Сигнализация по управляющему каналу с использованием кодовых точек для указания режима планирования

Иллюстрации

Показать все

Изобретение относится к технике беспроводной связи и может быть использовано при реализации режима планирования. Технический результат - повышение эффективности сигнализации, уменьшение сложности мобильного терминала с точки зрения декодирования нисходящего управляющего канала. Мобильный терминал для использования в системе подвижной связи, предусматривающей, по меньшей мере, два различных режима планирования, содержит приемное устройство, адаптированное для приема сигнала управляющего канала от базовой станции, при этом сигнал управляющего канала содержит по меньшей мере поле процесса гибридного автоматического запроса на повторную передачу (HARQ) и поле типа избыточности (RV), при этом, по меньшей мере, одно из значений, которые могут быть представлены битами по меньшей мере поля процесса HARQ и поля RV, определяет кодовую точку, используемую для указания режима планирования для соотнесенной передачи пользовательских данных в форме протокольного блока данных. 2 н. и 8 з.п. ф-лы, 10 ил., 4 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение имеет отношение к сигналу управляющего канала для использования в системе подвижной связи, предусматривающей, по меньшей мере, два различных режима планирования. Дополнительно, настоящее изобретение имеет отношение к устройству планирования для генерирования сигнала управляющего канала и к базовой станции, содержащей это устройство планирования. Настоящее изобретение также имеет отношение к работе подвижной станции и базовой станции для реализации режима планирования с использованием сигнала управляющего канала, предлагаемого в соответствии с настоящим изобретением.

Уровень техники

Планирование Пакета и Передача по Общему Каналу

В беспроводных системах связи, применяющих планирование пакета, по меньшей мере, часть ресурсов радиоинтерфейса динамически выделяется разным пользователям (подвижным станциям - MS (mobile station) или пользовательскому оборудованию - ПО). Эти динамически назначаемые ресурсы обычно преобразуются, по меньшей мере, в один физический восходящий или нисходящий общий канал (PUSCH или PDSCH - Physical Uplink/Downlink Shared Channel). Канал PUSCH или PDSCH может, например, иметь одну из следующих конфигураций:

- Один или несколько кодов в системе многостанционного доступа с кодовым разделением каналов (CDMA - Code Division Multiple Access) динамически разделяются между несколькими MS.

- Одна или несколько поднесущих (поддиапазонов) в системе многостанционного доступа с ортогональным частотным разделением каналов (OFDMA - Orthogonal Frequency Division Multiple Access) динамически разделяются между несколькими MS.

- Комбинации вышеупомянутого в системе OFCDMA (Orthogonal Frequency Code Division Multiple Access - многостанционного доступа с ортогональным частотно-кодовым разделением каналов) или MC-CDMA (Multi Carrier-Code Division Multiple Access - многостанционного доступа с кодовым разделением каналов с передачей на многих несущих) динамически разделяются между несколькими MS.

Фиг. 1 демонстрирует систему планирования пакета на общем канале для систем с единственным общим каналом передачи данных. Подцикл (также именуемый как временной интервал) отражает наименьший интервал, в котором планировщик (например, Планировщик Физического Уровня или MAC-Уровня (уровня управления доступом к среде - Media Access Control)) выполняет динамическое назначение ресурсов (ДНР). На Фиг. 1, TTI (transmission time interval - интервал передачи данных) принимается равным одному подциклу. В этой связи следует отметить, что в общем случае TTI также может охватывать несколько подциклов.

Дополнительно, наименьшая единица радиоресурсов (также именуемая как ресурсный блок или ресурсная единица), которая может назначаться в системах OFDM, обычно определяется одним подциклом во временной области и одной поднесущей/поддиапазоном в частотной области. Аналогично, в системе CDMA эта наименьшая единица радиоресурсов определяется подциклом во временной области и кодом в кодовой области.

В системах OFCDMA или MC-CDMA, эта наименьшая единица определяется одним подциклом во временной области, одной поднесущей/поддиапазоном в частотной области и одним кодом в кодовой области. Заметим, что динамическое назначение ресурсов может выполняться во временной области и в кодовой/частотной области.

Основными преимуществами планирования пакета являются выигрыш от многопользовательского разнесения благодаря планированию во временной области (ПВО) и динамическая адаптация скорости передачи для пользователя.

Предполагая, что условия канала пользователей меняются с течением времени из-за быстрого (и медленного) затухания, в данный момент времени планировщик может выделять доступные ресурсы (коды в случае CDMA, поднесущие/поддиапазоны в случае OFDMA) пользователям, имеющим хорошие условия канала, при планировании во временной области.

Особенности ДНР и Передачи по Общему Каналу в OFDMA

В дополнение к применению многопользовательского разнесения во временной области, благодаря Планированию во Временной Области (ПВО), в OFDMA многопользовательское разнесение может также применяться в частотной области, благодаря Планированию в Частотной Области (ПЧО). Ведь OFDM-сигнал находится в частотной области, построенной из нескольких узкополосных поднесущих (как правило, сгруппированных в поддиапазоны), которые могут динамически выделяться разным пользователям. К тому же, частотно-избирательные свойства канала из-за многолучевого распространения могут применяться для планирования пользователей на частоты (поднесущие/поддиапазоны), на которых они имеют хорошее качество канала (многопользовательское разнесение в частотной области).

По практическим соображениям, в системе OFDMA ширина полосы пропускания разделяется на несколько поддиапазонов, которые состоят из нескольких поднесущих. То есть наименьшая единица, на которую может быть назначен пользователь, будет иметь ширину полосы пропускания одного поддиапазона и продолжительность одного интервала или одного подцикла (которые могут соответствовать одному или нескольким символам OFDM), что обозначается как ресурсный блок (RB - resource block). Как правило, поддиапазон состоит из последовательных поднесущих. Однако в некоторых случаях желательно формировать поддиапазон из распределенных непоследовательных поднесущих. Планировщик также может назначать пользователя на несколько последовательных или непоследовательных поддиапазонов и/или подциклов.

Касательно спецификации долгосрочного развития проекта партнерства третьего поколения (3GPP Long Term Evolution) (документ 3GPP TR 25.814: "Аспекты Физического уровня для Развитого UTRA (Evolved UTRA)", Издание 7, версия 7.1.0, октябрь 2006 - доступен на http://www.3gpp.org и включается в данный документ путем ссылки), система на 10 МГц (нормальный циклический префикс) может состоять из 600 поднесущих, с разносом поднесущих в 15 кГц. В таком случае, эти 600 поднесущих могут быть сгруппированы в 50 поддиапазонов (12 смежных поднесущих), при этом каждый поддиапазон занимает ширину полосы пропускания в 180 кГц. Полагая, что интервал имеет продолжительность 0,5 мс, ресурсный блок (RB) перекрывает более 180 кГц и 0,5 мс, согласно этому примеру.

Чтобы применять многопользовательское разнесение и достигать выгоды от планирования в частотной области, данные для заданного пользователя должны назначаться на ресурсные блоки, на которых пользователи имеют хорошее условие канала. Как правило, эти ресурсные блоки располагаются близко друг к другу и поэтому этот режим передачи также именуется как ограниченный режим (ОР).

Пример для структуры канала с ограниченным режимом продемонстрирован на Фиг. 2. В этом примере соседние ресурсные блоки выделяются четырем подвижным станциям (MS1 - MS4) во временной области и в частотной области. Каждый ресурсный блок состоит из части для переноса управляющей сигнализации Уровня 1 и/или Уровня 2 (управляющая сигнализация L1/L2) и части, несущей пользовательские данные для подвижных станций.

В качестве альтернативы, пользователи могут назначаться в распределенном режиме (РР), как продемонстрировано на Фиг. 3. В такой конфигурации, пользователь (подвижная станция) назначается на несколько ресурсных блоков, которые распределены по набору ресурсных блоков. В распределенном режиме возможно множество различных вариантов реализации. В примере, продемонстрированном на Фиг. 3, пара пользователей (MS 1/2 и MS 3/4) совместно использует одни и те же ресурсные блоки. Несколько дополнительных возможных иллюстративных вариантов реализации могут быть найдены в документе 3GPP RAN WG#1 Tdoc R1-062089, "Сравнение распределенной передачи на уровне RB и на уровне поднесущих для общего канала данных в нисходящем канале E-UTRA", август 2006 (доступен на http://www.3gpp.org и включается в данный документ путем ссылки).

Следует отметить, что в пределах подцикла возможно комбинирование ограниченного режима и распределенного режима, причем объем ресурсов (количество RB), назначенных для ограниченного режима и распределенного режима, может быть фиксированным, полустатическим (постоянным для десятков/сотен подциклов) или даже динамическим (различным от подцикла к подциклу).

В ограниченном режиме, как и в распределенном режиме, в заданном подцикле один или несколько блоков данных (которые упоминаются среди прочего как транспортные блоки) могут назначаться по отдельности одному и тому же пользователю (подвижной станции) на различных ресурсных блоках, которые могут принадлежать или не принадлежать одной и той же услуге или процессу автоматического запроса на повторную передачу (ARQ - Automatic Repeat reQuest). Логически, это может пониматься как назначение разных пользователей.

Управляющая Сигнализация L1/L2

Чтобы обеспечивать достаточную дополнительную информацию для правильного приема или передачи данных в системах, применяющих планирование пакета, должна передаваться так называемая управляющая сигнализация L1/L2 (Физический нисходящий управляющий канал (Physical Downlink Control CHannel) - PDCCH). Ниже обсуждаются типичные механизмы работы для передачи данных в нисходящем и восходящем направлении.

Передача данных в нисходящем направлении

Наряду с передачей пакетных данных в нисходящем направлении, в существующих реализациях с использованием общего нисходящего канала, таких как высокоскоростной пакетный доступ для передачи данных (HSDPA - High Speed Data Packet Access) на базе спецификаций 3GPP, управляющая сигнализация L1/L2 обычно передается по отдельному физическому (управляющему) каналу.

Эта управляющая сигнализация L1/L2 обычно содержит информацию о физическом ресурсе(ах), по которому передаются данные в нисходящем направлении (например, поднесущие или блоки поднесущих в случае OFDM, коды в случае CDMA). Эта информация позволяет подвижной станции (принимающему устройству) идентифицировать ресурсы, на которых передаются данные. Другим параметром в управляющей сигнализации является транспортный формат, используемый для передачи данных в нисходящем направлении.

Как правило, существует несколько возможностей для указания транспортного формата. Например, размер транспортного блока данных (размер полезной нагрузки, размер информационных битов), уровень Схемы Модуляции и Кодирования (MCS - Modulation and Coding Scheme), Спектральная Эффективность, кодовая скорость и т.д., могут сообщаться для указания транспортного формата (TF - transport format). Эта информация (обычно вместе с назначением ресурсов) позволяет подвижной станции (принимающему устройству) идентифицировать размер информационного бита, схему модуляции и кодовую скорость, чтобы начать демодуляцию, согласование снижения скорости и процесс декодирования. В некоторых случаях модуляционная схема может сообщаться в явной форме.

В дополнение, в системах, применяющих гибридный автоматический запрос на повторную передачу (HARQ - Hybrid Automatic Repeat reQuest), информация HARQ тоже может формировать часть сигнализации L1/L2. Эта информация HARQ обычно указывает номер процесса HARQ, что позволяет подвижной станции идентифицировать процесс Гибридного ARQ, с которым сопоставляются данные, порядковый номер или новый индикатор данных, позволяющие подвижной станции идентифицировать, является передача новым пакетом или повторно передаваемым пакетом, и тип избыточности и/или созвездия. Тип избыточности и/или тип созвездия говорят подвижной станции, какой тип избыточности для Гибридного ARQ используется (требуется для согласования снижения скорости) и/или какой тип созвездия модуляции используется (требуется для демодуляции).

Дополнительным параметром в информации HARQ обычно является Идентификатор ПО, чтобы идентифицировать подвижную станцию для приема управляющей сигнализации L1/L2. В типичных реализациях эта информация используется для маскировки CRC (циклический избыточный код) управляющей сигнализации L1/L2, чтобы предотвратить чтение этой информации другими подвижными станциями.

Нижеприведенная таблица (Таблица 1) иллюстрирует пример структуры сигнала управляющего канала L1/L2 для планирования нисходящей линии связи, которая известна из документа 3GPP TR 25.814 (см. раздел 7.1.1.2.3 - FFS = for further study (для дальнейшего изучения)).

Таблица 1
Поле Размер Примечание
Категория 1(Указание ресурсов) Идентификатор (характеризующий ПО или группу) [8-9] Указывает ПО (или группу ПО), для которого предназначена передача данных
Выделение ресурсов FFS Указывает, какие (виртуальные) ресурсные единицы (и уровни в случае многоуровневой передачи) ПО будет демодулировать
Продолжительность выделения 2-3 Срок, в течение которого действует выделение, может также использоваться для управления TTI или постоянного планирования
Категория 2(транспортный формат) Информация, связанная с множественностью антенн FFS Содержимое зависит от выбранных схем MIMO/формирования диаграммы направленности
Схема модуляции 2 QPSK, 16QAM, 64QAM… В случае многоуровневой передачи может потребоваться несколько вариантов
Размер полезной нагрузки 6 Интерпретация может зависеть, например, от схемы модуляции и количества выделенных ресурсных единиц (HSDPA). В случае многоуровневой передачи может потребоваться несколько вариантов
Категория 3(HARQ) Если выбирается асинхронный гибридный ARQ Номер процесса гибрид-ного ARQ 3 Указывает процесс гибридного ARQ, к которому относится текущая передача
Тип избыточности 2 Для поддержки инкрементальной избыточности
Новый индика-тор данных 1 Для регулирования очистки мягкого буфера
Если выбирается синхронный гибридный ARQ Порядко-вый номер повтор-ной передачи 2 Используется для получения типа избыточности (для поддержки инкрементальной избыточности) и 'нового индикатора данных' (для регулирования очистки мягкого буфера)

Передача данных в восходящем направлении

Точно так же и для передач в восходящем направлении, сигнализация L1/L2 осуществляется в нисходящем направлении к передающим устройствам, чтобы проинформировать их о параметрах для передачи в восходящем направлении. В сущности, сигнал управляющего канала L1/L2 частично подобен этому для передач в нисходящем направлении. Как правило, он указывает физический(ие) ресурс(ы), по которому ПО должно передавать данные (например, поднесущие или блоки поднесущих в случае OFDM, коды в случае CDMA), и транспортный формат, который подвижная станция должна использовать для передачи в восходящем направлении. Дополнительно, управляющая информация L1/L2 также может содержать информацию Гибридного ARQ, указывающую номер процесса HARQ, порядковый номер или новый индикатор данных, а дополнительно тип избыточности и/или созвездия. В дополнение, может присутствовать Идентификатор ПО, входящий в состав управляющей сигнализации.

Варианты

Есть несколько различных разновидностей того, как точно передать порции информации, упомянутые выше. Более того, управляющая информация L1/L2 также может содержать дополнительную информацию или может не включать в себя часть информации. Например, номер процесса HARQ может не потребоваться в случае использования несинхронного или синхронного HARQ-протокола. Аналогично, тип избыточности и/или созвездия может не потребоваться, если, например, используется отслеживаемое комбинирование (т.е. всегда передаются одни и те же типы избыточности и/или созвездия) или если последовательность типов избыточности и/или созвездия предварительно задана.

Другим вариантом может быть дополнительное включение информации регулирования мощности в состав управляющей сигнализации или связанной с MIMO управляющей информации, такой, например, как информации предварительного кодирования. В случае MIMO-передачи с множественными кодовыми словами могут вноситься транспортный формат и/или информация HARQ для множественных кодовых слов.

В случае передачи данных в восходящем направлении, часть или вся перечисленная выше информация может сообщаться в восходящем направлении, вместо нисходящего направления. Например, базовая станция может только определить физический(ие) ресурс(ы), по которому данная подвижная станция должна осуществлять передачу. Соответственно, подвижная станция может выбрать и сообщить транспортный формат, схему модуляции и/или параметры HARQ в восходящем направлении. Какие части управляющей информации L1/L2 сообщаются в восходящем направлении, а какая доля сообщается в нисходящем направлении, как правило, является вопросом проектного решения, и зависит от представления о том, до какой степени управление будет выполняться сетью, и сколько самостоятельности будет предоставлено подвижной станции.

Другой, более современный вариант структуры управляющей сигнализации L1/L2 для передачи в восходящем и нисходящем направлении может быть найден в документе 3GPP TSG-RAN WG1 #50 Tdoc. R1-073870, "Протоколы автономных обсуждений по содержанию PDCCH", август 2007, доступном на http://www.3gpp.org и включаемом в данный документ путем ссылки.

Как указано выше, управляющая сигнализация L1/L2 была проигнорирована в отношении систем, которые уже развернуты в разных странах, таких например, как 3GPP HSDPA. Поэтому за подробной информацией относительно 3GPP HSDPA делается отсылка к документу 3GPP TS 25.308, "Высокоскоростной пакетный доступ по нисходящему каналу (HSDPA - High Speed Downlink Packet Access); Общее описание; Часть 2 ", версия 7.4.0, сентябрь 2007 (доступен на http://www.3gpp.org) и к книге авторства Харри Холма и Антти Тоскала, "WCDMA для UMTS, Радиодоступ для подвижной связи третьего поколения", Третье Издание, издательство John Wiley & Sons, Ltd., 2004, главы 11.1-11.5, для дополнительного чтения.

Технологии сжатия управляющей сигнализации L1/L2

Для планирования (чувствительных к задержкам) услуг с небольшими пакетами данных, таких например, как VoIP (Voice over IP - Голосовая связь по IP-протоколу) или игры, управляющая сигнализация L1/L2 в нисходящем направлении может быть весьма значительной, если должен сигнализироваться каждый небольшой пакет данных. В 5 МГц 3GPP LTE системе, может поддерживаться до 400 VoIP-пользователей, как показано в документе 3GPP TSG-RAN WG1 Конференция #46 Tdoc. R1-062179, "Характеристика VoIP-системы для E-UTRA по нисходящему каналу - Дополнительные результаты" (доступен на http://www.3gpp.org/ftp/tsg_ran/ WG1_RL1/TSGR1_46/ Docs/). Это дает в результате примерно 10 VoIP-пакетов в восходящем направлении и 10 VoIP-пакетов в нисходящем направлении в пределах подцикла, что требует 20 управляющих каналов L1/L2 (10 для передачи данных в восходящем направлении и 10 для передачи данных в нисходящем направлении). Полагая, что размер полезной нагрузки управляющего канала L1/L2, несущего в себе назначение для восходящего направления, составляет 35-45 битов, а размер полезной нагрузки управляющего канала L1/L2, несущего в себе назначение для нисходящего направления, составляет приблизительно 35-50 битов, в результате получаем непроизводительные издержки в нисходящем управляющем канале L1/L2 примерно 25-34% (при условии передачи с модуляцией QPSK при скорости 1/3 для управляющих каналов L1/L2). Эти непроизводительные издержки значительно больше, чем для других услуг (например, FTP, HTTP, потоковая передача звуковых/видео данных), когда данные могут передаваться в больших пакетах (предполагается, что непроизводительные издержки в нисходящем управляющем канале L1/L2 в этом случае составляют приблизительно 8-12%). Вследствие этого, в рамках стандартизации 3GPP LTE рассматриваются несколько технологий сжатия для услуг с небольшими пакетами данных. Ниже коротко разъясняются две рассматриваемые схемы, которые обсуждаются в 3GPP:

Одна обсуждаемая схема основывается на группировании пользователей (например, при аналогичных условиях радиосвязи). Примеры этой схемы описаны в параллельной заявке на европейский патент, номер EP 06009854.8, "РЕЗЕРВИРОВАНИЕ РЕСУРСОВ ДЛЯ ПОЛЬЗОВАТЕЛЕЙ СИСТЕМЫ ПОДВИЖНОЙ СВЯЗИ" или в документе 3GPP TSG-RAN-WG2 Конференция #57 Tdoc. R2-070758, "Планирование для нисходящего канала" (доступен на http://www.3gpp.org/ftp/ tsg_ran/WG2_RL2/TSGR2_57/Documents/), оба документа включаются в данный документ путем ссылки. В этой схеме используется единственный нисходящий управляющий канал L1/L2 со специальным "групповым форматом". Это приводит к тому, что требуется передавать меньшие нисходящие управляющие каналы L1/L2 с "групповым форматом", чем "нормальные" управляющие каналы L1/L2. Хотя размер полезной нагрузки управляющих каналов L1/L2 с "групповым форматом" больше, чем у "нормальных" управляющих каналов L1/L2, ожидается чистая экономия на непроизводительных издержках управляющей сигнализации L1/L2.

Другая иллюстративная схема основывается на использовании постоянного назначения ресурсов нисходящего канала и используется при слепом обнаружении. Примеры этой схемы описаны в параллельной заявке на европейский патент, номер EP 06009854.8, упомянутой выше, или в документе 3GPP TSG-RAN WG2 Конференция #56bis R2-070272, "Сигнализация оптимизированного планирования нисходящего канала для LTE" (доступен на http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_56bis/Documents/ и включается в данный документ путем ссылки). В этой иллюстративной схеме предварительно конфигурируется определенный набор ресурсных блоков и/или подциклов (например, определенное частотно-временное окно) и, возможно, определенный набор транспортных форматов, и ПО пытается вслепую декодировать возможно передаваемый пакет на предварительно сконфигурированных ресурсах с предварительно сконфигурированным набором транспортных форматов. Для первоначальной передачи пакета нисходящий управляющий канал L1/L2 опускается, тогда как повторные передачи назначаются нисходящим управляющим каналом L1/L2. При условии, что частота ошибок при передаче пакета для первой передачи пакета существенно ниже, непроизводительные издержки управляющей сигнализации L1/L2 снижаются, например, для 10%-й частоты ошибок при передаче пакета для первой передачи непроизводительные издержки управляющей сигнализации L1/L2 могут быть сокращены примерно на 90%. Как правило, при такой схеме, управляющая сигнализация L1/L2, передаваемая с повторной передачей, несет в себе информацию о первоначальной передаче (например, информацию о подцикле, в котором имела место первоначальная передача, информацию о ресурсном(ых) блоке(ах), на который была назначена первоначальная передача, и/или информацию о транспортном формате).

Поэтому желательно уменьшить сложность подвижной станции (ПО) с точки зрения декодирования нисходящего управляющего канала L1/L2. Кроме того, желательно достичь дополнительного снижения непроизводительных издержек управляющей сигнализации L1/L2 в нисходящем направлении и повышения эффективности сигнализации. Дополнительно, это может приниматься во внимание специалистами в данной области техники для реализации простой и менее сложной структуры нисходящего управляющего канала L1/L2.

Раскрытие Изобретения

Одной из основных особенностей настоящего изобретения является определение, по меньшей мере, одной так называемой кодовой точки в сигналах управляющего канала, как, например, управляющие каналы L1/L2, которые описаны ранее в настоящем документе. Кодовой точкой, соответственно, может считаться некоторое конкретное значение поля сигнала управляющего канала, которое указывает режим планирования для соотнесенной передачи пользовательских данных в протокольном блоке данных, и, дополнительно, формат управляющего канала. В качестве альтернативы, кодовая точка также может определяться как конкретная комбинация значений, представленных более чем одним полем сигнала управляющего канала. Таким же образом для сигнала управляющего канала могут определяться разные кодовые точки.

Одним из преимуществ, которые могут быть достигнуты с использованием кодовых точек, является исключение полей признака, которые указывают режим планирования или формат управляющего канала. Это уменьшает размер управляющего канала и, следовательно, непроизводительные издержки сигнализации.

Согласно другой особенности настоящего изобретения, для передачи пользовательских данных услуги могут использоваться различные режимы планирования, при этом кодовая точка используется для идентификации использования конкретного режима планирования. Различные режимы планирования могут задействовать различные форматы сигнала управляющего канала, так что кодовая точка дополнительно указывает конкретный формат управляющего канала.

Дополнительно, использование различных схем планирования к тому же повышает гибкость сигнализации управляющего канала, так что непроизводительные издержки управляющего канала могут быть снижены. Например, могут быть определены два различных режима планирования, причем один из режимов планирования сообщает информацию управляющего канала только для повторных передач протокольных пакетов данных (в отличие от обеспечения сигнала управляющего канала для каждой передачи протокольного блока данных, что могло бы иметь место для другого, второго режима планирования). Этот иллюстративный режим планирования может быть выгоден, например, для передачи пользовательских данных чувствительных к задержке услуг, в которых (средний) размер пользовательских данных протокольного блока данных является небольшим, по сравнению с другими видами услуг.

Согласно одному варианту осуществления настоящего изобретения, определяется сигнал управляющего канала. Этот сигнал управляющего канала применим для использования в системе подвижной связи, предусматривающей, по меньшей мере, два различных режима планирования. Сигнал управляющего канала содержит, по меньшей мере, одно поле управляющей информации, состоящее из некоторого количества битов, при этом, по меньшей мере, одно из значений, которые могут быть представлены битами этого, по меньшей мере, одного поля управляющей информации, определяет кодовую точку для указания принимающему устройству режима планирования для соотнесенной передачи пользовательских данных в составе протокольного блока данных и формата управляющего канала. Как указано выше, в качестве альтернативы, кодовая точка также может определяться комбинацией предварительно заданных значений различных полей управляющей информации в сигнале управляющего канала. Например, для определения кодовой точки могут использоваться, по меньшей мере, поле процесса HARQ и поле RV.

В одной разновидности количество битов сигнала управляющего канала одинаково, по меньшей мере, для двух режимов планирования. Это может быть удобно, например, для упрощения согласования скорости для управляющих каналов, или для уменьшения количества управляющих каналов разных размеров, которые должна декодировать подвижная станция.

Это, по меньшей мере, одно поле управляющего канала, которое используется для указания режима планирования посредством кодовой точки, может размещаться в фиксированной позиции в пределах сигнала управляющего канала для всех форматов управляющего канала. Соответственно, в случае, если размер формата управляющего канала одинаков для различных режимов планирования, и поле(я) управляющего канала для указания кодовой точки размещается в фиксированной(ых) позиции(ях), обнаружение кодовой точки в сигнале управляющего канала упрощается для устройства, принимающего сигнал управляющего канала.

В качестве альтернативы, в другом варианте осуществления настоящего изобретения, сигнал управляющего канала указывает множественные кодовые точки. Эти множественные кодовые точки указывают использование одного режима планирования, но различных транспортных форматов протокольного блока данных. Соответственно, не только одно конкретное значение, представимое битами поля (или полей) управляющего канала, может определяться как кодовая точка, но и разные значения могут использоваться для указания различных кодовых точек. Хотя, могут определяться множественные кодовые точки, но эти разные кодовые точки не обязательно указывают соответствующее количество различных режимов планирования. Например, все кодовые точки, определенные для поля управляющего канала, могут указывать один и тот же режим планирования, но разную информацию управляющего канала.

В одном иллюстративном варианте осуществления настоящего изобретения, кодовая точка определяется как конкретное значение поля процесса HARQ в составе сигнала управляющего канала. Например, один процесс HARQ может быть зарезервирован для режима планирования, и значение, представляемое битами поля процесса HARQ для указания зарезервированного процесса HARQ, определяет кодовую точку. Соответственно, в этом примере, кодовая точка указывает режим планирования (в зависимости от которого может интерпретироваться остальной сигнал управляющего канала) и одновременно определяет процесс HARQ протокольного блока данных.

В другом альтернативном варианте осуществления настоящего изобретения, по меньшей мере, одним полем управляющей информации для указания кодовой точки является поле назначения ресурсов сигнала управляющего канала. Поле назначения ресурсов, возможно, может содержать заголовок, и кодовая точка могла бы определяться конкретной битовой комбинацией из битов в заголовке поля назначения ресурсов.

В другом варианте осуществления, полем управляющей информации сигнала управляющего канала, определяющим кодовую точку, является поле транспортного формата сигнала управляющего канала. Например, это поле транспортного формата может указывать множественные кодовые точки, при этом подмножество этих множественных кодовых точек указывает использование одного режима планирования.

Согласно дополнительному варианту осуществления настоящего изобретения, поле управляющей информации, определяющее кодовую точку, используется для указания или постоянного режима планирования или динамического режима планирования.

Другой вариант осуществления настоящего изобретения имеет отношение к устройству планирования для использования в системе подвижной связи, предусматривающей, по меньшей мере, два различных режима планирования. Согласно этому иллюстративному варианту осуществления, устройство планирования выполняется с возможностью генерирования и передачи сигнала управляющего канала, который определяется в настоящем документе.

В разновидности этого варианта осуществления, устройство планирования выполняется с дополнительной возможностью передачи сигнала управляющего канала только для повторных передач протокольного блока данных, если для передачи пользовательских данных используется первый режим планирования.

В иллюстративном варианте осуществления, устройство планирования выполняется с возможностью применения первого режима планирования для передачи протокольных блоков данных, имеющих размер меньше пороговой величины (например, для протокольных блоков данных критичной к задержкам услуги, такой как VoIP). Второй режим планирования может использоваться для передачи протокольных блоков данных, имеющих размер больший или равный пороговой величине (т.е., например, для пользовательских данных нечувствительных к задержкам услуг).

В другом иллюстративном варианте осуществления, устройство планирования выполняется с возможностью применения первого режима планирования для передачи протокольных данных, преобразованных в первый набор очередей по приоритету или логических каналов (например, для протокольных блоков данных критичной к задержкам услуги, такой как VoIP). Второй режим планирования может использоваться для передачи протокольных блоков данных, преобразованных во второй набор очередей по приоритету или логических каналов (т.е., например, для пользовательских данных нечувствительных к задержкам услуг).

Как указано выше, формат управляющего канала может быть различным для разных режимов планирования, так что устройство планирования выполняется с возможностью генерирования разных форматов сигнала управляющего канала в зависимости от режима планирования, используемого для передачи пользовательских данных.

Устройство планирования в соответствии с другим вариантом осуществления настоящего изобретения использует поле процесса HARQ управляющего сигнала как, по меньшей мере, одно поле управляющей информации для указания кодовой точки. В иллюстративной разновидности этого варианта осуществления, один процесс HARQ резервируется для одного режима планирования, и значение, представляемое битами поля процесса HARQ для указания зарезервированного процесса HARQ, определяет кодовую точку.

В качестве альтернативы, согласно дополнительному варианту осуществления настоящего изобретения, полем управляющей информации является поле транспортного формата сигнала управляющего канала. В этом иллюстративном варианте осуществления, поле транспортного формата может, например, указывать множественные кодовые точки, и подмножество этих множественных кодовых точек может, например, указывать использование одного режима планирования.

В другом иллюстративном варианте осуществления настоящего изобретения, первым режимом планирования является постоянный режим планирования, а вторым режимом планирования является динамический режим планирования.

Другой вариант осуществления настоящего изобретения предоставляет базовую станцию, содержащую устройство планирования в соответствии с одним из различных вариантов осуществления изобретения, описанных в настоящем документе.

В одном варианте осуществления настоящего изобретения, базовая станция дополнительно содержит передающее устройство для передачи сигнала управляющего канала, сгенерированного устройством планирования, и протокольных блоков данных, содержащих пользовательские данные, на подвижный терминал. Базовая станция выполняется с дополнительной возможностью управления передающим устройством базовой станции, чтобы передавать сигнал управляющего канала только для повторных передач протокольного блока данных, в случае, когда для передачи протокольного блока данных используется первый режим планирования из числа, по меньшей мере, двух различных режимов планирования.

Базовая станция согласно другому варианту осуществления дополнительно содержит приемное устройство для приема сообщения обратной связи от подвижной станции. Сообщение обратной связи указывает, был ли протокольный блок данных, ранее переданный базовой станцией, успешно декодирован подвижной станцией.

В некоторых вариантах осуществления настоящего изобретения, первый режим планирования используется для передачи пользовательских данных на подвижный терминал, а сообщение обратной связи принимается приемным устройством базовой станции для первоначальной передачи протокольного блока данных, несущего в себе пользовательские данные. Можно предположить, что это сообщение обратной связи свидетельствует о том, что протокольный блок данных не был успешно декодирован подвижной станцией. Соответственно, базовая станция вызывает устройство планирования для генерирования сигнала управляющего канала для повторной передачи протокольного блока данных. Более того, базовая станция также может вызвать свое передающее устройство для повторной передачи протокольного блока данных и сгенерированного сигнала управляющего канала на подвижную станцию. Этот сигнал управляющего канала, по меньшей мере, указывает транспортный формат и ресурсы нисходящего физического канала, используемые для повторной передачи и первоначальной передачи протокольного блока данных.

Дополнительный вариант осуществления настоящего изобретения имеет отношение к подвижной станции для использования в системе подвижной связи и для приема пользовательских данных в нисходящем направлении в форме протокольных блоков данных. Эта подвижная станция содержит приемное устройство для приема от базовой станции подцикла нисходящего физического канала, а также для выполнения слепого обнаружения на принятом подцикле, чтобы таким образом декодировать первоначальную передачу протокольного блока данных, доставляющего пользовательские данные, в пределах принятого подцикла. Подвижная станция дополнительно содержит передающее устройство для передачи отрицательной обратной связи на базовую станцию, свид