Система ракетного двигателя для осуществления высокоскоростного реагирования

Иллюстрации

Показать все

Изобретение относится к ракетным двигателям. Турбонасос, в котором импеллер насоса соединен с одним концом вращающегося вала, а турбина соединена с другим концом вращающегося вала. Турбонасос выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью. Рассмотрен ракетный двигатель, использующий турбонасос, который выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью. Изобретение обеспечивает уменьшение момента инерции турбонасоса и улучшает быстроту реагирования ракетного двигателя турбонасосного типа. 2 н. и 3 з.п. ф-лы, 10 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к турбонасосу и системе ракетного двигателя для выполнения высокоскоростного реагирования.

Заявка притязает на приоритет патентной заявки Японии №2009-207480, поданной 8 сентября 2009, содержание которой включено здесь путем ссылки.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В последние годы, в качестве жидкостного двигателя, который устанавливается в аэрокосмическом аппарате, например ракете, стало массовым использование ракетного двигателя турбонасосного типа, в котором ракетное топливо (например, жидкий водород как топливо и жидкий кислород как окислитель) нагнетается в камеру сгорания турбонасосом для получения большой движущей силы. Например, патентный документ 1 описывает двигатель с циклом фазового перехода как одну форму ракетного двигателя турбонасосного типа, в котором жидкий водород, нагнетаемый из турбонасоса топлива, используется для регенеративного охлаждения камеры сгорания и переводится в газообразное состояние, при этом газообразный водород используется для приведения в действие турбонасоса топлива и турбонасоса окислителя и далее вводится в камеру сгорания, а жидкий кислород нагнетается непосредственно в камеру сгорания из турбонасоса окислителя.

Этот ракетный двигатель турбонасосного типа привлекает внимание в качестве ракетного двигателя для летательного аппарата вертикального взлета и посадки. Летательный аппарат вертикального взлета и посадки выполняется при предположении, что летательный аппарат летит, используя профиль, показанный на ФИГ.8. Профиль, показанный на ФИГ.8А имеет Ph1: вертикальный подъем, Ph2: маневр по тангажу, Ph3: МЕСО (останов главного двигателя), Ph4: широкий диапазон (зависание), Ph5: полет возвращение/подъем, Ph6: направление сближения, Ph7: повторный запуск двигателя, Ph8: направление посадки и Ph9: вертикальная посадка. В Ph4 в дополнение к широкому диапазону (зависанию) может быть выполнен, например, баллистический полет или орбитальный полет. По этой причине, в отличие от типичной ракеты одноразового использования в ракетном двигателе, который установлен в летательном аппарате вертикального взлета и посадки, необходимы высокоскоростная быстрота реагирования (частота реагирования, равная или большая, чем 1 Гц) и изменяемость тяги в широком диапазоне во время работы ракетного двигателя, исходя из управляемости при поперечном ветре во время посадки или регулирования тяги, соответствующей весу объекта, который во время посадки становится вдвое меньше, чем при запуске. Прежде всего, высокоскоростная быстрота реагирования и изменяемость тяги в широком диапазоне требуются в диапазоне Ph1-Ph2 и Ph7-Ph9 на ФИГ.8А, в частности в диапазоне Ph7-Ph9 во время посадки.

Традиционный ракетный двигатель выполнен при предположении работы в космосе без возвращения. В общем, для того, чтобы минимизировать гравитационные потери, ракетный двигатель работает с максимальной тягой во время запуска, и затем тяга просто понемногу квазистатично сокращается от ограничений ускорения тела, аэродинамической нагрузки и т.п. То есть, традиционный ракетный двигатель выполнен при предположении, что эти характеристики оцениваются в по существу нормальном состоянии, и, в общем, быстрота реагирования тяги не учитывается. Это также применимо к ракетному двигателю турбонасосного типа.

ФИГ.8В показывает результат испытания процесса горения традиционного ракетного двигателя турбонасосного типа. На ФИГ.8В горизонтальная ось представляет время (сек), а вертикальная ось представляет давление сгорания Рс (кг/см2), число оборотов Nf (об/мин) турбонасоса топлива и число оборотов No (об/мин) турбонасоса окислителя. Как показано на ФИГ.8В, понятно, что тратится время около пяти секунд, пока давление Рс сгорания, соответствующее тяге двигателя, снижается от около 30 (кг/см2) до около 20 (кг/см2), то есть пока тяга изменяется до 66%. Когда преобразуемая из времени реагирования пять секунд частота реагирования составляет 0,2 (Гц), и невозможно выполнить высокоскоростную быстроту реагирования, которая требуется в ракетном двигателе для летательного аппарата вертикального взлета и посадки, делая трудным точное маневрирование во время посадки. Из ФИГ.8В понятно, что число оборотов Nf и No соответственных турбонасосов также меняется с изменением тяги (изменением давления сгорания Рс).

Список цитированных документов

Патентный документ

[Патентный документ 1] Нерассмотренная заявка на патент Японии, первая публикация № Н11-229963.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая задача

Как описано выше, в традиционном ракетном двигателе турбонасосного типа невозможно выполнить высокоскоростную быстроту реагирования, которая требуется в ракетном двигателе для летательного аппарата вертикального взлета и посадки, и трудно содействовать взлету и посадке. Как показано на ФИГ.8В, из факта, что время, затрачиваемое пока число оборотов, соответствующее текущей тяге, изменится до нового числа оборотов, выступает в качестве запаздывания реагирования тяги, следует, что момент инерции вращающегося вала турбонасоса должен рассматриваться как фактор ухудшения быстроты реагирования традиционного ракетного двигателя турбонасосного типа.

Соответственно, можно легко догадаться, что предпочтительно уменьшать момент инерции турбонасоса, чтобы улучшить быстроту реагирования ракетного двигателя турбонасосного типа. Для того, чтобы уменьшить момент инерции турбонасоса, необходимо уменьшить диаметр ротора или использовать легкий материал компонентов. Несмотря на то, что подробный способ вычисления не будет описываться, если предположить, что большая часть момента инерции турбонасоса зависит от участка диска, служащего в качестве импеллера насоса или диска турбины, диаметр диска устанавливается равным приблизительно половине значения в реальных условиях при условии, что плотность материала является постоянной, тем самым уменьшая момент инерции до 1/10 (то есть достигается улучшение быстроты реагирования приблизительно в 10 раз).

Однако, так как фактор, который определяет производительность турбонасоса, представляет собой периферийную скорость (окружную скорость) диска, для того, чтобы поддерживать ту же производительность, необходимо увеличить число оборотов на величину, соответствующую уменьшению диаметра диска. В частности, так как турбонасос, который используется в ракетном двигателе, установленном в аэрокосмическом аппарате, например летательном аппарате вертикального взлета и посадки, работает в режиме, близком к верхнему пределу механического числа оборотов, которые являются допустимыми для подшипника или уплотнения, непросто функционировать турбонасосу с числом оборотов, в два или более раз большим, чем в реальных условиях. Так как увеличение числа оборотов заставляет увеличиваться центробежную силу помимо эффекта уменьшения момента инерции, необходимо менять материал участка диска или увеличивать толщину, чтобы поддерживать прочность, в результате приводя к увеличению веса. По этой причине трудно уменьшать вычисляемый момент инерции.

Изобретение было завершено с учетом вышеописанных ситуаций, при этом задачей изобретения является предоставление турбонасоса и ракетного двигателя, способных к выполнению высокоскоростного реагирования независимо от момента инерции вращающегося вала.

Решение задачи

Для того, чтобы решить вышеуказанные проблемы, изобретение предоставляет турбонасос, в котором импеллер насоса соединен с одним концом вращающегося вала, а турбина соединена с другим концом вращающегося вала. Турбонасос выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью.

В турбонасосе, условное выражение выражается выражением (4), имеющим КПД ηt турбины, КПД ηр насоса, коэффициент Ψ напора, скорость Q потока насоса, число оборотов Nc, падение ΔН энтальпии турбины, плотность ρ топлива на впуске турбины.

Ракетный двигатель согласно изобретению включает в себя турбонасос топлива и турбонасос окислителя. Вся система, включающая в себя турбонасос топлива, выполнена так, что в, по меньшей мере, турбонасосе топлива эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью.

В ракетном двигателе условное выражение выражается выражением (4), имеющим КПД ηt турбины, КПД ηр насоса, коэффициент Ψ напора, скорость Q потока насоса, число оборотов Nc, падение ΔН энтальпии турбины, плотность ρ топлива на впуске турбины.

В ракетном двигателе топливо, подаваемое из турбонасоса топлива, течет в теплообменник регенеративного охлаждения, предоставленный в камере сгорания, через клапан управления тягой с топливной стороны, предоставленный на стороне выпуска турбонасоса топлива, переводится в газообразное состояние для получения газового топлива, используется для приведения в действие турбонасоса топлива и турбонасоса окислителя, и подается в камеру сгоранию. Окислитель, подаваемый из турбонасоса окислителя, подается в камеру сгорания через клапан управления тягой со стороны окислителя, предоставленный на стороне выпуска турбонасоса окислителя.

Преимущественные технические результаты изобретения

Согласно изобретению, так как турбонасос может использоваться в рабочей области, в которой число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, возможно предоставить турбонасос и ракетный двигатель, способные выполнять высокоскоростное реагирование независимо от момента инерции вращающегося вала.

Краткое описание чертежей

ФИГ.1 представляет собой схематическую диаграмму конфигурации ракетного двигателя 1 согласно варианту воплощения изобретения.

ФИГ.2 показывает модель ракетного двигателя, которая используется для испытания решения высокоскоростного реагирования.

ФИГ.3 представляет собой диаграмму, показывающую кривую η1t КПД турбины (кривую КПД турбины, требуемую для высокоскоростного реагирования), полученную на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой η2t КПД турбины (реализуемой кривой КПД турбины) реальной машины.

ФИГ.4А показывает случай, в котором кривая η1t КПД турбины, требуемая для высокоскоростного реагирования, отличается от случая, показанного на ФИГ.3.

ФИГ.4В показывает случай, в котором кривая η1t КПД турбины, требуемая для высокоскоростного реагирования, отличается от случая, показанного на ФИГ.3.

ФИГ.5 показывает результат измерения изменений давления Рс сгорания (тяги) и числа оборотов Nf турбонасоса 11 топлива в течение времени, когда сигнал тяги постепенно увеличивается до 0,5-1 (Гц), чтобы оценить быстроту реагирования.

ФИГ.6 представляет собой диаграмму Боде, показывающую быстроту реагирования.

ФИГ.7 показывает результат измерения рабочей области турбины.

ФИГ.8А показывает профиль полета летательного аппарата вертикального взлета и посадки.

ФИГ.8В показывает результат испытания процесса горения традиционного ракетного двигателя турбонасосного типа.

ОПИСАНИЕ ВАРИАНТОВ ВОПЛОЩЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Далее, вариант воплощения изобретения будет описан со ссылкой на чертежи. Следующее далее описание будет предоставлено как в отношении двигателя с циклом фазового перехода, в котором жидкий водород (LH2) используется в качестве топлива, а жидкий кислород (LOX) используется в качестве окислителя, так и ракетного двигателя, включающего в себя турбонасос согласно изобретению.

ФИГ.1 представляет собой схематическую диаграмму конфигурации ракетного двигателя 1 этого варианта воплощения. Как показано на ФИГ.1, ракетный двигатель 1 этого варианта воплощения схематически включает в себя турбонасос 11 топлива, турбонасос 12 окислителя, клапан 13 управления тягой с топливной стороны, главный клапан 14 с топливной стороны, перепускное отверстие 15, клапан 16 управления тягой со стороны окислителя, главный клапан 17 со стороны окислителя и камеру сгорания 18.

Турбонасос 11 топлива представляет собой центробежный турбонасос, в котором импеллер 11b насоса соединен с одним концом вращающегося вала 11а, поддерживаемого с возможностью вращения в корпусе объекта, а турбина 11с соединена с другим концом вращающегося вала 11а. Турбонасос 11 топлива нагнетает жидкий водород, подаваемый из топливного резервуара (не показан) в камеру сгорания 18.

Турбонасос 12 окислителя представляет собой центробежный турбонасос, в котором импеллер 12b насоса соединен с одним концом вращающегося вала 12а, поддерживаемого с возможностью вращения в корпусе объекта, а турбина 12с соединена с другим концом вращающегося вала 12а. Турбонасос 12 окислителя нагнетает жидкий кислород (LOX), подаваемый из резервуара окислителя (не показан) в камеру сгорания 18.

Жидкий водород, поданный в турбонасос 11 топлива испытывает увеличение давления посредством работы вращения импеллера 11b насоса, который приводится в действие турбиной 11с, и далее подается в клапан 13 управления тягой с топливной стороны, предоставленный на стороне выпуска турбонасоса 11 топлива. Клапан 13 управления тягой с топливной стороны представляет собой клапан с электронным управлением, отверстие в котором регулируется в соответствии с управляющим сигналом, введенным от управляющего устройства (не показано). То есть жидкий водород, подаваемый из турбонасоса 11 топлива, регулируется по скорости потока клапаном 13 управления тягой с топливной стороны и далее подается в главный клапан 14 с топливной стороны, предоставленный на стороне выпуска.

Хотя главный клапан 14 с топливной стороны представляет собой клапан с электронным управлением, который является таким же, как клапан 13 управления тягой с топливной стороны, главный клапан 14 с топливной стороны регулируется до полностью открытого состояния во время работы двигателя и до полностью закрытого состояния во время останова двигателя. То есть во время работы двигателя жидкий водород, который регулируется по скорости потока клапаном 13 управления тягой с топливной стороны, проходит через главный клапан 14 с топливной стороны при поддержании скорости потока, течет в теплообменник 18а регенеративного охлаждения, предоставленного в стенке сопла камеры 18 сгорания и стенке камеры сгорания, и используется для регенеративного охлаждения камеры сгорания 18.

Как описано выше, жидкий водород, который используется для регенеративного охлаждения камеры сгорания 18, нагревается и переводится в газообразное состояние при прохождении через теплообменник 18а регенеративного охлаждения для получения газообразного водорода (GH2) высокой температуры и высокого давления. Газообразный водород (GH2) высокой температуры и высокого давления течет к впуску турбины турбонасоса 11 топлива из теплообменника 18а регенеративного охлаждения и используется для приведения во вращение турбины 11с. Газообразный водород, вытекающий из выпуска турбины турбонасоса 11 топлива, течет к впуску турбины турбонасоса 12 окислителя, используется для приведения во вращение турбины 12с и далее подается от выпуска турбины в камеру сгорания 18.

Часть газового водорода, текущего из выпуска турбины турбонасоса 11 топлива, подается в камеру сгорания 18 через перепускное отверстие 15. Перепускное отверстие 15 используется для регулирования скорости потока газового водорода, текущего в камеру сгорания 18.

Жидкий кислород, подаваемый в турбонасос 12 окислителя, испытывает увеличение давления выполнением вращения импеллера 12b насоса, который приводится в действие турбиной 12с, и далее подается в клапан 16 управления тягой со стороны окислителя, предоставленный на стороне выпуска турбонасоса 12 окислителя. Клапан 16 управления тягой со стороны окислителя представляет собой клапан с электронным управлением, который является таким же, как клапан 13 управления тягой с топливной стороны. То есть жидкий кислород, подаваемый из турбонасоса 12 окислителя, регулируется по скорости потока клапаном 16 управления тягой со стороны окислителя и далее подается в главный клапан 17 со стороны окислителя, предоставленный на стороне выпуска.

Подобно главному клапану 14 с топливной стороны, главный клапан 17 со стороны окислителя представляет собой клапан с электронным управлением, который регулируется до полностью открытого состояния во время работы двигателя и до полностью закрытого состояния во время останова двигателя. То есть во время работы двигателя жидкий кислород, который регулируется по скорости потока клапаном 16 управления тягой со стороны окислителя, проходит через главный клапан 17 со стороны окислителя при поддержании скорости потока и непосредственно подается в камеру сгорания 18.

Камера 18 сгорания смешивает и сжигает газообразный водород и жидкий кислород, подаваемые вышеописанным образом, в камеру сгорания и создает тягу посредством выталкивания газа высокой температуры и высокого давления, образованного горением из сопла, предоставленного в нижней части.

Ракетный двигатель 1 согласно этому варианту воплощения, выполненный как указано выше, управляет тягой посредством регулирования отверстий клапана 13 управления тягой с топливной стороны и клапана 16 управления тягой со стороны окислителя с возможностью регулирования скорости потока жидкого водорода (газообразного водорода) и жидкого кислорода, которые подаются в камеру сгорания 18.

В вышеописанном ракетном двигателе 1 для того, чтобы выполнять высокоскоростное реагирование управления тягой вся система, включающая в себя турбонасос 11 топлива, выполнена так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения (выражения (4)), в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью турбины турбонасоса 11 топлива (например, областью впуска турбины, определяющей скорость потока, проходящего через турбину 11с, сопротивление трубопровода жидкого водорода или т.п.).

Далее, описание будет предоставлено в отношении причины, по которой может быть выполнено высокоскоростное реагирование управления тягой, когда эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью турбины турбонасоса 11 топлива.

Эквивалентная область означает, что разница между идеальным КПД турбины (КПД турбины, требуемым для высокоскоростного реагирования) и КПД реально производимой турбины (реализуемый КПД турбины) равна или меньше 5% и, более предпочтительно, равна или меньше 3%. Причина, по которой разница равна или меньше 5% обусловлена тем, что если эта разница больше 5%, изменения числа оборотов турбонасоса становятся заметными, при этом заданное условие, согласно которому число оборотов является постоянным, не удовлетворяется.

Как описано выше, несмотря на то, что фактором ухудшения быстроты реагирования ракетного двигателя турбонасосного типа является момент инерции вращающегося вала турбонасоса, трудно осуществить высокоскоростное реагирование таким изменением конструкции, что момент инерции уменьшается. Соответственно, авторы изобретения с другой точки зрения предположили, что если число оборотов является постоянным независимо от тяги, другими словами, независимо от скорости потока насоса, влияние момента инерции может быть исключено, и привели следующие соображения.

[Условие, что число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса]

Точка N баланса числа оборотов турбонасоса становится точкой, в которой удовлетворяется выражение (1), в котором крутящий момент Tt, созданный турбиной, и крутящий момент Тр, потребляемый насосом, одинаковы. В выражении (1) Ixx - момент инерции.

Tt турбины, созданный турбиной, выражается выражением (2), а крутящий момент Тр, потребляемый насосом, выражается выражением (3). В выражениях (2) и (3) Ψ представляет коэффициент напора, ηр представляет КПД насоса, ηt представляет КПД турбины, Q представляет скорость потока насоса, mt (черная точка над m) представляет скорость потока турбины, ΔН представляет падение энтальпии турбины, U представляет окружную скорость турбины, С0 представляет скорость на впуске турбины, Q/N представляет коэффициент скорости потока насоса и U/C0 представляет отношение скоростей турбины.

Скорость потока насоса Q и скорость потока турбины mt (черная точка над m) постоянно одинаковы. Окружная скорость U турбины может быть выражена в связи с числом оборотов N. Отсюда, условное выражение, в котором число оборотов N поддерживается постоянным независимо от скорости Q потока насоса (другими словами, независимо от созданной тяги) выражается выражением (4). В выражении (4) ρ представляет плотность топлива на впуске турбины.

Когда даны диапазон (например, 0,3Q-1,1Q) скорости Q потока насоса, которая будет изменена вследствие запроса тяги двигателя, и расчетное число оборотов Nc, которое не меняется, должно быть достаточным, чтобы функция КПД турбины удовлетворяла выражению (4) в пределах диапазона соответствующих Q/Nc. Выражение (4) означает, что даже когда скорость Q потока насоса изменяется, если характеристики турбонасоса (КПД ηt турбины, КПД ηр насоса, коэффициент Ψ напора) и условие работы (падение ΔH энтальпии турбины) могут быть определены так, что равенство всегда устанавливается, причем число оборотов Nc вращающегося вала всегда поддерживается постоянным. В результате, быстрота реагирования управления тягой не зависит от момента инерции Ixx турбонасоса. Это значит, что быстрота реагирования допускает осуществление высокоскоростного реагирования.

[Предположение характеристической функции, относящейся к турбонасосу]

Условие для стабилизации отношения между характеристическими значениями турбонасоса в широком диапазоне, требуемом для дросселирования на основе вышеописанных соображений, изучается следующим далее образом. По отношению к изучаемому потоку определяется система функций общего турбонасоса, при этом система функции упрощается.

(1) коэффициент Ψ напора

Увеличение давления ΔР центробежного турбонасоса получается исключением потерь давления за счет структурного внутреннего сопротивления R текучей среды так называемому входному напору Hi, выраженному квадратом числа оборотов, и в общем выраженному выражением (5), принимающим во внимание сдвиг от оптимального втекания Qs (без толчков) на участке всасывания. В выражении (5) AN2 представляет входной напор (=Hi), RQ2 представляет внутренние потери давления и K(Q-Qs)2 представляет потери при столкновении.

Из выражения (5), коэффициент Ψ напора определяется, как в выражении (6). Однако, существует необходимость учесть, что оптимальное втекание Qs и число оборотов N имеют отношение Qs=BN с некоторым коэффициентом В. Выражение (6) называется кривой полной характеристики насоса. Когда принимается во внимание плоскость Ψ и Q/N, второй член правой стороны имеет эффект незначительного смещения вверх выпуклой квадратичной кривой с вершиной в Q/N=0

(2) КПД ηр насоса

КПД ηр насоса представляет собой отношение мощности Wo, используемой для увеличения давления, как заданной конечной цели, к мощности Wi, входящей извне через вращающийся вал, и определяется выражением (7). Мощность Wo для увеличения давления выражается выражением (8), а входная мощность Wi выражается выражением (9), при принятии в рассмотрение различных потерь Wl.

Из выражений (7)-(9), КПД ηр насоса выражается выражением (10).

Несмотря на то, что не гарантируется, что потери Wl представляют собой однородную кубическую функцию, относящуюся к N и Q, основные потери перечислены далее. Описание направлено на форму функции, поэтому детали соответствующих коэффициентов не будут описаны. Выражение (11) представляет механические потери (диск), выражение (12) представляет механические потери (трение), выражение (13) представляет потери текучей среды, и выражение (14) представляет потери рециркуляции.

Так как все эти потери имеют однородную кубическую форму, потери Wl могут быть описаны как функция только Q/N. Несмотря на то, что механизм потерь имеет участок, который не выражается кубической формой, допускается, что берется сравнительно удовлетворительное приближение. На данном этапе, если принято считать, что потери Wl представляют собой Ф=Q/N, которая является кубической формой Q/N, КПД ηр насоса выражается выражением (15). В отношении знаменателя выражения (15), если коэффициенты переназначают, общая форма КПД ηр насоса выражается выражением (16).

(3) КПД ηt турбины

КПД ηt турбины представляет собой скорость восстановления энтальпии, которая адиабатически выделяется от втекающего газа. Мощность Wi для адиабатического выделения между впуском и выпуском турбины выражается выражением (17), использующим скорость С0 втекания газа. Мощность Wt, выделяемая турбиной, выражена выражением (18), использующим относительные скорости W1 и W2 по отношению к ротору. В выражении (18) β1 и β2 являются относительными углами втекания и вытекания по отношению к ротору.

Из этого, КПД ηt турбины выражается выражением (19), и если относительные скорости W1 и W2 по отношению к ротору перезаписываются, используя коэффициент ϕr внутренней скорости ротора и угол α втекания сопла, получается выражение (20). Это выпуклая вверх квадратичная форма функции, которая проходит через начало координат.

Если U/C0 выражения (20) преобразовано с использованием радиуса Rt турбины, числа оборотов N, скорости Q потока насоса и постоянной γ, получается выражение (21). Выражение (21) представляет идеальную функцию КПД турбины (кривую КПД турбины реальной машины), основанную на характеристиках реального насоса.

[Изучение решения, позволяющего высокоскоростное реагирование]

На основе результата рассмотрения так или иначе существует решение, позволяющее высокоскоростное реагирование, изучается с использованием модели ракетного двигателя, показанной на ФИГ.2. В модели ракетного двигателя предполагается, что турбонасос FTP установлен только на топливной стороне, а топливо подается из турбонасоса FTP в камеру CC сгорания после прохождения через теплообменник регенеративного охлаждения камеры СС сгорания и турбину турбонасоса FTP через клапан TCVF управления тягой с топливной стороны. Также предполагается, что окислитель форсировано подается в камеру СС сгорания так, что отношение компонентов в соотношении MR смеси с топливом является постоянным. Управление тягой выполняется изменением сопротивления текучей среды клапана TCVF управления тягой с топливной стороны, соединенного последовательно на стороне выпуска насоса для регулирования скорости потока топлива.

Далее, если сопротивление текучей среды на стороне впуска теплообменника регенеративного охлаждения есть Rtcva, сопротивление текучей среды на стороне выпуска есть Ro, отношение между давлением от топливного резервуара (не показан) (давление резервуара Ptnk) до камеры СС сгорания (давления сгорания Рс) через впуск турбины (давление Pt на впуске турбины) и объемной скоростью Q потока при прохождении через насос выражено выражениями (22) и (23), использующими выражение (6).

Предположено, что число оборотов Nc турбонасоса FTP имеет постоянное значение независимо от скорости Q потока. Если выражения (22) и (23) объединим и особое внимание обратим на Рс=αQ, давление Pt на впуске турбины выражается выражением (24).

Однако, большая часть потери давления в реальном турбонасосе FTP возникает из-за увеличения габаритов турбины и на таком участке, на котором турбонасос FTP обычно работает в запертом состоянии или подобной обстановке. Из этого, выражение (24) приблизительно выражается выражением (25). Условие, при котором давление Pt на впуске турбины по существу изменяется пропорционально изменению давления Рс сгорания, является адекватной аппроксимацией в системе, в которой сопротивление выпускного трубопровода турбины является малым.

Несмотря на то, что подробный способ вычисления не будет описан, отношение скоростей турбины U/C0 выражается выражением (26) с помощью обратной величины коэффициента Ф(=Q/N) скорости потока. В выражении (26) β3 - константа, Rt - радиус турбины, а Tt - температура на впуске турбины.

Если выражение (25) подставить в выражение (26), получим выражение (27).

Несмотря на то, что температура Tt на впуске турбины рассматривается несущей потери в турбонасосе FTP или тепло снаружи, принято считать, что температура увеличивается только в теплообменнике регенеративного охлаждения. В общем, несмотря на то, что увеличение ∆Т температуры охладителя при прохождении через теплообменник регенеративного охлаждения выражена как функция давления Рс сгорания, отношение MR смеси и скорости Q охлаждающего потока, так как предполагается, что смесь MR является постоянной, и давление Рс сгорания пропорционально скорости Q потока, увеличение температуры ∆Т выражено функцией только скорости потока Q в выражении (28).

Если собственная температура текучей среды добавляется на впуске теплообменника регенеративного охлаждения, температура Tt на впуске турбины может быть описана как функция Tt(Q) только скорости потока Q. Из вышеуказанного следует, что отношение U/C0 скоростей турбины, выраженное выражением (27), выражается выражением (29) как функция только скорости потока Q при условии, что число оборотов Nc неизменно.

Далее, если выражения (6) и (16) подставить в выражение (4), которое является условным выражением, в котором число оборотов N(Nc) поддерживается постоянным независимо от скорости Q потока насоса (другими словами, независимо от созданной тяги), получим выражение (30).

Из выражения (30) понятно, что КПД ηt турбины турбонасоса FTP, который удовлетворяет условию, что число оборотов N поддерживается постоянным независимо от скорости Q потока насоса, выражается посредством характеристического вектора (L0,L1,L2) для КПД ηр насоса и условия ρ∆Н/Nc2 работы турбины, которое соответствует напору в насосе. То есть условие работы турбины определяется плотностью ρ топлива на впуске турбины, падением ∆Н энтальпии турбины и числом оборотов Nc. Если эти параметры сбалансированы, становится возможным осуществлять турбонасос FTP с неизменным числом оборотов и, следовательно, осуществлять ракетный двигатель.

Из выражения (21) функция идеального КПД турбины (кривая КПД турбины реальной машины), основанная на характеристиках реального насоса, в общем, представляет собой выпуклую вверх квадратичную функцию. При сравнении выражения (21) (кривой КПД турбины реальной машины) и выражения (30) (кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса) понятно, что оба не совпадаю друг с другом полностью. Соответственно, ожидается, что трудно выполнять турбину универсальной, которая показывает идеальное реагирование. Однако, если сфокусироваться только на ограниченной области, просто предположить, что идеальное состояние приблизительно выполняется.

Когда ξ=Ф-1 и если выражение (30) преобразуется, используя ξ, получим выражение (31). Если выражение (21) преобразуется, получим выражение (32). Выражение (31) представляет собой выпуклую вниз кривую, которая имеет величину L'1 смещения и должным образом постепенно приближается к L'0ξ.

На ФИГ.3 кривая η1t КПД турбины (кривая КПД турбины, полученная на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса), полученная из выражения (31), и кривая η2t КПД турбины (кривая КПД турбины реальной машины), полученная из выражения (32) нанесены на двухмерной системе координат, в которой горизонтальная ось - ξ, а вертикальная ось - КПД ηt турбины. Реальная машина, используемая здесь, относится к общему турбонасосу, в котором максимальный КПД составляет 0,4-0,8, при этом точка пересечения с горизонтальной осью является регулируемой до некоторой степени посредством угла сопла турбины или числом ступеней турбины.

Как будет понятно из ФИГ.3, кривая η1t КПД турбины (кривая КПД турбины, требуемая для высокоскоростного реагирования), полученная на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, в действительности отличается от кривой η2t КПД турбины (осуществляемой кривой КПД турбины) реальной машины, при этом имеется участок, на котором КПД превышает «1». Соответственно, кажется, что это трудно выполнить. Однако, как представлено ссылочной позицией А на чертеже, понятно, что имеется область (эквивалентная область), в которой проходят обе кривые, принимая очень близкие значения, то есть оба КПД турбины рассматриваются как эквивалентные. Это значит, что с помощью использования эквивалентной области А обеих кривых, как рабочей области турбины, возможно выполнять турбонасос, который удовлетворяет условию, согласно которому число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, то есть возможно осуществлять турбонасос с высокоскоростным реагированием.

Так как кривая η1t КПД турбины, требуемая для высокоскоростного реагирования, и кривая η2t КПД турбины реальной машины отличаются присущей им формой, даже когда эквивалентная область А соответственно выбрана, неизбежно возникает ошибка. Эта ошибка сопровождается небольшим изменением числа оборотов. Соответственно, предполагается, что реагирование, как система двигателя, становится медленнее, чем в идеальном состоянии. Однако, считается, что с практической точки зрения проблема отсутствует.

Кривая η1t КПД турбины, требуемая для высокоскоростного реагирования, задается характеристиками турбонасоса или рабочими условиями. На этом этапе, как показано на ФИГ.4А, рассмотрены случай, в котором обе кривые отдалены друг от друга и эквивалентная область отсутствует, и как показано на ФИГ.4В, случай, в котором обе кривые пересекаются в двух местах и имеются две эквивалентные области. В случае на ФИГ.4А, так как решение с установленным числом оборотов Nc отсутствует, в реальной системе