Новые полимеры и их использование при получении высокоударных полимерных композиций

Иллюстрации

Показать все

Изобретение относится к функционализованному по концевым группам полимеру. Полимер содержит продукт реакции между живым полимером и, по меньшей мере, одним компонентом, выбранным из группы, состоящей из: (a) аллилглицидилового эфира, описывающегося формулой (I) CH2=CHCH2OCH2-Х, где Х представляет собой следующую далее эпоксигруппу:

где R1, R2 и R3 являются идентичными или различными и выбраны из водорода, алкильной или арильной групп, содержащих от 1 до 30 атомов углерода; (b) аллилгалогенсилана, описывающегося формулой (II) CH2=CHCH2Si(R1R2)-X, где R1 и R2 являются идентичными или различными и выбраны из алкильной или арильной групп, содержащих от 1 до 30 атомов углерода, а Х представляет собой галогенид, выбранный из хлорида, бромида и иодида, и (c) комбинации из (a) и (b). При этом живой полимер представляет собой живой полимер диенового мономера или живой полимер диенового мономера и винилароматического углеводородного мономера. Также предложены функционализованный по концевым группам полимер (вариант), способ получения функционализованного по концевым группам полимера и модифицированная каучуком высокоударопрочная полимерная композиция. Функционализованные по концевым группам полимеры используются для получения высокоударопрочных полимерных композиций. 4 н. и 8 з.п. ф-лы, 1 табл., 16 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к новым полимерам и к их использованию при получении высокоударопрочных полимерных композиций.

Уровень техники

Полибутадиен или каучук БК и бутадиен-стирольные блок-сополимеры широко используются в промышленности стирольных полимеров для получения высокоударопрочного полистирола (ВУПС) и акрилонитрил-бутадиен-стирольного сополимера (АБС). Как известно, повышенная степень уровня прививки стирола на каучук в результате приводит к получению лучших свойств у ВУПС. В соответствии с этим, существует постоянная потребность в получении улучшенных высокоударопрочных полимерных композиций.

Раскрытие изобретения

Настоящее изобретение относится к новым функционализованным по концевым группам полимерам, содержащим живой полимер, полученный в результате проведения анионной полимеризации, или псевдоживой полимер, полученный в результате проведения координационной полимеризации, образованные из диенового мономера или смеси из диенового мономера и винилароматического углеводородного мономера и вступившие в реакцию, по меньшей мере, с одним из определенных аллилглицидиловых эфиров или, по меньшей мере, с одним из определенных аллилгалогенсиланов или с комбинациями из аллилглицидиловых эфиров и аллилгалогенсиланов.

Аллилглицидиловые эфиры, подходящие для использования в настоящем изобретении, описываются общей формулой CH2=CHCH2OCH2-X, где X представляет собой следующую далее эпоксигруппу:

где R1, R2 и R3 являются идентичными или различными и выбраны из водорода или одновалентной органической группы. В одном или нескольких вариантах осуществления одновалентные органические группы могут включать гидрокарбильные группы или замещенные гидрокарбильные группы, такие как нижеследующие, но не ограничивающиеся только этими: алкил, циклоалкил, замещенный циклоалкил, арил, замещенный арил, аралкил, алкарил, при этом каждая группа содержит от 1 до 30 атомов углерода. Гидрокарбильные группы могут содержать гетероатомы, такие как нижеследующие, но не ограничивающиеся только этими: атомы азота, бора, кислорода, кремния, серы и фосфора.

Аллилгалогенсиланы, подходящие для использования в настоящем изобретении, oписываются общей формулой CH2=CHCH2Si(R1R2)-Х, где R1 и R2 являются идентичными или различными и выбраны из одновалентной органической группы. В одном или нескольких вариантах осуществления одновалентные органические группы могут включать гидрокарбильные группы или замещенные гидрокарбильные группы, такие как нижеследующие, но не ограничивающиеся только этими: алкил, циклоалкил, замещенный циклоалкил, арил, замещенный арил, аралкил, алкарил, при этом каждая группа содержит от 1 до 30 атомов углерода. Гидрокарбильные группы могут содержать гетероатомы, такие как нижеследующие, но не ограничивающиеся только этими: атомы азота, бора, кислорода, кремния, серы и фосфора, а X представляет собой галогенид, выбранный из хлорида, бромида или иодида.

Изобретение также относится к высокоударопрочным полимерным композициям, таким как высокоударопрочный полистирол (ВУПС) и АБС, содержащим функционализованные по концевым группам полимеры настоящего изобретения, описанные в настоящем документе.

Осуществление изобретения

Настоящее описание изобретения относится к новым функционализованным по концевым группам полимерам, содержащим живой полимер, полученный в результате проведения анионной полимеризации, или псевдоживой полимер, полученный в результате проведения координационной полимеризации, образованные из диенового мономера или смеси из диенового мономера и винилароматического углеводородного мономера и вступившие в реакцию, по меньшей мере, с одним из определенных аллилглицидиловых эфиров или, по меньшей мере, с одним из определенных аллилгалогенсиланов или с комбинациями из аллилглицидиловых эфиров и аллилгалогенсиланов.

Аллилглицидиловые эфиры, подходящие для использования в настоящем изобретении, описываются общей формулой CH2=CHCH2OCH2-X, где X представляет собой следующую далее эпоксигруппу:

где R1, R2 и R3 являются идентичными или различными и выбраны из водорода или одновалентной органической группы. В одном или нескольких вариантах осуществления одновалентные органические группы могут включать гидрокарбильные группы или замещенные гидрокарбильные группы, такие как нижеследующие, но не ограничивающиеся только этими: алкил, циклоалкил, замещенный циклоалкил, арил, замещенный арил, аралкил, алкарил, при этом каждая группа содержит от 1 до 30 атомов углерода. Гидрокарбильные группы могут содержать гетероатомы, такие как нижеследующие, но не ограничивающиеся только этими: атомы азота, бора, кислорода, кремния, серы и фосфора.

Аллилгалогенсиланы, подходящие для использования в настоящем изобретении, описываются общей формулой CH2=CHCH2Si(R1R2)-X, где R1 и R2 являются идентичными или различными и выбраны из одновалентной органической группы. В одном или нескольких вариантах осуществления одновалентные органические группы могут включать гидрокарбильные группы или замещенные гидрокарбильные группы, такие как нижеследующие, но не ограничивающиеся только этими: алкил, циклоалкил, замещенный циклоалкил, арил, замещенный арил, аралкил, алкарил, при этом каждая группа содержит от 1 до 30 атомов углерода. Гидрокарбильные группы могут содержать гетероатомы, такие как нижеследующие, но не ограничивающиеся только этими: атомы азота, бора, кислорода, кремния, серы и фосфора, а X представляет собой галогенид, выбранный из хлорида, бромида или иодида.

Изобретение также относится к высокоударопрочным полимерным композициям, таким как высокоударопрочный полистирол (ВУПС) и АБС, содержащим функционализованные по концевым группам полимеры настоящего изобретения, описанные в настоящем документе.

Термин «живой полимер» в соответствии с использованием по всему ходу изложения описания изобретения и формулы изобретения относится к полимерам, которые получены в результате проведения анионной полимеризации диенового мономера или смеси из диенового мономера и винилароматического углеводородного мономера при использовании инициатора, такого как литийорганическое соединение. Получающийся в результате полимер имеет активные концевые группы (например, литиевые концевые группы), которые могут быть подвергнуты реакциям обрыва цепи.

Термин «псевдоживой полимер» в соответствии с использованием в настоящем документе относится к полимерам, которые получены в результате проведения координационной полимеризации, где мономер полимеризуют при использовании системы координационного катализатора.

В одном или нескольких вариантах осуществления реакционно-способный полимер получают в результате проведения координационной полимеризации, где мономер полимеризуют при использовании системы координационного катализатора. Ключевые признаки механизма координационной полимеризации обсуждались в книгах (например, Kuran, W. Principles of Coordination Polymerization; John Wiley & Sons: New York, 2001) и обзорных статьях (например, Mulhaupt, R. Macromolecular Chemistry and Physics 2003, volume 204, pages 289-327). Координационные катализаторы, как представляется, инициируют полимеризацию мономера по механизму, который перед встраиванием мономера в растущую полимерную цепь включает координацию или комплексообразование мономера на металлсодержащем активном центре. Одним выгодным признаком координационных катализаторов является их способность обеспечивать стереохимическое регулирование полимеризации и, тем самым, приводить к получению стереорегулярных полимеров. Как известно на современном уровне техники, существует множество способов создания координационных катализаторов, но все способы, в конечном счете, приводят к получению активного промежуточного соединения, которое способно координироваться с мономером и обеспечивать встраивание мономера в ковалентную связь между металлсодержащим активным центром и растущей полимерной цепью. Координационная полимеризация сопряженных диенов, как представляется, протекает через π-аллильные комплексы в качестве промежуточных соединений. Координационные катализаторы могут представлять собой одно-, двух-, трех- или многокомпонентные системы. В одном или нескольких вариантах осуществления координационный катализатор может быть получен в результате объединения соединения тяжелого металла (например, соединения переходного металла или соединения лантаноида), алкилирующего агента (например, алюминийорганического соединения) и при необходимости других компонентов сокатализатора (например, кислоты Льюиса или основания Льюиса).

Для получения координационных катализаторов могут быть использованы различные методики. В одном или нескольких вариантах осуществления координационный катализатор может быть получен «по месту» в результате раздельного, либо постадийного, либо одновременного добавления компонентов катализатора к полимеризуемому мономеру. В других вариантах осуществления координационный катализатор может быть получен предварительно. То есть компоненты катализатора предварительно перемешивают вне полимеризационной системы, либо в отсутствие мономера, либо в присутствии небольшого количества мономера. Получающаяся в результате композиция предварительно полученного катализатора при необходимости может быть подвергнута старению, а после этого добавлена к мономеру, который предполагается заполимеризовать.

Подходящие системы координационных катализаторов включают системы катализаторов на основе лантаноидов. Данные системы катализатора выгодным образом могут приводить к получению цис-1,4-полидиенов, которые перед гашением активных центров имеют реакционно-способные концевые группы цепей и могут рассматриваться в качестве псевдоживых полимеров. Несмотря на возможность использования также и других систем координационных катализаторов, как было установлено, в особенности выгодными являются катализаторы на основе лантаноидов, и поэтому без ограничения объема настоящего изобретения они будут обсуждаться более подробно.

Практика одного или нескольких вариантов осуществления настоящего изобретения не ограничивается выбором какого-либо конкретного катализатора на основе лантаноида. В одном или нескольких вариантах осуществления композиция катализатора может включать соединение лантаноида, алкилирующий агент и галогенсодержащее соединение, которое содержит один или несколько подвижных атомов галогенов. В случае включения одного или нескольких подвижных атомов галогенов в соединение лантаноида и/или алкилирующий агент катализатор не должен обязательно включать отдельное галогенсодержащее соединение; например, катализатор может просто включать галогенированное соединение лантаноида и алкилирующий агент. В определенных вариантах осуществления алкилирующий агент может включать как алюмоксан, так и, по меньшей мере, одно другое алюминийорганическое соединение. В других еще вариантах осуществления вместо галогенсодержащего соединения может быть использовано соединение, содержащее некоординирующий анион, или предшественник некоординирующего аниона, то есть соединение, которое может подвергаться химической реакции с образованием некоординирующего аниона. В одном варианте осуществления в случае включения в алкилирующий агент производного алюминийорганического гидрида, галогенсодержащим соединением может являться галогенид олова, как это описывается в патенте США №7008899, который посредством ссылки включается в настоящий документ. В данных или других вариантах осуществления в дополнение к ингредиентам или компонентам, предложенным выше, могут быть использованы и другие металлоорганические соединения, основания Льюиса и/или модификаторы катализатора. Например, в одном варианте осуществления в качестве регулятора молекулярной массы может быть использовано никельсодержащее соединение, как это описывается в патенте США №6699813, который посредством ссылки включается в настоящий документ.

Могут быть использованы различные соединения лантаноидов или их смеси. В одном или нескольких вариантах осуществления данные соединения могут быть растворимыми в углеводородных растворителях, таких как ароматические углеводороды, алифатические углеводороды или циклоалифатические углеводороды. В других вариантах осуществления подходящими для использования также являются и нерастворимые в углеводородах соединения лантаноидов, которые могут быть суспендированы в полимеризационной среде для получения каталитически активных структур.

Соединения лантаноидов могут содержать, по меньшей мере, один атом лантана, неодима, церия, празеодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция и дидимия. Дидимий может включать коммерческую смесь редкоземельных элементов, полученную из монацитового песка.

Атом лантаноида в соединениях лантаноидов может иметь различные степени окисления, включая нижеследующие, но не ограничиваясь только этими: степени окисления 0, +2, +3 и +4. Соединения лантаноидов включают нижеследующие, но не ограничиваются только этими: карбоксилаты лантаноидов, органофосфаты лантаноидов, органофосфонаты лантаноидов, органофосфинаты лантаноидов, карбаматы лантаноидов, дитиокарбаматы лантаноидов, ксантогенаты лантаноидов, β-дикетонаты лантаноидов, алкоксиды или арилоксиды лантаноидов, галогениды лантаноидов, псевдогалогениды лантаноидов, оксигалогениды лантаноидов и лантаноидорганические соединения.

Без желания ограничить практику настоящего изобретения последующее обсуждение будет фокусироваться на соединениях неодима, хотя специалисты в соответствующей области техники смогут подобрать подобные соединения, которые базируются и на других лантаноидных металлах.

Карбоксилаты неодима включают формиат неодима, ацетат неодима, акрилат неодима, метакрилат неодима, валерат неодима, глюконат неодима, цитрат неодима, фумарат неодима, лактат неодима, малеат неодима, оксалат неодима, 2-этилгексаноат неодима, неодеканоат неодима (также известный под наименованием версатат неодима), нафтенат неодима, стеарат неодима, олеат неодима, бензоат неодима и пиколинат неодима.

Органофосфаты неодима включают дибутилфосфат неодима, дипентилфосфат неодима, дигексилфосфат неодима, дигептилфосфат неодима, диоктилфосфат неодима, бис(1-метилгептил)фосфат неодима, бис(2-этилгексил)фосфат неодима, дидецилфосфат неодима, дидодецилфосфат неодима, диоктадецилфосфат неодима, диолеилфосфат неодима, дифенилфосфат неодима, бис(п-нонилфенил)фосфат неодима, бутил(2-этилгексил)фосфат неодима, (1-метилгептил)(2-этилгексил)фосфат неодима и (2-этилгексил)(п-нонилфенил)фосфат неодима.

Органофосфонаты неодима включают бутилфосфонат неодима, пентилфосфонат неодима, гексилфосфонат неодима, гептилфосфонат неодима, октилфосфонат неодима, (1-метилгептил)фосфонат неодима, (2-этилгексил)фосфонат неодима, децилфосфонат неодима, додецилфосфонат неодима, октадецилфосфонат неодима, олеилфосфонат неодима, фенилфосфонат неодима, (п-нонилфенил)фосфонат неодима, бутил(бутилфосфонат) неодима, пентил(пентилфосфонат) неодима, гексил(гексилфосфонат) неодима, гептил(гептилфосфонат) неодима, октил(октилфосфонат) неодима, (1-метилгептил)((1-метилгептил)фосфонат) неодима, (2-этилгексил)((2-этилгексил)фосфонат) неодима, децил(децилфосфонат) неодима, додецил(додецилфосфонат) неодима, октадецил(октадецилфосфонат) неодима, олеил(олеилфосфонат) неодима, фенил(фенилфосфонат) неодима, (п-нонилфенил)((п-нонилфенил)фосфонат) неодима, бутил((2-этилгексил)фосфонат) неодима, (2-этилгексил)(бутилфосфонат) неодима, (1-метилгептил)((2-этилгексил)фосфонат) неодима, (2-этилгексил)((1-метилгептил)фосфонат) неодима, (2-этилгексил)((п-нонилфенил)фосфонат) неодима и (п-нонилфенил)((2-этилгексил)фосфонат) неодима.

Органофосфинаты неодима включают бутилфосфинат неодима, пентилфосфинат неодима, гексилфосфинат неодима, гептилфосфинат неодима, октилфосфинат неодима, (1-метилгептил)фосфинат неодима, (2-этилгексил)фосфинат неодима, децилфосфинат неодима, додецилфосфинат неодима, октадецилфосфинат неодима, олеилфосфинат неодима, фенилфосфинат неодима, (п-нонилфенил)фосфинат неодима, дибутилфосфинат неодима, дипентилфосфинат неодима, дигексилфосфинат неодима, дигептилфосфинат неодима, диоктилфосфинат неодима, бис(1-метилгептил)фосфинат неодима, бис(2-этилгексил)фосфинат неодима, дидецилфосфинат неодима, дидодецилфосфинат неодима, диоктадецилфосфинат неодима, диолеилфосфинат неодима, дифенилфосфинат неодима, бис(п-нонилфенил)фосфинат неодима, бутил(2-этилгексил)фосфинат неодима, (1 метилгептил)(2-этилгексил)фосфинат неодима и (2-этилгексил)(п-нонилфенил)фосфинат неодима.

Карбаматы неодима включают диметилкарбамат неодима, диэтилкарбамат неодима, диизопропилкарбамат неодима, дибутилкарбамат неодима и дибензилкарбамат неодима.

Дитиокарбаматы неодима включают диметилдитиокарбамат неодима, диэтилдитиокарбамат неодима, диизопропилдитиокарбамат неодима, дибутилдитиокарбамат неодима и дибензилдитиокарбамат неодима.

Ксантогенаты неодима включают метилксантогенат неодима, этилксантогенат неодима, изопропилксантогенат неодима, бутилксантогенат неодима и бензилксантогенат неодима.

β-дикетонаты неодима включают ацетилацетонат неодима, трифторацетилацетонат неодима, гексафторацетилацетонат неодима, бензоилацетонат неодима и 2,2,6,6-тетраметил-3,5-гептандионат неодима.

Алкоксиды или арилоксиды неодима включают метоксид неодима, этоксид неодима, изопропоксид неодима, 2-этилгексоксид неодима, феноксид неодима, нонилфеноксид неодима и нафтоксид неодима.

Галогениды неодима включают фторид неодима, хлорид неодима, бромид неодима и иодид неодима. Подходящие псевдогалогениды неодима включают цианид неодима, цианат неодима, тиоцианат неодима, азид неодима и ферроцианид неодима. Подходящие оксигалогениды неодима включают оксифторид неодима, оксихлорид неодима и оксибромид неодима. В случае использования галогенидов неодима, оксигалогенидов неодима или других соединений неодима, содержащих подвижные атомы галогенов, неодимсодержащее соединение также может быть использовано и в качестве галогенсодержащего соединения. В качестве добавки, содействующей солюбилизации данного класса соединений неодима в инертных органических растворителях, может быть использовано основание Льюиса, такое как тетрагидрофуран (ТГФ).

Термин «лантаноидорганическое соединение» может обозначать любое соединение лантаноида, включающее, по меньшей мере, одну связь лантаноид-углерод. Данными соединениями преимущественно, хотя не исключительно, являются те соединения, которые содержат циклопентадиенильный (Cp), замещенный циклопентадиенильный, аллильный и замещенный аллильный лиганды. Подходящие лантаноидорганические соединения включают Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(циклооктатетраен), (C5Me3)LnR, LnR3, Ln(аллил)3 и Ln(аллил)2Cl, где Ln представляет собой атом лантаноида, a R представляет собой гидрокарбильную группу.

Могут быть использованы различные алкилирующие агенты или их смеси. Алкилирующие агенты, которые также могут быть названы гидрокарбилирующими агентами, включают металлоорганические соединения, которые могут переносить гидрокарбильные группы на другой металл. Обычно данные агенты включают металлоорганические соединения электроположительных металлов, таких как металлы из групп 1, 2 и 3 (металлы из групп IA, IIA и IIIА). В одном или нескольких вариантах осуществления алкилирующие агенты включают алюминийорганические и магнийорганические соединения. В случае включения в алкилирующий агент подвижного атома галогена алкилирующий агент также может быть использован и в качестве галогенсодержащего соединения.

Термин «алюминийорганическое соединение» может обозначать любое соединение алюминия, включающее, по меньшей мере, одну связь алюминий-углерод. В одном или нескольких вариантах осуществления алюминийорганические соединения могут быть растворимыми в углеводородном растворителе.

В одном или нескольких вариантах осуществления алюминийорганические соединения включают те соединения, которые описываются формулой AlRnX3-n, где каждый из R, который может быть идентичным другим или отличным от них, представляет собой одновалентную органическую группу, которая присоединена к атому алюминия через атом углерода, где каждый из X, который может быть идентичным другим или отличным от них, представляет собой атом водорода, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу, и где n представляет собой целое число в диапазоне от 1 до 3. В одном или нескольких вариантах осуществления одновалентные органические группы могут включать гидрокарбильные группы, такие как нижеследующие, но не ограничивающиеся только этими: алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, замещенная арильная, аралкильная, алкарильная, аллильная или алкинильная группы. Данные гидрокарбильные группы могут содержать гетероатомы, такие как нижеследующие, но не ограничивающиеся только этими: атомы азота, кислорода, бора, кремния, серы, олова и фосфора.

Алюминийорганические соединения включают нижеследующие, но не ограничиваются только этими: производные тригидрокарбилалюминия, дигидрокарбилалюминийгидрида, гидрокарбилалюминийдигидрида, дигидрокарбилалюминийкарбоксилата, гидрокарбилалюминийбис(карбоксилата), дигидрокарбилалюминийалкоксида, гидрокарбилалюминийдиалкоксида, дигидрокарбилалюминийгалогенида, гидрокарбилалюминийдигалогенида, дигидрокарбилалюминийарилоксида и гидрокарбилалюминийдиарилоксида.

Производные тригидрокарбилалюминия включают триметилалюминий, триэтилалюминий, триизобутилалюминий, три-н-пропилалюминий, триизопропилалюминий, три-н-бутилалюминий, три-трет-бутилалюминий, три-н-пентилалюминий, тринеопентилалюминий, три-н-гексилалюминий, три-н-октилалюминий, трис(2-этилгексил)алюминий, трициклогексилалюминий, трис(1-метилциклопентил)алюминий, трифенилалюминий, три-п-толилалюминий, трис(2,6-диметилфенил)алюминий, трибензилалюминий, диэтилфенилалюминий, диэтил-п-толилалюминий, диэтилбензилалюминий, этилдифенилалюминий, этилди-п-толилалюминий и этилдибензилалюминий.

Производные дигидрокарбилалюминийгидрида включают диэтилалюминийгидрид, ди-н-пропилалюминийгидрид, диизопропилалюминийгидрид, ди-н-бутилалюминийгидрид, диизобутилалюминийгидрид, ди-н-октилалюминийгидрид, дифенилалюминийгидрид, ди-п-толилалюминийгидрид, дибензилалюминийгидрид, фенилэтилалюминийгидрид, фенил-н-пропилалюминийгидрид, фенилизопропилалюминийгидрид, фенил-н-бутилалюминийгидрид, фенилизобутилалюминийгидрид, фенил-н-октилалюминийгидрид, п-толилэтилалюминийгидрид, п-толил-н-пропилалюминийгидрид, п-толилизопропилалюминийгидрид, п-толил-н-бутилалюминийгидрид, п-толилизобутилалюминийгидрид, п-толил-н-октилалюминийгидрид, бензилэтилалюминийгидрид, бензил-н-пропилалюминийгидрид, бензилизопропилалюминийгидрид, бензил-н-бутилалюминийгидрид, бензилизобутилалюминийгидрид и бензил-н-октилалюминийгидрид.

Гидрокарбилалюминийдигидриды включают этилалюминийдигидрид, н-пропилалюминийдигидрид, изопропилалюминийдигидрид, н-бутилалюминийдигидрид, изобутилалюминийдигидрид и н-октилалюминийдигидрид. Производные дигидрокарбилалюминийхлорида включают диэтилалюминийхлорид, ди-н-пропилалюминийхлорид, диизопропилалюминийхлорид, ди-н-бутилалюминийхлорид, диизобутилалюминийхлорид, ди-н-октилалюминийхлорид, дифенилалюминийхлорид, ди-п-толилалюминийхлорид, дибензилалюминийхлорид, фенилэтилалюминийхлорид, фенил-н-пропилалюминийхлорид, фенилизопропилалюминийхлорид, фенил-н-бутилалюминийхлорид, фенилизобутилалюминийхлорид, фенил-н-октилалюминийхлорид, п-толилэтилалюминийхлорид, п-толил-н-пропилалюминийхлорид, п-толилизопропилалюминийхлорид, п-толил-н-бутилалюминийхлорид, п- толилизобутилалюминийхлорид, п-толил-н-октилалюминийхлорид, бензилэтилалюминийхлорид, бензил-н-пропилалюминийхлорид, бензилизопропилалюминийхлорид, бензил-н-бутилалюминийхлорид, бензилизобутилалюминийхлорид и бензил-н-октилалюминийхлорид.

Гидрокарбилалюминийдихлорид включают этилалюминийдихлорид, н-пропилалюминийдихлорид, изопропилалюминийдихлорид, н-бутилалюминийдихлорид, изобутилалюминийдихлорид и н-октилалюминийдихлорид.

Другие алюминийорганические соединения включают диметилалюминийгексаноат, диэтилалюминийоктаноат, диизобутилалюминий(2-этилгексаноат), диметилалюминийнеодеканоат, диэтилалюминийстеарат, диизобутилалюминийолеат, метилалюминийбис(гексаноат), этилалюминийбис(октаноат), изобутилалюминийбис(2-этилгексаноат), метилалюминийбис(неодеканоат), этилалюминийбис(стеарат), изобутилалюминийбис(олеат), диметилалюминийметоксид, диэтилалюминийметоксид, диизобутилалюминийметоксид, диметилалюминийэтоксид, диэтилалюминийэтоксид, диизобутилалюминийэтоксид, диметилалюминийфеноксид, диэтилалюминийфеноксид, диизобутилалюминийфеноксид, метилалюминийдиметоксид, этилалюминийдиметоксид, изобутилалюминийдиметоксид, метилалюминийдиэтоксид, этилалюминийдиэтоксид, изобутилалюминийдиэтоксид, метилалюминийдифеноксид, этилалюминийдифеноксид, изобутилалюминийдифеноксид и тому подобное и их смеси.

Еще один класс алюминийорганических соединений включает алюмоксаны. Алюмоксаны включают олигомерные линейные алюмоксаны, которые могут быть описаны общей формулой:

и олигомерные циклические алюмоксаны, которые могут быть описаны общей формулой:

где x может представлять собой целое число в диапазоне от 1 до приблизительно 100, а в других вариантах осуществления от приблизительно 10 до приблизительно 50; у может представлять собой целое число в диапазоне от 2 до приблизительно 100, а в других вариантах осуществления от приблизительно 3 до приблизительно 20; и где каждый из R1, который может быть идентичным другим или отличным от них, может представлять собой одновалентную органическую группу, которая присоединена к атому алюминия через атом углерода. Одновалентные органические группы были определены выше. Необходимо отметить то, что количество молей алюмоксана, использующееся в данной заявке, относится к количеству молей атомов алюминия, а не количеству молей олигомерных молекул алюмоксана. Данная условность широко используется на современном уровне техники катализа, использующего алюмоксаны.

Алюмоксаны могут быть получены в результате проведения реакции между производными тригидрокарбилалюминия и водой. Данная реакция может быть проведена в соответствии с известными способами, такими как (1) способ, в котором производное тригидрокарбилалюминия может быть растворено в органическом растворителе, а после этого введено в контакт с водой, (2) способ, в котором производное тригидрокарбилалюминия может быть введено в реакцию с кристаллизационной водой, содержащейся, например, в металлических солях, или с водой, адсорбированной на неорганических или органических соединениях, и (3) способ, в котором производное тригидрокарбилалюминия может быть введено в реакцию с водой в присутствии мономера или раствора мономера, который предполагается заполимеризовать.

Производные алюмоксана включают метилалюмоксан (МАО), модифицированный метилалюмоксан (ММАО), этилалюмоксан, н-пропилалюмоксан, изопропилалюмоксан, бутилалюмоксан, изобутилалюмоксан, н-пентилалюмоксан, неопентилалюмоксан, н-гексилалюмоксан, н-октилалюмоксан, 2-этилгексилалюмоксан, циклогексилалюмоксан, 1-метилциклопентилалюмоксан, фенилалюмоксан, 2,6-диметилфенилалюмоксан и тому подобное и их смеси. Модифицированный метилалюмоксан может быть получен в результате замещения приблизительно 20-80% метильных групп метилалюмоксана C2-C12 гидрокарбильными группами, предпочтительно изобутильными группами, при использовании способов, известных специалистам в соответствующей области техники.

Алюмоксаны могут быть использованы индивидуально или в комбинации с другими алюминийорганическими соединениями. В одном варианте осуществления в комбинации используют метилалюмоксан и, по меньшей мере, одно другое алюминийорганическое соединение (например, AlRnX3-n), такое как диизобутилалюминийгидрид.

Термин «магнийорганическое соединение» может обозначать любое соединение магния, которое включает, по меньшей мере, одну связь магний-углерод. Магнийорганические соединения могут быть растворимыми в углеводородном растворителе. Один класс магнийорганических соединений, которые могут быть использованы, может быть описан формулой MgR2, где каждый из R, который может быть идентичным другим или отличным от них, представляет собой одновалентную органическую группу, при том условии, что данная группа присоединена к атому магния через атом углерода. В одном или нескольких вариантах осуществления каждый R может представлять собой гидрокарбильную группу, а получающиеся в результате магнийорганические соединения представляют собой производные дигидрокарбилмагния. Примеры гидрокарбильных групп включают нижеследующие, но не ограничиваются только этими: алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, аллильная, замещенная арильная, аралкильная, алкарильная и алкинильная группы. Данные гидрокарбильные группы могут содержать гетероатомы, такие как нижеследующие, но не ограничивающиеся только этими: атомы азота, кислорода, кремния, серы, олова и фосфора.

Примеры подходящих производных дигидрокарбилмагния включают диэтилмагний, ди-н-пропилмагний, диизопропилмагний, дибутилмагний, дигексилмагний, дифенилмагний, дибензилмагний и их смеси.

Еще один класс магнийорганических соединений, которые могут быть использованы, включает те соединения, которые могут быть описаны формулой RMgX, где R представляет собой одновалентную органическую группу, при том условии, что данная группа присоединена к атому магния через атом углерода, а X представляет собой атом водорода, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу. Одновалентные группы были определены выше. В одном или нескольких вариантах осуществления X представляет собой карбоксилатную группу, алкоксидную группу или арилоксидную группу.

Примеры типов магнийорганических соединений, которые могут быть описаны формулой RMgX, включают нижеследующие, но не ограничиваются только этими: гидрокарбилмагнийгидрид, гидрокарбилмагнийгалогенид, гидрокарбилмагнийкарбоксилат, гидрокарбилмагнийалкоксид, гидрокарбилмагнийарилоксид и их смеси.

Конкретные примеры магнийорганических соединений, которые могут быть описаны формулой RMgX, включают метилмагнийгидрид, этилмагнийгидрид, бутилмагнийгидрид, гексилмагнийгидрид, фенилмагнийгидрид, бензилмагнийгидрид, метилмагнийхлорид, этилмагнийхлорид, бутилмагнийхлорид, гексилмагнийхлорид, фенилмагнийхлорид, бензилмагнийхлорид, метилмагнийбромид, этилмагнийбромид, бутилмагнийбромид, гексилмагнийбромид, фенилмагнийбромид, бензилмагнийбромид, метилмагнийгексаноат, этилмагнийгексаноат, бутилмагнийгексаноат, гексилмагнийгексаноат, фенилмагнийгексаноат, бензилмагнийгексаноат, метилмагнийэтоксид, этилмагнийэтоксид, бутилмагнийэтоксид, гексилмагнийэтоксид, фенилмагнийэтоксид, бензилмагнийэтоксид, метилмагнийфеноксид, этилмагнийфеноксид, бутилмагнийфеноксид, гексилмагнийфеноксид, фенилмагнийфеноксид, бензилмагнийфеноксид и тому подобное и их смеси.

Могут быть использованы различные галогенсодержащие соединения или их смеси, которые содержат один или несколько подвижных атомов галогенов. Примеры атомов галогенов включают нижеследующие, но не ограничиваются только этими: фтор, хлор, бром и иод. Также может быть использована и комбинация из двух и более галогенсодержащих соединений, содержащих различные атомы галогенов. В одном или нескольких вариантах осуществления галогенсодержащие соединения могут быть растворимыми в углеводородном растворителе. В других вариантах осуществления подходящими для использования могут оказаться нерастворимые в углеводородах галогенсодержащие соединения, которые могут быть суспендированы в полимеризационной среде для получения каталитически активных структур.

Подходящие типы галогенсодержащих соединений включают нижеследующие, но не ограничиваются только этими: элементарные галогены, смешанные галогены, галогениды водорода, органические галогениды, неорганические галогениды, галогениды металлов, металлоорганические галогениды и их смеси.

Элементарные галогены включают фтор, хлор, бром и иод. Смешанные галогены включают монохлорид иода, монобромид иода, трихлорид иода и пентафторид иода.

Галогениды водорода включают фторид водорода, хлорид водорода, бромид водорода и иодид водорода.

Органические галогениды включают трет-бутилхлорид, трет-бутилбромиды, трет-бутилиодид, аллилхлорид, аллилбромид, бензилхлорид, бензилбромид, хлордифенилметан, бромдифенилметан, трифенилметилхлорид, трифенилметилбромид, бензилиденхлорид, бензилиденбромид, метилтрихлорсилан, фенилтрихлорсилан, диметилдихлорсилан, дифенилдихлорсилан, триметилхлорсилан, бензоилхлорид, бензоилбромид, пропионилхлорид, пропионилбромид, метилхлорформиат и метилбромформиат.

Неорганические галогениды включают трихлорид фосфора, трибромид фосфора, трииодид фосфора, пентахлорид фосфора, оксихлорид фосфора, оксибромид фосфора, трифторид бора, трихлорид бора, трибромид бора, тетрафторид кремния, тетрахлорид кремния, тетрабромид кремния, тетраиодид кремния, трихлорид мышьяка, трибромид мышьяка, трииодид мышьяка, тетрахлорид селена, тетрабромид селена, тетрахлорид теллура, тетрабромид теллура и тетраиодид теллура.

Галогениды металлов включают тетрахлорид олова, тетрабромид олова, трихлорид алюминия, трибромид алюминия, трихлорид сурьмы, пентахлорид сурьмы, трибромид сурьмы, трииодид алюминия, трифторид алюминия, трихлорид галлия, трибромид галлия, трииодид галлия, трифторид галлия, трихлорид индия, трибромид индия, трииодид индия, трифторид индия, тетрахлорид титана, тетрабромид титана, тетраиодид титана, дихлорид цинка, дибромид цинка, дииодид цинка и дифторид цинка.

Металлоорганические галогениды включают диметилалюминийхлорид, диэтилалюминийхлорид, диметилалюминийбромид, диэтилалюминийбромид, диметилалюминийфторид, диэтилалюминийфторид, метилалюминийдихлорид, этилалюминийдихлорид, метилалюминийдибромид, этилалюминийдибромид, метилалюминийдифторид, этилалюминийдифторид, метилалюминийсесквихлорид, этилалюминийсесквихлорид, изобутилалюминийсесквихлорид, метилмагнийхлорид, метилмагнийбромид, метилмагнийиодид, этилмагнийхлорид, этилмагнийбромид, бутилмагнийхлорид, бутилмагнийбромид, фенилмагнийхлорид, фенилмагнийбромид, бензилмагнийхлорид, триметилоловохлорид, триметилоловобромид, триэтилоловохлорид, триэтилоловобромид, ди-трет-бутилоловодихлорид, ди-трет-бутилоловодибромид, дибутилоловодихлорид, дибутилоловодибромид, трибутилоловохлорид и трибутилоловобромид.

Соединения, содержащие некоординирующие анионы, на современном уровне техники известны. В общем случае некоординирующими анионами являются стерически объемистые анионы, которые не образуют координационных связей, например, с активным центром системы катализатора вследствие стерических затруднений. Примеры некоординирующих анионов включают тетраарилборатные анионы и фторированные тетраарилборатные анионы. Соединения, содержащие некоординирующий анион, также содержат п