения кислорода 0,05 см3/на упаковку в сутки менее примерно 1 см3 водорода требуется в таре, чтобы скорость проникания Н2 была выше скорости проникновения кислорода. Кроме того, скорость генерирования H2 должна быть лишь примерно 0,1-0,2 см3/сутки, чтобы постоянно генерировалось достаточно водорода для реакции с большей частью или всем проникающим кислородом.

Поскольку для достижения высоких уровней поглощения кислорода в таре должны присутствовать лишь малые количества водорода, расширение и сжатие тары во времени от присутствия (или потери) водорода минимальны. Следовательно, эта технология легко применима как к жесткой, так и эластичной таре.

Для того чтобы обеспечить реакцию между молекулярным водородом и молекулярным кислородом, необходим катализатор. Известно большое число катализаторов для катализации реакции водорода с кислородом, включая многие переходные металлы, бориды металлов (такие, как борид никеля), карбиды металлов (такие, как карбид титана), нитриды металлов (такие, как нитрид титана), а также соли и комплексы переходных металлов. Из них особенно эффективными являются металлы группы VIII. Из металлов группы VIII особенно предпочтительными являются палладий и платина из-за их низкой токсичности и крайней эффективности в катализации превращения водорода и кислорода в воду с малым образованием побочных продуктов или его полным отсутствием. Катализатором предпочтительно является окислительно-восстановительный катализатор.

Для того чтобы максимально повысить эффективность реакции поглощения кислорода, катализатор предпочтительно располагать там, где требуется реакция с кислородом. Например, если применение требует, чтобы кислород поглощался до того, как достигнет внутреннего пространства тары, необходимо включение катализатора в боковую стенку упаковки. И наоборот, если требуется поглощение кислорода, уже присутствующего в таре, обычно предпочтительно располагать катализатор возле внутреннего пространства тары или прямо в нем. Наконец, если необходимы обе функции, катализатор может располагаться как во внутреннем пространстве тары, так и в стенках тары. Хотя катализатор может непосредственно диспергироваться в пищевой продукт или напиток, обычно предпочтительно, чтобы катализатор диспергировался в полимерную матрицу. Дисперсия катализатора в полимерную матрицу обеспечивает ряд преимуществ, включая, без ограничения, минимизацию загрязнения пищевого продукта или напитка, минимизацию катализированной реакции между молекулярным водородом и ингредиентами пищевого продукта или напитка и легкость извлечения и/или утилизации катализатора из тары пищевого продукта или напитка.

Одно конкретное преимущество настоящего изобретения заключается в том, что из-за крайне высоких скоростей реакции, достижимых при использовании ряда катализаторов, могут требоваться очень малые количества катализатора. Тара может содержать 0,01-1000 млн-1, предпочтительно 0,01-100 млн-1, предпочтительно 0,1-10 млн-1, предпочтительнее по меньшей мере 0,5 млн-1 катализатора относительно массы указанной тары (исключая любое ее содержимое). В предпочтительных вариантах осуществления содержится 5 млн-1 или менее катализатора. Если не указано иное, «млн-1» означает частей на миллион частей по массе.

Малое требуемое количество катализатора делает экономичными даже дорогие катализаторы. Кроме того, поскольку для того, чтобы быть эффективными, требуются очень малые количества, возможно минимальное воздействие на другие свойства упаковки, такие, как цвет, дымка и утилизируемость. Например, если в качестве катализатора используется палладий, для достижения приемлемых скоростей поглощения кислорода могут быть достаточными концентрации кислорода менее примерно 5 млн-1 мелкодисперсного Pd. Обычно требуемое количество катализатора будет зависеть от собственной скорости катализа, размера частиц катализатора, толщины стенок тары, скоростей проникания кислорода и водорода и требуемой степени поглощения кислорода и может определяться по ним.

Для того чтобы максимально повысить эффективность катализатора, катализатор предпочтительно должен быть хорошо диспергированным. Катализатор может быть гомогенным или гетерогенным. Для гомогенных катализаторов предпочтительно, чтобы катализаторы были растворенными в полимерной матрице на молекулярном уровне. Для гетерогенных катализаторов предпочтительно, чтобы средний размер частиц катализатора был менее 1 микрона, предпочтительнее, чтобы размер частиц катализатора был менее 100 нанометров, и особенно предпочтительно, чтобы средний размер частиц катализатора был менее 10 нанометров. Для гетерогенных катализаторов частицы катализатора могут быть отдельными или диспергированными в опорный материал, такой как углерод, глинозем или иные подобные материалы.

Способ включения катализатора не является критическим. Предпочтительные технологии обеспечивают хорошо диспергированный, активный катализатор. Катализатор может включаться в тару в любое время до, во время или после введения источника водорода. Катализатор может вводиться в полимерную матрицу во время образования полимера или во время последующей обработки полимера с плавлением. Он может вводиться посредством распыления суспензии или раствора катализатора на полимерные гранулы до обработки с плавлением. Он может вводиться посредством инжекции расплава, раствора или суспензии катализатора в предварительно расплавленный полимер. Кроме того, он может вводиться посредством приготовления маточной смеси катализатора с полимером, а затем смешивания гранул из маточной смеси с полимерными гранулами с требуемой концентрацией перед литьевым формованием или экструзией. В таре, в которой катализатор находится во внутреннем пространстве тары, катализатор может смешиваться с активным веществом в матрице генератора водорода.

В одном предпочтительном варианте осуществления катализатор вводится в стенку тары. Предпочтительно он связан, например, диспергирован в нем, с полимером, который являет собой, по меньшей мере, часть стенки тары. В одном предпочтительном варианте осуществления катализатор связан с материалом, который составляет по меньшей мере 50%, предпочтительно по меньшей мере 75%, предпочтительнее по меньшей мере 90% площади внутренней стенки тары.

В одном предпочтительном варианте осуществления катализатор распределен практически по всей площади поверхности тары, факультативно за исключением ее укупорочного устройства.

Предлагаемая тара может иметь однослойную или многослойную конструкцию. В многослойной конструкции факультативно один или несколько слоев могут служить барьерным слое