Способ получения экструдированного пенополимера при поэтапном формовании

Настоящее изобретение относится к способу получения экструдированного пенополимера. Техническим результатом заявленного изобретения является повышение гомогенности экструдированного пенополимера. Технический результат достигается способом получения экструдированнного пенополимера, который включает стадию получения вспениваемой полимерной композиции в экструдере. При этом вспениваемая полимерная композиция содержит пенообразователь и полимерную матрицу, которая содержит полимерный компонент. Причем начальная температура в экструдере превышает температуру размягчения полимерного компонента, а начальное давление является достаточно высоким для исключения вспенивания вспениваемой полимерной композиции. На стадии экструдирования вспениваемой полимерной композиции в атмосферу при давлении, меньшем, чем начальное давление, и расширении вспениваемой полимерной композиции для получения пенополимера перед охлаждением вспениваемая полимерная композиция расширяется при степени расширения по толщине, равной 30:1, при одновременных прохождении через и контактировании с противолежащими формующими пластинами. Причем данные пластины образуют две последовательные ограничивающие секции по направлению экструдирования. При этом формующие пластины в каждой ограничивающей секции включают параллельные ограничивающие стенки, которые сдерживают расширение вспениваемой полимерной композиции по направлению размера толщина. Где ограничивающая секция, наиболее близкая к экструдеру, имеет параллельные стенки, определяющие зазор по направлению размера толщина, который находится в диапазоне в 10-40 раз превышающем высоту выходного отверстия вспенивающей головки, и который является меньшим, чем зазор между параллельными стенками, определяющими вторую ограничивающую секцию. 9 з.п. ф-лы, 1 табл., 1 пр.

Реферат

Данная заявка имеет приоритет на основании предварительной заявки США № 61/157217, поданной 4 марта 2009 года, которая полностью включена в данное описание в качестве ссылки.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область техники

Настоящее изобретение относится к способу получения экструдированного пенополимера.

Уровень техники

Способы экструдирования для получения пенополимера включают три основных стадии: (1) получение вспениваемой полимерной композиции при начальных давлении и температуре в экструдере; (2) вытеснение вспениваемой полимерной композиции в зону меньшего давления; и (3) расширение вспениваемой полимерной композиции для получения пенополимера. Третья стадия может протекать при наличии или в отсутствие ограничения для расширяющейся вспениваемой полимерной композиции. Такой общий способ хорошо работает для множества типов экструдированных пенополимеров, но демонстрирует малую степень контроля расширения пеноматериала. Следовательно, в случае получения экструдированных пенополимеров, требующих больших степеней расширения по толщине, будут развиваться негомогенные свойства пеноматериала. При получении обычным способом экструдирования по направлению размера толщины для экструдированного пенополимера зачастую возникают важные негомогенности по плотности и пределу прочности при сжатии. Данные негомогенности становятся очевидными, когда расширяющийся пеноматериал претерпевает воздействие степени расширения, равной 30:1 и более, по направлению его размера толщины. Тем не менее, степени расширения, равные 30:1 и более, являются желательными при получении пенополимера низкой плотности и/или толстого пенополимера, такого как пенополимер, имеющий толщину, равную 100 миллиметрам и более.

Является желательным и позволило бы продвинуть вперед современный уровень техники в области экструдированного пенополимера создание способа непосредственного получения пенополимера, характеризующегося степенью расширения по толщине, превышающей 30:1, при наличии также в основном однородной плотности и предела прочности при сжатии по направлению размера толщины.

КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение позволяет продвинуть вперед современный уровень техники в области экструдированного пенополимера путем решения задач, которые неизбежно возникают при осуществлении способа непосредственного получения пенополимера, характеризующегося степенью расширения по толщине, превышающей 30 к одному, при наличии также профиля в основном однородной плотности и предела прочности при сжатии по направлению размера толщины для пеноматериала.

В первом аспекте настоящее изобретение заключается в способе экструдирования пенополимера, включающем следующие далее стадии: (а) получение вспениваемой полимерной композиции в экструдере при начальной температуре и начальном давлении, при этом вспениваемая полимерная композиция содержит пенообразователь и полимерную матрицу, которая содержит полимерный компонент, имеющий температуру размягчения, причем начальная температура превышает температуру размягчения полимерного компонента, а начальное давление является достаточно высоким для исключения вспенивания вспениваемой полимерной композиции; и (b) экструдирование вспениваемой полимерной композиции по направлению экструдирования в атмосферу при давлении, меньшем, чем начальное давление, и расширение вспениваемой полимерной композиции для получения пенополимера перед охлаждением до температуры, ниже, чем температура размягчения вспениваемой полимерной композиции; где перед охлаждением до температуры, меньшей, чем температура размягчения на стадии (b), вспениваемая полимерная композиция расширяется при степени расширения по толщине, равной, по меньшей мере, 30:1, при одновременном прохождении через и контактировании с противолежащими формующими пластинами, где данные пластины образуют, по меньшей мере, две последовательные ограничивающие секции по направлению экструдирования, при этом формующие пластины в каждой ограничивающей секции включают по существу параллельные ограничивающие стенки, которые сдерживают расширение вспениваемой полимерной композиции по направлению размера толщины, и где ограничивающая секция, наиболее близкая к экструдеру, имеет по существу параллельные стенки, определяющие зазор по направлению размера толщины, который является меньшим, чем зазор между параллельными стенками, определяющими вторую ограничивающую секцию.

Варианты осуществления настоящего изобретения могут дополнительно включать любую одну или любую комбинацию из более чем одной из следующих далее характеристик: наибольший зазор между формующими стенками любых из формующих пластин составляет, по меньшей мере, десять сантиметров; полимерная матрица содержит, по меньшей мере, один полимер, и более чем 80 массовых процентов полимеров в полимерной матрице выбирают из группы, состоящей из полистирольных гомополимеров и полистирольных сополимеров; более чем 80 массовых процентов полимера в полимерной матрице выбирают из группы, состоящей из полистирольного гомополимера и стирол-акрилонитрильного сополимера; более чем 50 массовых процентов полимера в полимерной матрице представляют собой полистирольный гомополимер; пенообразователь содержит диоксид углерода; пенообразователь содержит диоксид углерода и, по меньшей мере, одно соединение, выбранное из изобутана и воды; по меньшей мере, одна ограничивающая стенка одной ограничивающей секции является непрерывно соединяющейся с ограничивающей стенкой последующей ограничивающей секции; ограничивающие стенки одной ограничивающей секции отличаются от ограничивающих стенок последующей ограничивающей секции; и, по меньшей мере, одну ограничивающую стенку, по меньшей мере, одной из ограничивающих секций контролируют по температуре.

Способ настоящего изобретения является подходящим для использования при эффективном получении экструдированных пенополимеров низкой плотности и толстых экструдированных пенополимеров, которые характеризуются однородными плотностью и пределом прочности при сжатии.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Все диапазоны включают граничные точки, если только не будет указано другого.

«И/или» обозначает «и или в качестве альтернативы».

ASTM обозначает Американское общество по испытанию материалов. ISO обозначает Международную организацию по стандартизации. EN обозначает Европейский стандарт. Методы испытаний согласно ASTM, ISO и EN относятся к методу от года приведенного через дефис индекса номера метода или в случае отсутствия приведенного через дефис индекса к самому последнему методу, опубликованному до даты приоритета настоящего документа.

Экструдированные пенополимеры имеют, по меньшей мере, одну основную поверхность. Основной поверхностью экструдированного пенополимера является поверхность экструдированного пенополимера, которая имеет площадь плоской поверхности, равную наибольшей площади плоской поверхности для любой поверхности пеноматериала. Площадью плоской поверхности является площадь поверхности, проецируемая на плоскость для пренебрежения пиками-впадинами на поверхности. Пенополимер может иметь более чем одну основную поверхность. Экструдированные пенополимеры, имеющие круглое или овальное поперечные сечения, имеют только одну поверхность, которая по умолчанию является основной поверхностью пеноматериала.

Толщина, ширина и длина при обращении к экструдированному пенополимеру относятся к трем взаимно перпендикулярным размерам экструдированного пенополимера. Экструдированные пенополимеры покидают экструдер через вспенивающую головку (экструзионную головку) по направлению экструдирования. Длина представляет собой размер экструдированного пенополимера, который простирается параллельно направлению экструдирования пеноматериала. Толщина и ширина простираются перпендикулярно одна другой и взаимно перпендикулярно длине. Толщина является равной или меньшей размера ширина. Толщина пеноматериала простирается перпендикулярно основной поверхности пеноматериала.

Настоящее изобретение предлагает экструдированный пенополимер, который характеризуется профилями по существу однородной плотности и по существу однородного предела прочности при сжатии по направлению размера толщины для пеноматериала. Профиль плотности экструдированного пенополимера по направлению размера толщины для пеноматериала определяют в результате разрезания на слои, имеющие толщину 10-12 миллиметров, перпендикулярно размеру толщина (то есть при сохранении в каждом слое размеров длины и ширины). Плотность каждого слоя измеряют в соответствии с методом публикации ISO 845-95. Комбинация из значений плотности для всех слоев представляет собой профиль плотности по направлению размера толщины для пеноматериала. Отклонения по плотности между слоями представляют отклонения по направлению размера толщины. Экструдированный пенополимер будет характеризоваться профилем по существу однородной плотности по направлению его размера толщины в случае различия между плотностью любого одного слоя и средней плотностью для максимальной и минимальной плотностей, меньшего, чем 5%, предпочтительно равного 4% и менее, еще более предпочтительно 3% и менее, от средней плотности для максимальной и минимальной плотностей.

Предел прочности при сжатии по направлению размера толщины определяют способом, подобным тому, что и для профиля плотности, за исключением использования слоев, имеющих 15-миллиметровую толщину, и измерения предела прочности при сжатии по направлению размера толщины (размер в 15 миллиметров) в соответствии с методом публикации EN-826 для каждого слоя. Комбинация из значений предела прочности при сжатии для всех слоев представляет собой профиль предела прочности при сжатии по направлению размера толщины для пеноматериала. Отклонения по пределу прочности при сжатии между слоями представляют отклонения по направлению размера толщины. Экструдированный пенополимер будет характеризоваться профилем по существу однородного предела прочности при сжатии по направлению его размера толщины в случае различия между пределом прочности при сжатии любого одного слоя и средним пределом прочности при сжатии для слоев, характеризующихся наибольшим и наименьшим пределами прочности при сжатии, меньшего, чем 10%, предпочтительно равного 9% и менее, еще более предпочтительно меньшего, чем 9%, от среднего предела прочности при сжатии для максимального и минимального пределов прочности при сжатии.

Способом настоящего изобретения является способ экструдирования, который включает общие стадии способа экструдирования для получения экструдированного пенополимера: (1) получение вспениваемой полимерной композиции, содержащей полимерную матрицу и пенообразователь, при начальных давлении и температуре в экструдере; (2) вытеснение вспениваемой полимерной композиции в зону давления, меньшего, чем начальное давление; и (3) обеспечение расширения вспениваемой полимерной композиции для получения пенополимера. В настоящем способе вспениваемая полимерная композиция расширяется на стадии (3) до степени расширения по толщине, равной, по меньшей мере, 30 к одному. Расширение на стадии (3) происходит в пределах ограничений формующих пластин, которые имеют специфическую конфигурацию для удивительного получения пенополимера, характеризующегося низкой плотностью, а также по существу однородной плотностью и по существу однородным пределом прочности при сжатии по всей толщине пенополимера.

Полимерная матрица вспениваемой полимерной композиции содержит полимерный компонент, содержащий все полимеры во вспениваемой полимерной композиции. Полимерный компонент может содержать один тип полимера или комбинацию из более чем одного типа полимера. В желательном варианте алкенилароматические полимеры составляют 80 массовых процентов (% (масс.)) и более и могут составлять 90% (масс.) и более и даже 100% (масс.) от совокупной массы полимерного компонента. Предпочтительно алкенилароматические полимеры выбирают из группы, состоящей из стирольных гомополимеров и сополимеров. В особенности желательные стирольные сополимеры включают стирол-акрилонитрильный сополимер. В одном в особенности желательном варианте осуществления стирольный гомополимер составляет 50% (масс.) и более, предпочтительно 75% (масс.) и более, еще более предпочтительно 85% (масс.) и более, и может составлять вплоть до и с включением 100% (масс.) от совокупной массы полимеров в полимерной матрице (то есть от полимерного компонента).

Полимерная матрица может дополнительно содержать добавки. Такие как те, которые являются обычными для пенополимеров. Примеры подходящих добавок включают любую одну или любую комбинацию из более чем одной из следующих далее: добавки, ослабляющие инфракрасное излучение (например, технический углерод, графит, металлические пластинки, диоксид титана); глины, такие как природные глинистые абсорбенты (например, каолинит и монтмориллонит) и синтетические глины; зародышеобразователи (например, тальк и силикат магния); антипирены (например, бромированные антипирены, такие как гексабромциклододекан и бромированные полимеры, фосфорсодержащие антипирены, такие как трифенилфосфат, и пакеты антипиренов, которые могут включать синергисты, такие как, например, дикумил и поликумил); смазки (например, стеарат кальция, стеарат бария и жирнокислотные сложные эфиры); и акцепторы кислоты (например, оксид магния и тетрапирофосфат натрия).

Пенообразователь вспениваемой полимерной композиции может представлять собой любую известную в настоящее время или еще подлежащую открытию композицию пенообразователей, подходящую для использования при получении пенополимера способом экструдирования. Подходящие пенообразователи включают любой один или любую комбинацию из более чем одного из следующих далее: неорганические газы, такие как диоксид углерода, аргон, азот и воздух; органические пенообразователи, такие как вода, алифатические и циклические углеводороды, содержащие от одного до девяти атомов углерода, в том числе метан, этан, пропан, н-бутан, изобутан, н-пентан, изопентан, неопентан, циклобутан и циклопентан; полностью и частично галогенированные алканы и алкены, содержащие от одного до пяти атомов углерода, предпочтительно те, которые не содержат хлора (например, дифторметан (HFC-32), перфторметан, этилфторид (HFC-161), 1,1-дифторэтан (HFC-152a), 1,1,1-трифторэтан (HFC-143a), 1,1,2,2-тетрафторэтан (HFC-134), 1,1,1,2-тетрафторэтан (HFC-134a), пентафторэтан (HFC-125), перфторэтан, 2,2-дифторпропан (HFC-272fb), 1,1,1-трифторпропан (HFC-263fb), 1,1,1,2,3,3,3-гептафторпропан (HFC-227ea), 1,1,1,3,3-пентафторпропан (HFC-245fa) и 1,1,1,3,3-пентафторбутан (HFC-365mfc)); алифатические спирты, содержащие от одного до пяти атомов углерода, такие как метанол, этанол, н-пропанол и изопропанол; карбонилсодержащие соединения, такие как ацетон, 2-бутанон и ацетальдегид; соединения, включающие звено простого эфира, такие как диметиловый эфир, диэтиловый эфир, метилэтиловый эфир; карбоксилатные соединения, такие как метилформиат, метилацетат, этилацетат; карбоновая кислота и химические пенообразователи, такие как азодикарбонамид, азодиизобутиронитрил, бензолсульфогидразид, 4,4-оксибензолсульфонилсемикарбазид, п-толуолсульфонилсемикарбазид, азодикарбоксилат бария, N,N'-диметил-N,N'-динитрозотерефталамид, тригидразинотриазин и бикарбонат натрия.

Один в особенности желательный пенообразователь представляет собой диоксид углерода, который присутствует необязательно в комбинации с изобутаном, водой или как с изобутаном, так и с водой. Предпочтительно данный пенообразователь содержит диоксид углерода в количестве в диапазоне 40-100% (масс.), изобутан в диапазоне 0-60% (масс.) и воду в диапазоне 0-20% (масс.), при этом % (масс.) получают в расчете на совокупную массу пенообразователя.

Полимерный компонент вспениваемой полимерной композиции имеет температуру размягчения.

«Температурой размягчения» (Ts) для полимерного компонента, у которого все полимеры являются полукристаллическими, является температура плавления полимерного компонента. «Температурой плавления» (Tm) для полукристаллического полимера является температура на полпути по ходу фазового изменения с переходом от кристаллов к расплаву согласно определению по методу дифференциальной сканирующей калориметрии (ДСК) при нагревании закристаллизованного полимера при специфической скорости нагревания. Значение Tm для полукристаллического полимера определяют в соответствии с методикой ДСК в соответствии с публикацией ASTM method E794-06. Значение Tm определяют при использовании скорости нагревания 10 градусов Цельсия (°С) в минуту. В случае содержания в полимерном компоненте только смешиваемых полимеров и очевидного наблюдения на его кривой ДСК только одного фазового изменения с переходом от кристаллов к расплаву значение Tm для полимерного компонента будет представлять собой температуру на полпути при прохождении фазового изменения. В случае очевидного наблюдения на кривой ДСК нескольких фазовых изменений с переходом от кристаллов к расплаву вследствие присутствия несмешиваемых полимеров значение Tm для полимерного компонента будет значением Tm для полимера непрерывной фазы. В случае непрерывности более чем одного полимера и их несмешиваемости значение Tm для полимерного компонента будет наивысшим значением Tm для полимеров непрерывных фаз.

Температурой размягчения полимерного компонента, у которого полимеры являются аморфными, является температура стеклования полимерного компонента. «Температуру стеклования» (Tg) для полимерного компонента определяют методом ДСК в соответствии с методикой публикации ASTM method E1356-03. В случае содержания в полимерном компоненте только смешиваемых полимеров и очевидном наблюдении на кривой ДСК только одного фазового изменения в виде стеклования значение Tg для полимерного компонента будет представлять собой температуру на полпути при прохождении фазового изменения. В случае очевидного наблюдения на кривой ДСК нескольких фазовых изменений в виде стеклования вследствие присутствия несмешиваемых аморфных полимеров значение Tg для полимерного компонента будет значением Tg для полимера непрерывной фазы. В случае непрерывности более чем одного аморфного полимера и их несмешиваемости значение Tg для полимерного компонента будет наивысшим значением Tg для полимеров непрерывных фаз.

В случае содержания в полимерном компоненте комбинации из полукристаллических и аморфных полимеров температурой размягчения полимерного компонента будет температура размягчения полимерного компонента непрерывной фазы. В случае совместной непрерывности фаз полукристаллического и аморфного полимера температурой размягчения комбинации будет более высокая температура размягчения двух фаз.

Вспениваемую полимерную композицию получают в экструдере при начальной температуре, которая превышает температуру размягчения полимерного компонента, и при начальном давлении, которое исключает вспенивание. В широком смысле настоящее изобретение не зависит от того, как получать вспениваемую полимерную композицию в экструдере. Способы получения вспениваемой полимерной композиции в экструдере могут представлять собой часть предпочтительных вариантов осуществления настоящего изобретения.

Подходящим для использования при включении в настоящее изобретение является любой способ экструдирования, который может включать в себя использование специфических формующих пластин, описывающихся ниже. Поэтому существует множество возможных способов получения вспениваемой полимерной композиции в экструдере при начальной температуре и начальном давлении. Одна обычная методика заключается в подаче полимера в гранулированной форме в экструдер, который находится при температуре, достаточной для размягчения полимерных гранул в степени, достаточной для перемешивания полимера в экструдере. Добавки могут быть включены в полимерные гранулы, добавлены к гранулам в экструдер или добавлены в экструдер по ходу технологического потока после добавления полимерных гранул. Обычным является добавление пенообразователя к размягченному полимеру по ходу технологического потока после добавления полимера в результате нагнетания одного или более чем одного пенообразователя в размягченный полимер в экструдере при давлении, которое является равным или превышающим начальное давление. После этого экструдер может примешивать пенообразователь (пенообразователи) к размягченному полимеру. Пенообразователь также может находиться в полимерных гранулах и перед добавлением гранул в экструдер. Обычно таким пенообразователем является химический пенообразователь, находящийся в полимере.

Настоящий способ требует вытеснения вспениваемой полимерной композиции из экструдера в среду меньшего давления, чем начальное давление, а после этого обеспечения расширения вспениваемой полимерной композиции для получения пенополимера. Вспениваемая полимерная композиция остается при температуре, большей, чем температура размягчения полимерного компонента, вплоть до вытеснения в среду меньшего давления, но может быть и нагрета или охлаждена перед вытеснением. Обычным является вытеснение вспениваемой полимерной композиции из экструдера через вспенивающую головку в среду атмосферного давления. Вспенивающая головка имеет выходное отверстие, через которое проходит пеноматериал и которое определяет общую форму получающегося в результате пенополимера. Выходное отверстие вспенивающей головки может иметь любую форму, в том числе прямоугольную, квадратную, круглую, овальную или даже несимметричную форму. Вспенивающая головка может иметь несколько выходных отверстий, для того чтобы вспениваемая полимерная композиция покидала бы вспенивающую головку в виде нескольких прядей, нескольких листов или любой комбинации форм.

Вспениваемая композиция по мере своего расширения охлаждается. Охлаждение может происходить при наличии или в отсутствие позитивного применения охлаждающей среды (например, в случае охлажденного воздуха или введения в контакт с охлажденными пластинами) или отжигающей среды (например, в случае нагретого воздуха или введения в контакт с нагретыми пластинами). Зачастую охлаждение происходит и в отсутствие позитивного применения охлаждающей среды. По мере охлаждения вспениваемой полимерной композиции она стабилизируется по своим геометрическим размерам с образованием конечного пенополимера.

Удивительный результат настоящего изобретения обуславливается использованием формующих пластин для контроля поэтапного или постадийного расширения вспениваемой полимерной композиции по направлению размера толщины для получающегося в результате пенополимера. При расширении вспениваемой полимерной композиции расширение первоначально ограничивают по направлению размера толщины начальными формующими пластинами на противолежащих сторонах расширяющейся вспениваемой композиции по направлению размера толщины. Начальные формующие пластины могут быть независимыми одна от другой или представлять собой часть единой или модульной структуры (например, труба, туннель или «С»-образный канал), через которую проходит расширяющаяся вспениваемая полимерная композиция при ее движении по направлению ее экструдирования. Начальные формующие пластины имеют противолежащие формующие стенки (начальные формующие стенки), которые находятся в контакте со вспениваемой полимерной композицией и которые являются по существу параллельными одна другой и по существу параллельными направлению экструдирования. Термин «по существу параллельный» обозначает либо равенство расстояния между двумя формующими стенками в любых двух точках на формующей стенке, либо нахождение меньшего расстояния в пределах 5% от большего расстояния. Начальные формующие стенки разнесены одна от другой по направлению размера толщины на начальное расстояние, которое соответствует высоте выходного отверстия вспенивающей головки с кратностью превышения в диапазоне от 10 до 40. Предпочтительно начальные формующие стенки остаются по существу параллельными одна другой на определенном расстоянии по направлению экструдирования, более предпочтительно на расстоянии в диапазоне от 50 миллиметров до 300 миллиметров.

Расширяющаяся вспениваемая полимерная композиция проходит по направлению экструдирования через начальные формующие пластины, а после этого через второй комплект формующих пластин (вторичные формующие пластины), которые имеют противолежащие формующие стенки (вторичные формующие стенки), которые ограничивают расширение вспениваемой полимерной композиции по направлению размера толщины для получающегося в результате пенополимера. Вторичные формующие стенки разнесены одна от другой больше, чем начальные формующие стенки, и в желательном варианте, хотя это и необязательно, являются по существу параллельными одна другой и направлению экструдирования. Вторичные формующие стенки предпочтительно имеют длину по направлению экструдирования, которая находится в диапазоне от 100 до 1500 миллиметров. Зазор между вторичными формующими стенками может различаться в любых двух точках с коэффициентом, равным 2,5 и менее, предпочтительно с коэффициентом, равным 2 и менее, еще более предпочтительно с коэффициентом, равным 1,5 и менее. В случае по существу непараллельности вторичных формующих стенок зазор между ними, где пенополимер покидает пространство между ними, должен быть большим, чем зазор, где пенополимер поступает в зазор между ними. Зазор между вторичными формующими стенками, где пенополимер поступает в пространство между ними, в желательном варианте соответствует наибольшему зазору между начальными формующими стенками с кратностью превышения в диапазоне от 1,01 до 2. Как и в случае начальных формующих пластин вторичные формующие пластины могут быть независимыми одна от другой или представлять собой часть единой или модульной структуры, через которую проходит расширяющаяся вспениваемая полимерная композиция по ходу ее движения по направлению ее экструдирования.

Одна или обе из вторичных формующих пластин могут составлять непрерывную структуру с одной или обеими из начальных формующих пластин таким образом, чтобы ограничивающая стенка у двух последовательных ограничивающих секций была бы непрерывной. Например, один плоский лист материала может простираться по направлению размера экструдирования и исполнять функцию одной из начальных и одной из вторичных формующих пластин. В еще одном варианте осуществления один материал может простираться в виде плоского листа материала на определенное расстояние по направлению размера экструдирования, а после этого иметь изгиб с последующей еще одной плоской секцией, простирающейся на еще одно определенное расстояние, при этом две плоские секции исполняют функцию начальных и вторичных формующих пластин. Формующие пластины последовательных ограничивающих секций также могут быть независимыми и отличными одна от другой. В объем настоящего изобретения попадают любые комбинация или способ конструирования двух формующих пластин и стенок формующих пластин по направлению экструдирования расширяющейся вспениваемой полимерной композиции, поскольку способ конструирования пластин является менее важным, чем простое присутствие и последовательность формующих пластин.

Каждый зазор между стенками формующих пластин исполняет функцию ограничивающей секции, которая сдерживает расширение вспениваемой полимерной композиции по направлению размера толщины для пенополимера. В целях эффективного ограничения расширения формующие стенки являются достаточно широкими для вхождения в контакт со всей шириной расширяющейся вспениваемой композиции.

Способ настоящего изобретения включает формующие пластины, которые образуют, по меньшей мере, две ограничивающие секции, тем не менее, способ может включать формующие пластины, которые образуют более чем две ограничивающие секции. Увеличение количества ограничивающих секций приводит к получению лучшего контроля расширения вспениваемой полимерной композиции и является желательным при увеличении желательной толщины пеноматериала, в частности при превышении желательной толщиной пеноматериала 140 миллиметров. Например, способ может включать формующие пластины, имеющие по существу параллельные формующие стенки, которые находятся между начальными и вторичными формующими пластинами. Формующие пластины, находящиеся между начальными формующими пластинами и вторичными формующими пластинами, имеют по существу параллельные формующие стенки, которые разнесены одна от другой на расстояние в пределах 5% от наибольшего расстояния между начальными формующими пластинами. Дополнительные формующие пластины могут находиться и после вторичных формующих пластин и могут быть по существу параллельными или непараллельными.

Начальные формующие пластины могут быть непосредственно примыкающими к вспенивающей головке и даже соприкасающимися с ней или могут быть удалены от вспенивающей головки. Начальные формующие пластины располагаются в пределах расстояния от вспенивающей головки, которое равно 25% от длины начальных формующих пластин. В случае удаления от вспенивающей головки в желательном варианте зазор между начальными формующими стенками будет большим, чем высота выходного отверстия вспенивающей головки. Если начальные формующие пластины не будут непосредственно примыкающими к вспенивающей головке и находящимися с нею в контакте, то в желательном варианте между вспенивающей головкой и начальными формующими пластинами будет располагаться короткая (от 10 до 100 миллиметров в длину) секция с непараллельными пластинами. Данные короткие секции с непараллельными пластинами являются соединительными секциями и вследствие своей короткой длины не считаются формующими пластинами. Данные соединительные секции в желательном варианте направляют расширяющуюся вспениваемую композицию от выходного отверстия головки в пространство между начальными ограничивающими стенками.

Любой комплект формующих пластин может быть непосредственно примыкающим к предшествующему, а также последующему комплекту формующих пластин, находящимся с ним в контакте или удаленным от него. В случае удаления одного комплекта формующих пластин от предшествующего или последующего комплекта формующих пластин будет иметь место соединительная секция с непараллельными пластинами, которая направляет вспениваемую полимерную композицию между двумя комплектами формующих пластин.

Формующие пластины, формующие стенки и соединительные секции могут быть изготовлены из любого материала, но предпочтительно их изготавливают из материала и при придании текстуры, которые обеспечивают получение минимальной силы трения с расширяющейся вспениваемой полимерной композицией. Ограничивающие стенки могут содержать фторполимерную смолу, сталь, алюминий и могут включать текстуру, такую как в случае прорезания канавок, микронагартовки, травления и рифления. Ограничение также может быть создано и при использовании ограничивающих стенок, сдерживающих расширение вспениваемой полимерной композиции по другим размерам помимо желательного размера толщины и в любой желательной степени.

Одну или более чем одну ограничивающую стенку в одной или более, чем одной ограничивающей секции можно контролировать термически. Термически контролируемая ограничивающая стенка может быть нагрета, охлаждена или может иметь опцию по нагреванию или охлаждению до желательной температуры.

Формующие пластины и ограничивающие стенки в желательном варианте разрабатывают обеспечивающими расширение вспениваемой полимерной композиции для получения пенополимера, характеризующегося степенью расширения по толщине, равной 30 к одному (30:1) и более, предпочтительно 35:1 и более, еще более предпочтительно 40:1 и более. Степень расширения по толщине для пенополимера представляет собой толщину пенополимера, разделенную на размер выходного отверстия вспенивающей головки, соответствующий размеру толщина для пеноматериала (то есть на толщину вспениваемой полимерной композиции в момент покидания ею вспенивающей головки). Такая большая степень расширения по толщине соотносится со значительным уменьшением плотности и пенополимером низкой плотности.

Пеноматериалы, полученные при степени расширения по толщине, равной 30:1 и более, без использования способа настоящего изобретения, имеют тенденцию к демонстрации профилей неоднородной плотности по направлению их толщины, а также профилей неоднородного предела прочности при сжатии по направлению их толщины. Как можно сказать без связывания себя теорией, пеноматериалы, характеризующиеся степенью расширения по толщине, равной 30:1 и более, в настоящее время имеют тенденцию к демонстрации профилей неоднородной плотности и профилей неоднородного предела прочности при сжатии по направлению размера толщины вследствие развития градиента падения давления по направлению размера толщины для пеноматериала. Градиент падения давления вызывает неоднородное расширение пузырей, образующих ячейки пеноматериала. В результате части пеноматериала, соседствующие с поверхностью, расширяются больше, чем части пеноматериала, соседствующие с центром или сердцевиной пеноматериала.

Как это ни удивительно, но способ настоящего изобретения способен обеспечивать получение экструдированного пенополимера, который характеризуется профилями по существу однородных плотности и предела прочности при сжатии по направлению размера толщины при одновременной демонстрации степени расширения по толщине, равной 30:1 и более. Подобным образом настоящее изобретение может обеспечить получение экструдированного пенополимера, имеющего толщину, равную 10 сантиметрам и более, который характеризуется профилями по существу однородных плотности и предела прочности при сжатии по направлению размера толщины. Толщина экструдированного пенополимера, полученного по настоящему способу, является, по меньшей мере, настолько же большой, как и наибольший зазор формующих стенок, напоминая о том, что формующие стенки находятся в контакте со вспениваемой полимерной композицией и ограничивают расширение по направлению размера толщины при превращении вспениваемой полимерной композиции в экструдированный пенополимер. В одном желательном варианте осуществления для получения пенополимера, имеющего толщину, равную 10 сантиметрам и более, наибольший зазор между формующими стенками составляет 10 сантиметров и более.

Еще более удивительной является способность способа настоящего изобретения обеспечивать получение экструдированного пенополимера, характеризующегося степенью расширения по толщине, равной 30:1 и более, толщиной, равной 10 сантиметрам и более, или как степенью расширения по толщине, равной 30:1 и более, так и толщиной, равной 10 сантиметрам и более, при одновременной также демонстрации и высококачественного внешнего вида поверхности. Пеноматериал будет характеризоваться «высококачественным внешним видом поверхности» в случае отсутствия дефектов на 98% и более, предпочтительно 99% и более, наиболее предпочтительно 100%, от любого участка в 200 квадратных сантиметров любой основной поверхности пеноматериала, который центрируется на основной поверхности пеноматериала и простирается на 80% ширины пеноматериала. «Дефект» представляет собой разрыв непрерывности на полимере, который обеспечивает доступ к более чем одной ячейке пеноматериала через основную поверхность пенополимера. Дефекты наблюдаются непосредственно при покидании вспенивающей головки и отличаются от намеренно проточенных желобков или слоев, введенных в пеноматериал после вспенивающей головки.

Способ настоящего изобретения может приводить к получению экструдированного пенополимера, х