Способ и компоновка в сети беспроводной связи

Иллюстрации

Показать все

Изобретение относится к беспроводной связи. Техническим результатом является обеспечение механизма для улучшения производительности в сети беспроводной связи. Способ и компоновка в ретрансляционном узле для выбора режима связи. Ретрансляционный узел конфигурируется для связи с базовой станцией через донорную антенну по первой линии связи и для связи с пользовательским оборудованием через антенну охвата по второй линии связи. Способ содержит получение величины изоляции на основе радиоволновой изоляции между ретрансляционной донорной антенной и ретрансляционной антенной охвата. Полученная величина изоляции сравнивается с величиной порогового уровня изоляции. Ретрансляционный узел конфигурируется для связи в полнодуплексном режиме, если полученная величина изоляции превосходит величину порогового уровня изоляции, в противном случае - в полудуплексном режиме. Информация, касающаяся сконфигурированного дуплексного режима ретрансляционного узла, передается к базовой станции. Также описываются способ и компоновка в базовой станции. 4 н. и 7 з.п. ф-лы, 1 табл., 11 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу и компоновке в ретрансляционном узле и к способу и компоновке в базовой станции. В частности, настоящее изобретение относится к механизму выбора режима связи в ретрансляционном узле.

Уровень техники

Ретрансляция рассматривается, например, для Проекта долгосрочного развития (LTE), выпуск 10, в качестве инструмента для улучшения покрытия высокими скоростями передачи данных, групповой мобильности, временного развертывания сети, пропускной способности на границе сот и/или для обеспечения приема в новых зонах. По меньшей мере ретрансляционные узлы типа-1 являются частью усовершенствованного LTE (LTE-Advanced), и ретранслятор типа-1 является внутриполосным ретранслирующим узлом (RN), характеризующимся набором характеристик, например тем, что он имеет собственный ID физической соты, представляемый как Rel-8 eNB для пользовательского оборудования (UE) Rel-8 и т.д.

В общем, предполагается в Проекте партнерства третьего поколения (3GPP), часть которого формируют реализации LTE, что передача от любой антенны ретранслирующего узла может вызывать сильные помехи для приема на другой антенне, см. Фиг. 1A и Фиг. 1B соответственно. С целью не устанавливать строгие требования для пользовательского оборудования и развертывания сети 3GPP предполагает, что Un, т.е. линия радиосвязи между базовой станцией (eNB) и ретранслирующим узлом (RN), и Uu, т.е. линия радиосвязи между ретранслирующим узлом (RN) и пользовательским оборудованием (UE), у того же ретранслирующего узла функционирует в разное время.

Таким образом, линия радиосвязи от базовой станции (eNB) к ретранслирующему узлу (RN) и линия радиосвязи от ретранслирующего узла (RN) к пользовательскому оборудованию (UE) мультиплексируются с временным разделением в одной полосе частот. Следовательно, только одна из этих линий связи активна в любой момент времени с целью не вызвать помехи во втором.

То же применяется и в восходящей линии связи, чтобы линия радиосвязи от ретранслирующего узла (RN) к базовой станции (eNB) и линия радиосвязи от пользовательского оборудования (UE) к ретранслирующему узлу (RN) мультиплексировались с временным разделением в одной полосе частот. Следовательно, только одна из этих линий связи активна в любой момент времени.

Таким образом, ретранслирующий узел, определяемый в 3GPP, может работать только в полудуплексном режиме. При работе в полудуплексном режиме связь возможна в обоих направлениях, т.е. от пользовательского оборудования через ретранслирующий узел к базовой станции, но только в одном направлении за один раз, не одновременно. Как правило, когда узел начинает прием сигнала, он должен ждать, пока передатчик передающего узла прекратит передачу, прежде чем ответить.

Хотя попытки развертывания сети и требования аппаратных средств могут не быть проблемой для ретранслятора типа-1, такой полудуплексный механизм приводит к нежелательной потере производительности, поскольку ресурсы должны быть разделены между Un и Uu.

Таким образом, страдает общая производительность передачи по сравнению с передачей в полнодуплексном режиме, который обеспечивает возможность связи в обоих направлениях одновременно.

Другая проблема с известным решением для избегания внутренних помех в ретранслирующем узле состоит в том, что разделение времени создает задержку передачи, которая продлевает общее время передачи.

Сущность изобретения

Целью настоящего изобретения является устранить по меньшей мере некоторые из вышеупомянутых недостатков и обеспечить механизм для улучшения производительности в сети беспроводной связи.

Согласно первому аспекту цель достигается способом в ретрансляционном узле для выбора режима связи. Ретрансляционный узел конфигурируется для связи с базовой станцией через донорную антенну по первой линии связи. Кроме того, ретрансляционный узел также конфигурируется для связи с пользовательским оборудованием через антенну охвата по второй линии связи. Способ содержит получение величины изоляции на основе радиоволновой изоляции между ретрансляционной донорной антенной и ретрансляционной антенной охвата. Полученная величина изоляции сравнивается с величиной порогового уровня изоляции. Ретрансляционный узел затем конфигурируется для связи в полнодуплексном режиме, если полученная величина изоляции превосходит величину порогового уровня изоляции, в противном случае - в полудуплексном режиме. Информация, касающаяся сконфигурированного дуплексного режима ретрансляционного узла, передается к базовой станции.

Согласно второму аспекту цель также достигается посредством компоновки для выбора режима связи в ретрансляционном узле. Ретрансляционный узел конфигурируется для связи с базовой станцией через донорную антенну по первой линии связи. Кроме того, ретрансляционный узел также конфигурируется для связи с пользовательским оборудованием через антенну охвата по второй линии связи. Компоновка содержит получающий блок. Получающий блок выполнен с возможностью получать величину изоляции на основе радиоволновой изоляции между ретрансляционной донорной антенной и ретрансляционной антенной охвата. Также компоновка содержит блок сравнения. Блок сравнения выполнен с возможностью сравнивать полученную величину изоляции с величиной порогового уровня изоляции. Кроме того, компоновка содержит блок конфигурации. Блок конфигурации выполнен с возможностью конфигурировать ретрансляционный узел для связи в полнодуплексном режиме, если полученная величина изоляции превосходит величину порогового уровня изоляции, в противном случае - в полудуплексном режиме. В дополнение, компоновка содержит блок передачи. Блок передачи выполнен с возможностью передавать информацию, касающуюся сконфигурированного дуплексного режима ретрансляционного узла, к базовой станции.

Согласно третьему аспекту цель достигается способом в базовой станции. Способ нацелен на приспособление режима связи согласно выбору режима связи, сделанному ретрансляционным узлом. Ретрансляционный узел конфигурируется для связи с базовой станцией через донорную антенну по первой линии связи. Кроме того, ретрансляционный узел также конфигурируется для связи с пользовательским оборудованием через антенну охвата по второй линии связи. Способ содержит прием информации, касающейся сконфигурированного дуплексного режима ретрансляционного узла, в беспроводной передаче от ретрансляционного узла. Также способ содержит конфигурирование базовой станции для связи в полнодуплексном режиме с ретрансляционным узлом, если принятая информация показывает, что ретрансляционный узел сконфигурирован в полнодуплексном режиме. В противном случае базовая станция конфигурируется для связи в полудуплексном режиме с ретрансляционным узлом, если принятая информация показывает, что ретрансляционный узел сконфигурирован в полудуплексном режиме.

Согласно четвертому аспекту цель достигается посредством компоновки внутри базовой станции. Базовая станция конфигурируется для приспособления режима связи согласно выбору режима связи, сделанному ретрансляционным узлом. Ретрансляционный узел конфигурируется для связи с базовой станцией через донорную антенну по первой линии связи. Также ретрансляционный узел конфигурируется для связи с пользовательским оборудованием через антенну охвата по второй линии связи. Базовая станция содержит приемник. Приемник выполнен с возможностью принимать информацию, касающуюся сконфигурированного дуплексного режима ретрансляционного узла, в беспроводной передаче от ретрансляционного узла. Кроме того, базовая станция содержит блок конфигурации. Блок конфигурации выполнен с возможностью конфигурировать базовую станцию для связи в полнодуплексном режиме с ретрансляционным узлом, если принятая информация показывает, что ретрансляционный узел сконфигурирован в полнодуплексном режиме. В противном случае блок конфигурации выполнен с возможностью конфигурировать базовую станцию для связи в полудуплексном режиме с ретрансляционным узлом, если принятая информация показывает, что ретрансляционный узел сконфигурирован в полудуплексном режиме.

По сравнению с существующими решениями предлагаемое решение имеет следующие преимущества.

Путем обеспечения ретранслятора, который имеет возможность переключаться между полнодуплексным режимом и полудуплексным режимом, на основе изоляции между ретрансляционной донорной антенной и ретрансляционной антенной охвата обеспечивается ретранслятор с улучшенной производительностью в некотором сценарии с хорошей изоляцией по сравнению с базовым ретранслятором 3GPP-типа-1.

Никаких строгих требований на оборудования и развертывание сети не накладывается согласно некоторым вариантам осуществления. Улучшенная производительность достигается путем исследования готовой изоляции в некоторых сценариях.

Варианты осуществления настоящего способа и ретранслятора осуществимы для использования в системах как дуплексной связи с временным разделением (TDD), так и дуплексной связи с частотным разделением (FDD).

Варианты осуществления настоящего способа и ретранслятора могут осуществляться так, чтобы 3GPP-совместимый ретранслятор типа-1 в полудуплексном режиме представлял базовые функциональные возможности, в то время как полнодуплексный режим обеспечивал добавочные возможности.

Следовательно, благодаря настоящему способу возможна передача в полнодуплексном режиме в ретрансляционном узле, что обеспечивает возможность связи в обоих направлениях восходящей линии связи и нисходящей линии связи одновременно. Существует несколько преимуществ у использования полного дуплекса перед полудуплексом. Во-первых, время не теряется, поскольку никакие кадры не требуется передавать повторно, поскольку отсутствуют конфликты. Во-вторых, полный объем данных доступен в обоих направлениях, поскольку функции передачи и приема разделены. В-третьих, узлам не приходится ждать, пока другие узлы завершат свою передачу, поскольку передача возможна только в одном направлении единовременно для каждой пары отправитель/приемник.

Таким образом, обеспечивается улучшенная производительность в сети беспроводной связи.

Другие цели, преимущества и новые признаки изобретения станут очевидны из последующего подробного описания изобретения.

Краткое описание чертежей

Теперь настоящее изобретение будет описано более подробно со ссылками на приложенные чертежи, на которых:

Фиг. 1A изображает схематичную структурную схему, иллюстрирующую пример помех ретрансляционного узла, согласно известному уровню техники.

Фиг. 1B изображает схематичную структурную схему, иллюстрирующую пример помех ретрансляционного узла, согласно известному уровню техники.

Фиг. 2 изображает структурную схему, иллюстрирующую сеть беспроводной связи.

Фиг. 3 изображает схематичную блок-схему, иллюстрирующую вариант осуществления настоящего способа.

Фиг. 4A изображает объединенные блок-схему и структурную схему, иллюстрирующие вариант осуществления настоящего способа.

Фиг. 4B изображает объединенные блок-схему и структурную схему, иллюстрирующие вариант осуществления настоящего способа.

Фиг. 5 изображает объединенные блок-схему и структурную схему, иллюстрирующие вариант осуществления настоящего способа.

Фиг. 6 изображает схематичную блок-схему, иллюстрирующую варианты осуществления способа в ретрансляционном узле.

Фиг. 7 изображает структурную схему, иллюстрирующую варианты осуществления компоновки в ретрансляционном узле.

Фиг. 8 изображает схематичную блок-схему, иллюстрирующую варианты осуществления способа в базовой станции.

Фиг. 9 изображает структурную схему, иллюстрирующую варианты осуществления компоновки в базовой станции.

Подробное описание

Настоящее решение определяется как способ и компоновка в ретрансляционном узле и способ и компоновка в базовой станции, которые могут быть осуществлены на практике в вариантах осуществления, описанных ниже. Однако настоящее решение может быть осуществлено во многих различных формах и не должно толковаться как ограниченное изложенными здесь вариантами осуществления. Нет никакого намерения ограничить настоящие способы и компоновки какой-либо из конкретных раскрываемых форм, а наоборот, настоящие способы и компоновки должны охватить все модификации, эквиваленты и альтернативы, попадающие в объем настоящего решения, определяемого прилагаемой формулой изобретения.

Разумеется, настоящее решение может осуществляться другими способами помимо конкретно изложенных здесь без выхода за рамки существенных характеристик решения. Настоящие варианты осуществления должны рассматриваться во всех отношениях как иллюстративные и неограничительные, и все изменения, не выходящие за рамки смысла и диапазона эквивалентности прилагаемой формулы изобретения, подразумеваются как охваченные ею.

Фиг. 2 изображает схематичную иллюстрацию сети 100 беспроводной связи. Сеть 100 беспроводной связи содержит по меньшей мере одну базовую станцию 110 и ретрансляционный узел 120. Сеть 100 беспроводной связи дополнительно содержит множество блоков 130 пользовательского оборудования. Базовая станция 110 может отправлять и принимать беспроводные сигналы к и от пользовательского оборудования 130 через ретрансляционный узел 120.

Хотя только одна базовая станция 110, один ретрансляционный узел 120 и одно пользовательское оборудование 130 изображены на Фиг. 2, следует понимать, что другая конфигурация приемо-передатчиков базовой станции, ретрансляционных узлов и блоков пользовательского оборудования соответственно может содержаться внутри сети 100 беспроводной связи.

Кроме того, базовая станция 110 может называться, например, удаленным радиоблоком, точкой доступа, Узлом-B, улучшенным Узлом-B (eУзел-B или eNB) и/или базовой приемопередающей станцией, базовой станцией точки доступа, маршрутизатором базовой станции и т.д. в зависимости, например, от используемой технологии радиодоступа и терминологии. Кроме того, термин "донорный eNB" может использоваться для базовой станции 110 по отношению к ретрансляционному узлу 120.

Сеть 100 беспроводной связи обеспечивает возможность передачи/приема информации с использованием множества беспроводных узлов 110, 120, 130. В общем, в беспроводной сети 100 беспроводные ретрансляционные узлы 120 могут устанавливаться между базовыми станциями 110, которые разнесены друг от друга, например, на расстояние каждого диапазона связи и которые могут быть стационарно установлены, или стационарные узлы могут соединяться проводным образом друг с другом, таким образом, обеспечивая возможность связи на большом расстоянии между узлами, располагающимися в местах, разнесенных друг от друга. Ретрансляционные узлы 120 могут дополнительно устанавливаться так, чтобы достигать мест, где условия распространения радиоволн такие, что сложно обеспечить услуги радиосвязи от базовой станции 110, например в конкретной зоне 250, такой как изолированная территория, т.е. внутри здания, в тоннеле, в бункере, под навесом, в метро или в подобной ситуации, где зона радиомолчания может возникать или испытываться пользовательским оборудованием 130.

Ретрансляционный узел 120 может иметь возможность радиосвязи, возможность записи информации и возможность переноса информации согласно некоторым вариантам осуществления.

Кроме того, ретрансляционный узел 120 может содержать, ассоциироваться с или быть соединенным с донорной антенной 210 и антенной 220 охвата. Донорная антенна 210 может конфигурироваться для приема и передачи радиосигналов к/от базовой станции 110, в то время как антенна 220 охвата может конфигурироваться для приема и передачи радиосигналов к/от пользовательского оборудования 130.

Сегмент переноса информации может передавать информацию между сегментом радиосвязи и сегментом записи информации и определять пункт назначения (адресата) информации. Ретрансляционный узел 120 может принимать информацию от базовой станции 110 посредством сегмента радиосвязи и сохранять принятую информацию в сегменте записи информации посредством сегмента переноса информации. Затем ретрансляционный узел 120 может передавать информацию, сохраненную в сегменте записи информации, к пользовательскому оборудованию 130 посредством сегмента радиосвязи.

В некоторых вариантах осуществления пользовательское оборудование 130 может быть представлено устройством беспроводной связи, терминалом беспроводной связи, мобильным сотовым телефоном, терминалом персональной системы связи, мобильной станцией (MS), "электронным помощником" (PDA), ноутбуком, компьютером или любым другим устройством, сконфигурированным для управления радиоресурсами.

Сеть 100 беспроводной связи может основываться на технологиях, таких как, например, LTE, такой как, например LTE Rel-8, LTE Rel-9, LTE Rel-10 и/или LTE-Advanced, глобальная система мобильной связи (GSM), улучшенная скорость передачи данных для развития GSM (EDGE), пакетная радиосвязь общего назначения (GPRS), множественный доступ с кодовым разделением (CDMA), широкополосный множественный доступ с кодовым разделением (WCDMA), CDMA 2000, высокоскоростная пакетная передача данных по нисходящей линии связи (HSDPA), высокоскоростная пакетная передача данных по восходящей линии связи (HSUPA), Высокоскоростная передача данных (HDR), высокоскоростная пакетная передача данных (HSPA), универсальная система мобильной связи (UMTS), беспроводные локальные сети (WLAN), такие как «Беспроводная преданность» (WiFi) и общемировая совместимость широкополосного беспроводного доступа (WiMAX), Bluetooth или согласно любой другой технологии беспроводной связи и т.д., все упомянутое является произвольными неограничительными примерами.

Система 100 беспроводной связи может конфигурироваться для работы согласно принципу дуплексной связи с временным разделением (TDD) и/или дуплексной связи с частотным разделением (FDD).

Пользовательское оборудование 130 дополнительно может осуществлять связь с другими блоками пользовательского оборудования, не показанными на Фиг. 2, через базовую станцию 110 и/или ретрансляционный узел 120, содержащиеся внутри сети 100 беспроводной связи.

Выражение "нисходящая линия связи" (DL) в настоящем контексте используется для определения передачи от базовой станции 110 через ретрансляционный узел 120 к пользовательскому оборудованию 130, в то время как выражение "восходящая линия связи" (UL) используется для обозначения передачи от пользовательского оборудования 130 к базовой станции 110 через ретрансляционный узел 120.

Базовая станция 110 конфигурируется для обмена управляющими сигналами с ретрансляционным узлом 120. Ретрансляционный узел 120 конфигурируется для ретрансляции передачи данных между базовой станцией 110 и пользовательским оборудованием 130.

В некоторых сценариях изоляция друг от друга ретрансляционной донорной антенны 210 и ретрансляционной антенны 220 охвата может быть велика. Некоторыми примерами таких сценариев могут быть, например, применение в помещении, где наружная донорная антенна 210 и внутренняя антенна 220 охвата разделены так, что антенна 220 охвата располагается внутри конкретной зоны 250, т.е. внутри здания. Такая ситуация может также случаться для применения в метро, где донорная антенна 210 может располагаться над уровнем земли, в то время как антенна 220 охвата может располагаться под землей, таким образом, формируя конкретную зону 250. Другим примером может быть применение в тоннеле, причем донорная антенна 210 может располагаться снаружи от тоннеля, в то время как антенна 220 охвата может располагаться внутри тоннеля, и тоннель может формировать конкретную зону 250.

Когда термины "изоляция" и "изолированная территория" используются в настоящем контексте, это касается радиоволновой изоляции, т.е. электромагнитных излучений. Такая изоляция может обеспечиваться, например, зданием, метро, тоннелем, пещерой, углублением, подвалом, полуподвалом, бункером, транспортным средством или подобным, а также может быть, например, стеной, горой или препятствием, сделанным, например, из материалов, поглощающих радиоволны, поглотителя радиоволн, и/или безэховой радиоволновой камерой и т.д.

В таких сценариях помехи между донорной антенной 210 и антенной 220 охвата могут быть небольшими или даже ничтожными, что делает разделение ресурсов между Un и Uu, т.е. передачу в полудуплексном режиме, излишней.

Вариантам осуществления настоящего способа соответствует ретрансляционный узел 120, сконфигурированный для переключения между полнодуплексным режимом и полудуплексным режимом, на основе изоляции между ретрансляционной донорной антенной 210 и ретрансляционной антенной 220 охвата. Ретрансляционный узел 120 может являться самоконфигурируемым ретранслятором 120 согласно некоторым вариантам осуществления, выполненным с возможностью переключаться между полнодуплексным режимом и полудуплексным режимом. На фазе запуска ретрансляционный узел 120 может измерять изоляцию между его донорной антенной 210 и антенной 220 охвата. Если изоляция достаточно велика, чтобы поддерживать полнодуплексный режим, ретранслятор 120 работает в полнодуплексном режиме. В противном случае ретранслятор 120 работает в полудуплексном режиме согласно определению 3GPP. Сигнализация между ретранслятором 120 и базовой станцией 110 также задается, на основе чего базовая станция 110 знает режим ретранслятора 120 и может, таким образом, верно осуществлять планирование ретранслятора 120. Во время режима работы ретранслятор 120 может также измерять изоляцию, согласно некоторым вариантам осуществления. Если изоляция становится выше/ниже некоторого порога, изменение в дуплексном режиме может инициироваться. Кроме того согласно некоторым вариантам осуществления ретрансляционный узел 120 может осуществлять связь в одном дуплексном режиме в восходящей линии связи и другом дуплексном режиме в нисходящей линии связи на основе радиоволновой изоляции между ретрансляционной донорной антенной 210 и ретрансляционной антенной 220 охвата.

На Фиг. 3 изображена схематичная структурная схема, иллюстрирующая описание одного варианта осуществления настоящего иллюстрируемого способа.

Как иллюстрируется на Фиг. 3, измеряется изоляция между антенной 220 охвата и донорной антенной 210, ассоциированными с ретранслятором 120. На основе измеренной величины изоляции принимается решение, существует ли возможность работать в полнодуплексном режиме или нет. Решение сигнализируется к донорной базовой станции 110, чтобы убедиться, что базовая станция 110 знает дуплексный режим ретранслятора 120 и, таким образом, верно осуществляет планирование ретранслятора 120. После подтверждения между базовой станцией 110 и ретранслятором 120 ретранслятор 120 может работать в выбранном режиме, т.е. полнодуплексном режиме или полудуплексном режиме.

Фиг. 4A изображает схематичную структурную схему, иллюстрирующую вариант осуществления настоящего способа.

Изоляция может измеряться от антенны донора к антенне охвата, в результате чего обеспечивается изоляция "от антенны донора к антенне охвата" (D2CI), как иллюстрируется на Фиг. 4A. Она может также измеряться от антенны охвата к антенне донору, в результате чего обеспечивается изоляция "от антенны охвата к антенне донору" (C2DI), как будет рассмотрено в связи с Фиг. 5.

В иллюстрируемом варианте осуществления ретранслятор 120 измеряет изоляцию "от антенны донора к антенне охвата" (D2CI) во время своей фазы запуска, когда включение выполняется, как иллюстрируется на Фиг. 4A. После включения ретранслятор 120 может сначала осуществлять доступ к своей донорной базовой станции 110 подобно пользовательскому оборудованию. Во время этого промежутка времени некоторые сигналы, например сигнал для произвольного доступа, подтверждение корректно принятой информации, могут быть отправлены от ретрансляционной донорной антенны 210 к базовой станции 110. Когда донорная антенна 210 осуществляет передачу, антенна 220 охвата может услышать сигнал. Величина изоляции D2CI может затем быть получена путем сравнения мощности переданного сигнала и принятого сигнала.

Полученная величина изоляции может затем сравниваться с величиной порогового уровня изоляции.

Порог для переключения между полудуплексным режимом и полнодуплексным режимом для восходящей линии связи и/или как для восходящего, так и для нисходящей линии связи может выбираться на основе максимально допустимых помех на антенне 220 охвата и мощности передачи донорной антенны 210. Решение может приниматься на ретрансляторе 120 на основе неких заранее сконфигурированных величин, принятых от базовой станции 110, или оно может альтернативно приниматься на базовой станции 110 согласно некоторым вариантам осуществления. Также возможно, что решение принимается в некотором узле функционирования и сопровождения (O&M) и отправляется к базовой станции 110 и ретранслятору 120.

Таким образом, если полученная величина изоляции превосходит величину порогового уровня изоляции, ретрансляционный узел 120 может конфигурироваться для связи в полнодуплексном режиме в восходящей линии связи. Альтернативно, ретрансляционный узел 120 может конфигурироваться для связи в полнодуплексном режиме как в восходящей линии связи, так и в нисходящей линии связи, если полученная величина изоляции превосходит величину порогового уровня изоляции.

В противном случае, если полученная величина изоляции не превосходит величину порогового уровня изоляции, ретрансляционный узел 120 может конфигурироваться для связи в полудуплексном режиме в восходящей линии связи. Альтернативно, ретрансляционный узел 120 может конфигурироваться для связи в полудуплексном режиме как в восходящей линии связи, так и в нисходящей линии связи, если полученная величина изоляции не превосходит величину порогового уровня изоляции.

Информация, касающаяся сконфигурированного дуплексного режима ретрансляционного узла 120, затем передается к базовой станции 110.

Фиг. 4B изображает схематичную структурную схему, иллюстрирующую вариант осуществления настоящего способа.

Возможно, при выполнении способа, иллюстрируемого на Фиг. 4A, присутствует некое пользовательское оборудование 130, передающее сигналы в направлении базовой станции 110 во время фазы прослушивания у антенны охвата, отчего принятая мощность на антенне 220 охвата исходит не только от донорной антенны 210. Обнаружение на основе корреляции, как иллюстрируется на Фиг. 4B, может применяться для решения этой проблемы. Поскольку ретранслятор 120 знает, что он передает на донорной антенне 210, он может коррелировать принятый сигнал на антенне 220 охвата с переданным сигналом. Благодаря этому сигналы, отличные от того, который был передан от донорной антенны 210, могут гаситься согласно некоторым вариантам осуществления.

Фиг. 5 изображает схематичную структурную схему, иллюстрирующую вариант осуществления настоящего способа.

На Фиг. 5 изображается обнаружение иллюстрируемой изоляции "от антенны охвата к антенне донору" (C2DI). Во время запуска, т.е. перед обслуживанием своего пользовательского оборудования 130, ретранслятор 120 может также измерять принятую сигнальную мощность (P0) от своей донорный базовой станции 110. После того как ретранслятор 120 осуществил доступ к своей донорной базовой станции 110, он начинает передачу сигналов в своей зоне охвата через свою антенну 220 охвата. Такая сигнализация может содержать, например, опорные сигналы, характерные для соты (CRS), канал вещания (BCH), первичный сигнал синхронизации (PSS), вторичный сигнал синхронизации (SSS), звуковой опорный сигнал (SRS) и т.д. Когда антенна 220 охвата осуществляет передачу, донорная антенна 210 может услышать сигнал и измерить принятую сигнальную мощность (P1), которая может содержать сигналы от антенны 220 охвата и донорной базовой станции 110. Величина изоляции C2DI затем может быть получена путем сравнения мощности переданного сигнала и принятого сигнала с вычетом сигнала, переданного от базовой станции 110, т.е. P1-P0. Здесь также может применяться обнаружение на основе корреляции согласно некоторым вариантам осуществления.

Величина изоляции в восходящей линии связи и нисходящей линии связи соответственно, т.е. D2CI и C2DI, может измеряться раздельно согласно некоторым вариантам осуществления, как в ретрансляторной системе множественных входов и множественных выходов (MIMO), антенные веса для передачи и приема могут не быть одинаковыми для антенн 210, 220, что может приводить к разнице между D2CI и C2DI.

В дополнение к установлению дуплексного режима во время запуска ретранслятор 120 может измерять изоляцию периодически во время работы. Если величина изоляции изменяется существенно, дуплексный режим может быть реконфигурирован соответственным образом.

Полученная величина изоляции затем может сравниваться с величиной порогового уровня изоляции.

Порог для переключения между полудуплексным режимом и полнодуплексным режимом для нисходящей линии связи может выбираться на основе максимально допустимых помех на донорной антенне 210 и мощности передачи антенны 220 охвата согласно некоторым вариантам осуществления. Решение может приниматься на ретрансляторе 120 на основе некоторых заранее сконфигурированных величин, принятых от базовой станции 110, или альтернативно оно может приниматься на базовой станции 110 согласно некоторым вариантам осуществления. Даже возможно, что решение принимается на некотором O&M-узле и отправляется к базовой станции 110 и ретранслятору 120.

Таким образом, если полученная величина изоляции превосходит величину порогового уровня изоляции, ретрансляционный узел 120 может конфигурироваться для связи в полнодуплексном режиме в восходящей линии связи. Альтернативно, ретрансляционный узел 120 может конфигурироваться для связи в полнодуплексном режиме как в восходящей линии связи, так и в нисходящей линии связи, если полученная величина изоляции превосходит величину порогового уровня изоляции.

В противном случае, если полученная величина изоляции не превосходит величину порогового уровня изоляции, ретрансляционный узел 120 может конфигурироваться для связи в полудуплексном режиме в восходящей линии связи. Альтернативно, ретрансляционный узел 120 может конфигурироваться для связи в полудуплексном режиме как в восходящей линии связи, так и в нисходящей линии связи, если полученная величина изоляции не превосходит величину порогового уровня изоляции.

Информация, касающаяся сконфигурированного дуплексного режима ретрансляционного узла 120, затем передается к базовой станции 110.

Кроме того, также дуплексный режим для восходящей линии связи и нисходящей линии связи может выбираться раздельно согласно некоторым вариантам осуществления.

Необязательно различные величины порогового уровня изоляции для переключения между полудуплексным режимом и полнодуплексным режимом могут применяться для восходящей линии связи (TUL) и нисходящей линии связи (TDL), как уже упоминалось.

При этих двух величинах порогового уровня изоляции TUL и TDL дуплексный режим ретрансляционного узла 120 может опционально выбираться согласно Таблице 1, применяющей эти две различные опциональные величины изоляции в восходящей и нисходящей линии связи, соответственно, т.е. D2CI и C2DI.

Тип приемника также может влиять на величины порогового уровня изоляции в некоторой степени. Поскольку то, что передается от ретранслятора 120, известно на стороне ретрансляторного приемника, схема подавления помех может применяться для подавления известных помех. Если такие схемы подавления помех используются, ретранслятор 120 может допускать более сильные помехи и величина порогового уровня изоляции для входа в полнодуплексный режим может быть уменьшена согласно некоторым вариантам осуществления.

Когда ретрансляционный узел 120 запускается, ретрансляционный узел 120 может сообщать о себе сети 100. В зависимости от архитектуры ретранслятор 120 может скрытым или известным для базовой станции 110 и O&M-системы.

В случае когда внутриполосной ретранслятор 120 применяет полудуплекс, схема мультиплексирования с временным разделением между линиями связи доступа и транзитная линия связи с некоторым преимуществом может быть известна как на донорной базовой станции 110, так и на ретрансляторе 120, поскольку ретранслятор 120 имеет преимущество в том, что ему известно, когда он должен принимать или передавать от/к базовой станции 110.

Следовательно, донорная базовая станция 110 должна быть осведомлена о сконфигурированной дуплексной схеме в ретрансляторе 120. Одна возможная альтернатива состоит в том, что донорная базовая станция 110 и ретрансляционный узел 120 принимают решение по подходящей конфигурации с учетом нагрузки, качества линии связи и т.д. распределенным образом. Другой подход может состоять в том, что O&M-система осведомляется об измерении, принимает решение на дуплексных схемах и после этого конфигурирует ретранслятор 120 и донорную базовую станцию 110. Третья альтернатива может состоять в том, что дежурный инженер отвечает за принятие решения на дуплексной схеме. В последнем случае ретрансляционный узел 120 и донорная базовая станция 110 могут осведомляться о дуплексной схеме либо путем непосредственной конфигурации инженером (донорная базовая станция 110 может альтернативно опосредованно конфигурироваться с использованием распределенной схемы, как кратко раскрыто выше) или опосредованно посредством O&M-системы (которая может осведомляться о дуплексной схеме опциональным дежурным инженером) согласно различным вариантам осуществления. Следует заметить, что опциональный инженер в свою очередь может полагаться на вышеупомянутые предложенные измерения согласно некоторым вариантам осуществления, но настоящие способы не ограничиваются этим.

Также в некоторых сценариях может быть преимуществом, чтобы сеть 100 имела возможность управлять поведением ретрансляционного узла 120 для обеспечения помехоустойчивости, например, в отношении изменений в среде распространения и управляемости. Следовательно, может быть преимуществом, если за поведением ретранслятора может производиться наблюдение и чтобы величина(-ы) порогового уровня изоляции, устанавливающие требование на изоляцию, могла(-и) быть реконфигурирована(-ы) из сети 100 в зависимости от сценария. Наблюдение может выполняться множеством различных способов, например путем опроса ретранслятора 120 об обновленном отчете измерений изоляции или периодического отчета согласно интервалам, сконфигурированным сетью. Это наблюдение может выполняться либо O&M-системой, либо донорной базовой станцией 110. В первом случае реконфигурация ретранслятора может в этом случае выполняться путем сигнализации O&M, в то время как в последнем случае сигнализация может использовать некоторый существующий или новый протокол радиоинтерфейса. Одним таким вариантом может быть использование сигнализации Управления радиоресурсов (RRC) согласно некоторым вариантам осуществления.

В полудуплексном режиме ретранслятор 120 может работать согласно определению 3GPP. В нисходящей линии связи он может конфигурировать по меньшей мере один из своих подкадров так, чтобы он был подкадром одночастотной сети группового вещания (MBSFN), и принимать передачи базовой станции в таком подкадре. В восходящей линии связи он осуществляет планирование своего подчиненного пользовательского оборудования 130 только в некоторых из подкадров. Для остальных подкадров восходящей линии связи у ретранслятора 120 может быть возможность осуществлять передачу в направлении базовой станции 110 согласно некоторым вариантам осуществления.

В полнодуплексном режиме ретрансляционный узел 120 может работать как объединение обычного пользовательского оборудования и обычной базовой станции 110. Ретранслятор 120 может осуществлять планирование своего подчиненного пользовательского оборудования 130 в любом подкадре, и планирование ретранслятора 120 может осуществляться его донорной базовой станцией 110 в люб