Способы разделения и характеристики микроорганизмов с помощью идентификатора
Иллюстрации
Показать всеИзобретение относится к области микробиологии, а именно к способу характеристики микроорганизмов. Сущность способа состоит в (a) получении тестируемого образца, о котором известно, что он содержит или может содержать микроорганизмы; (b) наслаивании тестируемого образца на плотностный буфер в контейнере, где указанный плотностный буфер обладает однородной плотностью от приблизительно 1,025 до приблизительно 1,120 г/мл; (c) добавлении идентификатора в указанный тестируемый образец и/или в указанный плотностный буфер; (d) центрифугировании указанного контейнера для разделения микроорганизмов от других компонентов указанного тестируемого образца и образовании осадка микроорганизмов; (e) спектроскопическом исследовании осадка и/или указанного одного или более чем одного идентификатора с получением измерений, которые характеризуют микроорганизмы, где указанные спектроскопические исследования проводят при нахождении указанного осадка в указанном контейнере; и (f) характеристике микроорганизмов в осадке на основании полученных измерений и/или присутствия или отсутствия указанного идентификатора или метаболизированной формы указанного идентификатора в осадке, где указанные микроорганизмы характеризуют по одной или более моделям классификации, выбранным из группы, состоящей из групп по Граму, клинических групп по Граму, терапевтических групп и функциональных групп. Использование заявленного изобретения позволяет повысить точность характеристики микроорганизмов. 14 з.п. ф-лы, 5 ил., 1 табл., 4 пр.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Данная заявка претендует на приоритет в отношении предварительной заявки на патент США №61/110187, озаглавленной ″Method and System for Detection and/or Characterization of a Biological Particle in a Sample″, поданной 31 октября 2008 г., которая включена в данную заявку.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способам и системам для обнаружения, изоляции и/или идентификации микроорганизмов в образце. Кроме того, настоящее изобретение направлено на способ усовершенствованной характеристики и/или идентификации микроорганизма с помощью идентификатора.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Обнаружение патогенных микроорганизмов в биологических жидкостях следует осуществлять в кратчайшее по возможности время, в частности в случае септицемии, для которой смертность остается высокой несмотря на широкий спектр антибиотиков, доступных врачам. Присутствие биологически активных агентов, таких как микроорганизмы, в жидкости организма пациента, в частности в крови, обычно определяют, используя флаконы гемокультуры. Инфекции системы кровообращения связаны с высокой заболеваемостью и смертностью, кроме того, осуществление современных способов диагностики, культивирования с последующей биохимической идентификацией и тестирования на чувствительность к антибиотикам может занять несколько суток. Обычно начинают эмпирическую терапию на основании клинических симптомов, и результаты тестов влияют на клинические решения только тогда, когда первоначальная терапия неудачна. Способность охарактеризовать инфекции кровообращения в пределах первых нескольких часов, предпочтительно в пределах часа, после положительного результата гемокультуры значительно усилило бы клиническую релевантность предоставленной диагностической информации. Для восполнения данной потребности предложены способы молекулярной амплификации, но при данном подходе остаются серьезные проблемы. Сама среда положительной гемокультуры представляет собой естественно амплифицированную популяцию микроорганизмов с потенциалом использования в разнообразных быстрых тестах идентификации (ID).
Традиционные автоматические фенотипические ID тесты, такие как системы Vitek®, Phoenix™ и Microscan®, или ручные фенотипические тесты, такие как API, требуют, чтобы микроорганизмы находились в соответствующей фазе роста и были свободны от мешающих сред и продуктов крови с целью получения надежных результатов. Эти системы используют колонии, выращенные из положительной культуры в течение 18-24 часов на средах в чашках Петри. Однако при стремлении получить более быстрые результаты некоторые лаборатории сообщили об использовании этих систем с микроорганизмами, выделенными из флаконов с положительными гемокультурами. Эти тесты ″непосредственно из флакона″ пригодны не для всех микроорганизмов (например, непригодны для грамположительных кокков), не подтверждены изготовителями тестов и, как правило, занимают 3-8 часов для получения результатов. Более быстрые и более широко специфичные тесты крайне необходимы в целях обеспечения врача клинически релевантными результатами в пределах первых нескольких часов, предпочтительно в пределах часа, после положительного результата культуры.
Способы оптической спектроскопии, такие как собственная флуоресценция (IF), инфракрасная спектроскопия (FTIR) или рамановская спектроскопия, и способы масс-спектрометрии, такие как MALDI-TOF (времяпролетная ионизация лазерной десорбцией с использованием матрицы), обладают потенциалом, предоставляющим возможность идентификации микроорганизмов очень быстро, но они могут столкнуться с интерференцией от множества высокофлуоресцентных и поглощающих соединений, присутствующих в жидких микробиологических культуральных средах и в клинических образцах, таких как кровь, или в их сочетании. Чаще всего используемые способы выделения микроорганизмов непосредственно из положительной гемокультуры представляют собой двухступенчатое дифференциальное центрифугирование и центрифугирование в пробирке для отделения сыворотки.
Другие описанные способы разделения, характеристики и/или идентификации микроорганизмов включают:
В патенте США №4847198 раскрыт способ идентификации микроорганизмов с помощью рамановской спектроскопии с УФ возбуждением. В соответствии с патентом ′198 бактериальную суспензию приводят в контакт с одной длиной волны в ультрафиолетовом диапазоне. Часть использованной световой энергии поглощается, а часть световой энергии испускается. Испускаемую световую энергию, усиленное резонансом рамановское светорассеяние, измеряют как обратнорассеянную энергию. Эту энергию обрабатывают с получением спектров, которые являются характеристическими для бактерий.
Патент США №5938617 автора Vo-Dinh направлен на систему, которая идентифицирует биологические патогены в образце путем возбуждения образца светом при нескольких длинах волн и синхронного снятия интенсивностей испускания. Эта система включает механизмы для воздействия на образец возбуждающим излучением и образования в результате этого испускаемого излучения. Биологические патогены могут представлять собой вирусы и бактерии.
В патенте США №6177266 раскрыт способ хемотаксономической классификации бактерий биомаркерами, специфичными для рода, вида и штамма, созданными с помощью анализа масс-спектрометрии времяпролетной ионизации лазерной десорбцией с использованием матрицы (MALDI-TOF-MS) либо клеточных белковых экстрактов, либо целых клеток.
В патенте США №7070739 представлен способ экстракции, разделения и очистки микроорганизмов, включая вирусы, путем двумерного ультрацентрифугирования непосредственно из жидкостей организма или из гомогенизированной ткани. На первой стадии центрифугирования удаляют все частицы, имеющие более высокую скорость седиментации, чем те из микроорганизмов, которые нужно идентифицировать. На второй стадии ультрацентрифугирования используют зональное центрифугирование в градиенте плотности в жидкостях, заполненных с образованием градиента плотности широкого диапазона, используя специальные рифленые центрифужные пробирки. В соответствии с этим патентом этот метод разделения можно использовать для определения сгруппированных частиц с помощью светорассеяния или флуоресценции, используя красители, специфичные для нуклеиновых кислот, и для выделения сгруппированных частиц в очень малых объемах для характеристики с помощью масс-спектрометрии субъединиц вирусных белков и интактных вирусных частиц, а также с помощью флуоресцентного проточного цитометрического определения как массы нуклеиновых кислот, так и масс-фрагментов, образуемых ферментами рестрикции.
В опубликованной заявке на патент США №2007/0037135 раскрыта система для идентификации и количественного определения биологического образца, суспендированного в жидкости. Эта система включает модуль возбуждения флуоресценции по меньшей мере с одним возбуждающим источником света; модуль интерфейса образца, оптически соединенный с модулем возбуждения флуоресценции для расположения биологического образца таким образом, чтобы он получал возбуждающий свет по меньшей мере от одного источника возбуждающего света; модуль испускания флуоресценции, оптически соединенный с модулем интерфейса образца и включающий по меньшей мере одно устройство обнаружения для определения матриц возбуждения-испускания флуоресценции биологического образца; и компьютерный модуль, оперативно соединенный с модулем испускания флуоресценции. Компьютерный модуль осуществляет многофакторный анализ на матрицах возбуждения-испускания флуоресценции биологического образца, чтобы идентифицировать и количественно определить биологический образец. Однако в заявке ′135 не обсуждена идентификация и количественное определение микроорганизмов из комплексных биологических образцов, таких как кровь.
В опубликованной заявке на патент США №2007/0175278 описано использование жидкой культуральной среды для культивирования интересующего образца, включающего, например, кровь, мочу, фекалии, внутривенные катетеры и т.д., линии промышленного производства, водные системы, пищевой продукт, косметическое изделие, фармацевтический препарат и криминалистический образец. Следовательно, микроорганизмы могут быть собраны из жидкой среды способами, известными в данной области техники, например, центрифугированием. Затем концентрированные микроорганизмы можно переносить на материал-носитель, необязательно после высушивания, для получения вибрационного спектра. В заявке на патент обсуждены различные способы идентификации и классификации микроорганизмов, включая вибрационную спектроскопию, такую как рамановская спектроскопия.
Однако эти способы имеют несколько недостатков при попытке разделить и охарактеризовать микроорганизмы из комплексных образцов, таких как культуральные среды, содержащие кровь. Полученные в результате препараты микроорганизмов часто содержат загрязняющие эритроциты, тромбоциты, липидные частицы, плазматические ферменты и клеточный детрит, что может вызвать плохие результаты. Эти способы также являются очень трудоемкими и небезопасными за счет стадий, которые могут привести в результате к аэрозольному воздействию потенциально опасных патогенов на пользователя. Необходимы простые, безопасные и надежные способы выделения микроорганизмов из клинических образцов (например, гемокультуры) и других комплексных образцов, которые свободны от этих интерферирующих материалов и совместимы с технологиями быстрой идентификации.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
В настоящем изобретении предложены способы изоляции, характеристики и/или идентификации микроорганизмов в образце. Эти способы дают возможность характеристики и/или идентификации микроорганизмов быстрее, чем методы предшествующего уровня техники, приводя в результате к более быстрым диагнозам (например, у субъекта, страдающего или подозреваемого на септицемию) и идентификации зараженных материалов (например, пищевых продуктов и фармацевтических препаратов). Стадии, включенные в способы по изобретению, от получения образца для характеристики и/или идентификации микроорганизмов до получения клинически релевантной информации, дающей основания для действий, можно осуществлять в очень короткой временной рамке, например, менее чем примерно за 120 минут. Кроме того, способы по изобретению могут быть полностью автоматизированы, уменьшая за счет этого риск обращения с инфекционными материалами и/или заражения образцов.
В одном аспекте настоящее изобретение направлено на способ характеристики и/или идентификации микроорганизма, включающий:
(a) получение тестируемого образца, о котором известно, что он содержит или может содержать микроорганизмы;
(b) наслаивание тестируемого образца на плотностный буфер в контейнере;
(c) добавление идентификатора в тестируемый образец и/или в плотностный буфер;
(d) центрифугирование контейнера для разделения микроорганизмов от других компонентов тестируемого образца и образование осадка микроорганизмов;
(e) исследование осадка и/или одного или более чем одного идентификатора с получением измерений, которые позволяют идентифицировать микроорганизмы; и
(f) характеристику и/или идентификацию микроорганизмов в осадке на основании полученных измерений и/или присутствия или отсутствия идентификатора или метаболизированной формы идентификатора в осадке.
В другом аспекте настоящее изобретение направлено на способ изоляции и идентификации микроорганизма, включающий:
(a) получение тестируемого образца, о котором известно, что он содержит или может содержать микроорганизмы;
(b) необязательно лизис клеток в тестируемом образце с получением лизированного образца;
(c) разделение микроорганизмов от других компонентов лизированного образца с образованием осадка микроорганизмов;
(d) исследование осадка с получением измерений, которые позволяют идентифицировать микроорганизмы;
(e) идентификацию микроорганизмов на основании полученных измерений; и
(f) выделение по меньшей мере части осадка с получением выделенных микроорганизмов;
(g) проведение одного или более чем одного дополнительного теста на выделенных микроорганизмах.
В одной форме осуществления разделение осуществляют путем наслаивания образца на плотностный буфер в контейнере и центрифугирование контейнера для осаждения микроорганизмов, в то время как среда образца остается сверху плотностного буфера. В другой форме осуществления контейнер имеет оптическое окно на дне и/или на стенках, так что осадок микроорганизмов может быть исследован спектроскопическим путем. Микроорганизмы можно идентифицировать путем сравнения спектра осадка со спектром или спектрами известных микроорганизмов. Способность идентифицировать микроорганизмы непосредственно в осадке без дополнительных манипуляций повышает безопасность идентификации микроорганизмов.
В одной форме осуществления спектроскопическое исследование основано на собственных характеристиках микроорганизмов (например, собственной флуоресценции). В других формах осуществления спектроскопическое исследование основано отчасти на сигналах, полученных от дополнительных агентов, которые добавляют в процессе способов по изобретению и которые взаимодействуют со специфичными микроорганизмами или группами микроорганизмов.
В другой форме осуществления способы дополнительно включают стадию выделения осадка микроорганизма, ресуспендирования микроорганизма и проведения дополнительных тестов идентификации или характеристики (например, лекарственной устойчивости, факторов вирулентности, антибиограммы).
Настоящее изобретение более подробно объяснено в графических материалах данной заявки и в приведенном ниже описании.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
На фиг.1 показана матрица возбуждения-испускания для суспензии S. aureus.
На фиг.2 показана матрица возбуждения-испускания для суспензии Е. соli.
На фиг.3 показана столбиковая диаграмма активности пироглутамилпептидазы (PyrA), измеренной в осадке микроорганизмов, изолированном непосредственно из положительной гемокультуры.
Фиг.4 представляет собой фотографию сепаратора, показанного после центрифугирования гемокультуры, содержащей лизированную культуру микроорганизма. На фотографии четко видна лизированная культура крови, плотностный буфер и осадок микроорганизма.
На фиг.5 показана столбиковая диаграмма специфичного связывания зондов PNA FISH с различными видами Candida.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение может быть осуществлено в различных формах и не должно рассматриваться как ограниченное формами осуществления, изложенными в данной заявке. Вероятнее, эти формы осуществления представлены, чтобы данное описание было более тщательным и полным и полностью передавало объем изобретения специалистам в данной области техники. Например, признаки, проиллюстрированные в отношении одной формы осуществления, могут быть включены в другие формы осуществления, а признаки, проиллюстрированные в отношении конкретной формы осуществления, могут быть удалены из этой формы осуществления. Кроме того, различные изменения и дополнения к предложенным здесь формам осуществления, которые не отклоняются от настоящего изобретения, будут очевидны специалистам в данной области техники в свете настоящего описания.
Если не определено иное, все технические и научные термины, используемые в данной заявке, имеют то же значение, которое общепринято понимают обычные специалисты в области техники, к которой принадлежит данное изобретение. Терминология, используемая в описании изобретения в данной заявке, предназначена только для целей описания конкретных форм осуществления и не предназначена для ограничения изобретения.
Определения
Как используют в данной заявке, единственное число может означать одно или более чем одно. Например, ″клетка″ может означать единственную клетку или множество клеток.
Как используют в данной заявке, ″и/или″ также относится к любой или ко всем возможным комбинациям одного или более чем одного из сопутствующих перечисленных пунктов и включает их, а также отсутствие комбинаций при интерпретации в альтернативе (″или″).
Кроме того, термин "примерно", как используют в данной заявке по отношению к измеримому значению, такому как количество соединения или агента по данному изобретению, доза, время, температура и тому подобное, подразумевают как охватывающий вариации ±20%, ±10%, ±5%, ±1%, ±0,5% или даже ±0,1% указанного количества.
Как используют в данной заявке, термин ″микроорганизм″ предназначен для включения организмов, которые являются в целом одноклеточными, которые можно размножать и держать в лаборатории, включающие, но не ограниченные ими, грамположительные или грамотрицательные бактерии, дрожжи, плесневые грибы, паразиты и молликуты. Не ограничивающие примеры грамотрицательных бактерий по данному изобретению включают бактерии следующих родов: Pseudomonas, Escherichia, Salmonella, Shigella, Enterobacter, Klebsiella, Serratia, Proteus, Campylobacter, Haemophilus, Morganella, Vibrio, Yersinia, Acinetobacter, Stenotrophomonas, Brevundimonas, Ralstonia, Achromobacter, Fusobacterium, Prevotella, Branhamella, Neisseria, Burkholderia, Citrobacter, Hafhia, Edwardsiella, Aeromonas, Moraxella, Brucella, Pasteurella, Providencia и Legionella. He ограничивающие примеры грамположительных бактерий по данному изобретению включают бактерии следующих родов: Enterococcus, Streptococcus, Staphylococcus, Bacillus, Paenibacillus, Lactobacillus, Listeria, Peptostreptococcus, Propionibacterium, Clostridium, Bacteroides, Gardnerella, Kocuria, Lactococcus, Leuconostoc, Micrococcus, Mycobacteria и Corynebacteria. He ограничивающие примеры дрожжей и плесневых грибов по данному изобретению включают дрожжи и плесневые грибы из следующих родов: Candida, Cryptococcus, Nocardia, Penicillium, Alternaria, Rhodotorula, Aspergillus, Fusarium, Saccharomyces и Trichosporon. He ограничивающие примеры паразитов по данному изобретению включают паразиты из следующих родов: Trypanosoma, Babesia, Leishmania, Plasmodium, Wucheria, Brugia, Onchocerca и Naegleria. He ограничивающие примеры молликутов по данному изобретению включают молликуты из следующих родов: Mycoplasma и Ureaplasma.
Как используют в данной заявке, термин ″идентификатор″ предназначен для включения любого соединения, которое связывается с микроорганизмом или действует на него с получением измерений, которые коррелируют с известным микроорганизмом или группой микроорганизмов. Термин ″идентификатор″ может также включать любое соединение, на которое действует микроорганизм или его компонент (например, фермент, продуцируемый микроорганизмом) и которое может обеспечить измерения, коррелирующие с известным микроорганизмом или группой микроорганизмов.
В одной форме осуществления, как более подробно описано здесь, микроорганизмы из образца или из ростовой среды можно разделить и исследовать, чтобы охарактеризовать и/или идентифицировать микроорганизм, присутствующий в образце. Как используют в данной заявке, термин ″разделить″ подразумевают как включающий любой образец микроорганизмов, который извлечен, сконцентрирован или иначе удален из его исходного состояния или из ростовой или культуральной среды. Например, в соответствии с данным изобретением микроорганизмы могут быть отделены (например, в виде выделенного образца) от немикроорганизмов или компонентов немикроорганизмов, которые иначе могут мешать характеристике и/или идентификации. Этот термин может включать слой микроорганизмов, проложенный между двумя другими слоями, например микроорганизмы, собранные наверху градиента высокой плотности после центрифугирования, или слой микроорганизмов, собранный на твердой поверхности (например, на мембране фильтра). Этот термин может также включать коллекцию микроорганизмов, которая частично прошла через слой (например, плотностный буфер). Как таковой, выделенный образец микроорганизмов может включать любую коллекцию или слой микроорганизмов и/или их компонентов, которые являются более концентрированными, либо иначе отделенными от исходного образца, и могут находиться в диапазоне от тесно упакованного плотного комка микроорганизмов до диффузного слоя микроорганизмов. Компоненты микроорганизмов, которые могут содержаться в выделенной форме или в образце, включают без ограничения пили, флагеллы, фимбрии и капсулы в любой комбинации. Компоненты немикроорганизмов, которые отделяют от микроорганизмов, могут включать клетки немикроорганизмов (например, клетки крови и/или клетки другой ткани) и/или любые их компоненты.
Еще в одной другой форме осуществления, как более подробно описано здесь, микроорганизмы из образца или из ростовой среды могут быть изолированы и исследованы, чтобы охарактеризовать и/или идентифицировать микроорганизм, присутствующий в образце. Как используют в данной заявке, термин ″изолированный″ предназначен для включения любого образца микроорганизмов, который по меньшей мере частично очищен от его исходного состояния или от ростовой или культуральной среды и любых немикроорганизмов или компонентов немикроорганизмов, содержащихся в ней. Например, в соответствии с данным изобретением микроорганизмы могут быть изолированы (например, в виде изолированного образца) от немикроорганизмов или компонентов немикроорганизмов, которые иначе могут мешать характеристике и/или идентификации. Компоненты немикроорганизмов, которые отделяют от микроорганизмов, могут включать клетки немикроорганизмов (например, клетки крови и/или клетки другой ткани) и/или любые их компоненты.
Еще в одной другой форме осуществления, как более подробно описано здесь, микроорганизмы из образца или из ростовой среды могут быть осаждены и исследованы, чтобы охарактеризовать и/или идентифицировать микроорганизм, присутствующий в образце. Как используют в данной заявке, термин ″осадок″ предназначен для включения любого образца микроорганизмов, который спрессован или депонирован в массе микроорганизмов. Например, микроорганизмы из образца можно спрессовать или депонировать в массе на дне пробирки центрифугированием или другими способами, известными в данной области техники. Этот термин включает коллекцию микроорганизмов (и/или их компонентов) на дне и/или стенках контейнера после центрифугирования. Компоненты микроорганизмов, которые могут содержаться в осадке, включают без ограничения пили, флагеллы, фимбрии и капсулы в любой комбинации. В соответствии с данным изобретением микроорганизмы могут быть осаждены (например, в виде по существу очищенного осадка микроорганизмов) из немикроорганизмов или компонентов немикроорганизмов, которые иначе могут мешать характеристике и/или идентификации. Компоненты немикроорганизмов, которые отделяют от микроорганизмов, могут включать клетки немикроорганизмов (например, клетки крови и/или клетки другой ткани) и/или любые их компоненты.
Как используют в данной заявке, термин ″плотностный буфер″ относится к раствору, имеющему однородную плотность по всему раствору.
В настоящем изобретении предложены способы изоляции, характеристики и/или идентификации микроорганизмов в образце. Кроме того, этот способ может быть, в частности, полезен для разделения, характеристики и/или идентификации микроорганизмов из комплексных образцов, таких как культуральная среда, содержащая кровь. Быстрые способы также дают возможность для характеристики и/или идентификации микроорганизмов быстрее, чем методы предшествующего уровня техники, что приводит в результате к более быстрым диагнозам (например, у субъекта, страдающего или подозреваемого на септицемию) и характеристике/идентификации зараженных материалов (например, пищевых продуктов и фармацевтических препаратов). Стадии, вовлеченные в способы по изобретению, от получения образца до характеристики/идентификации микроорганизмов, можно осуществлять в очень короткой временной рамке с получением клинически релевантной информации, дающей основания для действий. В некоторых формах осуществления способы по изобретению можно осуществлять менее чем примерно за 120 минут, например менее чем примерно за 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 5, 4, 3, 2 или 1 минуту. Огромная скорость способов по изобретению представляет усовершенствование по сравнению со способами предшествующего уровня техники. Эти способы можно применять для характеристики и/или идентификации любого микроорганизма, как описано в данной заявке. В одной форме осуществления микроорганизм представляет собой бактерию. В другой форме осуществления микроорганизм представляет собой дрожжи. В другой форме осуществления микроорганизм представляет собой плесневый гриб. В следующей форме осуществления микроорганизм представляет собой паразит. В другой форме осуществления микроорганизм представляет собой молликут. Кроме того, способы по изобретению могут быть полностью автоматизированы, уменьшая за счет этого риск обращения с инфекционными материалами и/или заражения образцов.
В одном аспекте настоящее изобретение направлено на способ характеристики и/или идентификации микроорганизма, включающий:
(a) получение тестируемого образца, о котором известно, что он содержит или может содержать микроорганизмы;
(b) наслаивание тестируемого образца на плотностный буфер в контейнере;
(c) добавление идентификатора в тестируемый образец и/или в плотностный буфер;
(d) центрифугирование контейнера для разделения микроорганизмов от других компонентов тестируемого образца и образование осадка микроорганизмов;
(e) исследование осадка и/или одного или более чем одного идентификатора с получением измерений, которые позволяют идентифицировать микроорганизмы; и
(f) характеристику и/или идентификацию микроорганизмов в осадке на основании полученных измерений и/или присутствия или отсутствия идентификатора или метаболизированной формы идентификатора в осадке.
В другом аспекте настоящее изобретение направлено на способ изоляции и идентификации микроорганизма, включающий:
(a) получение тестируемого образца, о котором известно, что он содержит или может содержать микроорганизмы;
(b) необязательно лизис клеток в тестируемом образце с получением лизированного образца;
(c) разделение микроорганизмов от других компонентов лизированного образца с образованием осадка микроорганизмов;
(d) исследование осадка с получением измерений, которые позволяют идентифицировать микроорганизмы;
(e) идентификацию микроорганизмов на основании полученных измерений; и
(f) выделение по меньшей мере части осадка с получением выделенных микроорганизмов;
(g) проведение одного или более чем одного дополнительного теста на выделенных микроорганизмах.
В другой форме осуществления изобретения способы включают выделение осадка микроорганизмов, образованного во время стадии разделения, или их части из разделительного контейнера перед исследованием микроорганизмов. Например, после образования осадка жидкости можно отсосать от осадка, а осадок ресуспендировать в подходящей среде (например, в среде, в которой микроорганизмы жизнеспособны). Ресуспендированные микроорганизмы можно извлечь из разделительного контейнера. Затем микроорганизмы можно исследовать для характеристики и/или идентификации, например, в суспензии или после того, как они повторно осаждены. В других формах осуществления ресуспендированные микроорганизмы можно исследовать в разделительном контейнере, например, в суспензии или после того, как они повторно осаждены. В следующей форме осуществления микроорганизмы, выделенные из осадка, можно использовать непосредственно для дальнейшего исследования (например, рамановской спектроскопией, масс-спектроскопией) без ресуспендирования.
Образцы
Образцы, которые можно тестировать (то есть тестируемый образец) способами по изобретению, включают как клинические, так и неклинические образцы, в которых присутствие и/или рост микроорганизма существует, либо его можно подозревать, а также образцы материалов, которые обычно или время от времени тестируют на присутствие микроорганизмов. Количество используемого образца может значительно варьировать в зависимости от универсальности и/или чувствительности способа. Получение образца можно осуществить с помощью любого набора методик, известных специалистам в данной области техники, хотя одно из преимуществ настоящего изобретения состоит в том, что комплексные типы образцов, такие как, например, кровь, жидкости организма и/или другие непрозрачные вещества, можно тестировать непосредственно, используя систему небольшой обработки или без обширной обработки. В одной форме осуществления образец берут из культуры. В другой форме осуществления образец берут из микробиологической культуры (например, гемокультуры). В другой форме осуществления образец подозревают на наличие в нем микроорганизмов, либо оно известно.
Клинические образцы, которые можно тестировать, включают любой тип образца, типично тестируемого в клинических или исследовательских лабораториях, включая, но не ограничиваясь ими, кровь, сыворотку, плазму, фракции крови, суставную жидкость, мочу, семенную жидкость, слюну, фекалии, цереброспинальную жидкость, содержимое желудка, вагинальные секреции, гомогенаты тканей, пунктаты костного мозга, костные гомогенаты, мокроту, пунктаты, мазки и промывные воды мазков, другие жидкости организма и тому подобное. В другой форме осуществления клинический образец можно культивировать и использовать образец культуры.
Настоящее изобретение находит применение как в исследованиях, так и в ветеринарных и медицинских областях применения. Подходящими субъектами, от которых могут быть получены клинические образцы, обычно являются субъекты млекопитающих, но может быть и любое животное. Термин ″млекопитающее″, как используют в данной заявке, включает, но не ограничен ими, людей, приматов, не являющихся человеком, крупный рогатый скот, овец, коз, свиней, лошадей, кошек, собак, кроликов, грызунов (например, крыс или мышей) и т.д. Субъекты-люди включают новорожденных, детей, подростков, взрослых и пожилых субъектов. Субъекты, от которых могут быть получены образцы, включают без ограничения млекопитающих, птиц, рептилий, амфибий и рыб.
Неклинические образцы, которые можно тестировать, также включают вещества, охватывающие, но не ограниченные ими, пищевые продукты, напитки, фармацевтические препараты, косметические изделия, воду (например, питьевую воду, непитьевую воду и сточные воды), балласты морской воды, воздух, почву, бытовые стоки, растительный материал (например, семена, листья, стебли, корни, цветы, плоды), препараты крови (например, тромбоциты, сыворотку, плазму, фракции лейкоцитов и т.д.), образцы донорских органов или тканей, образцы биологического оружия и тому подобное. Способ также особенно хорошо пригоден для тестирования в реальном времени для мониторинга уровней заражения, контроля процесса, контроля качества и тому подобного в промышленных условиях. В другой форме осуществления неклинический образец можно культивировать и использовать образец культуры.
В одной форме осуществления изобретения образцы получают от субъекта (например, пациента), страдающего или подозреваемого на инфекцию микроорганизмов. В одной форме осуществления субъект страдает или подозреваем на септицемию, например, бактериемию или фунгемию. Образец может представлять собой образец крови непосредственно от субъекта. Образец может быть взят из гемокультуры, выращенной из образца крови пациента, например гемокультуры BacT/ALERT®. Образец гемокультуры может быть взят из положительной гемокультуры, например гемокультуры, которая показывает присутствие микроорганизма. В некоторых формах осуществления образец берут из положительной гемокультуры в пределах короткого времени после того, как она оказывается положительной, например, в пределах примерно 6 часов, например в пределах примерно 5, 4, 3 или 2 часов, или в пределах примерно 60 минут, например примерно 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 4, 3, 2 или 1 минуты. В одной форме осуществления образец берут из культуры, в которой микроорганизмы находятся в log фазе роста. В другой форме осуществления образец берут из культуры, в которой микроорганизмы находятся в стационарной фазе.
Настоящее изобретение обеспечивает высокую чувствительность обнаружения, характеристики и/или идентификации микроорганизмов. Это дает возможность обнаружения, характеристики и/или идентификации без первоначальной необходимости в прохождении стадий изоляции микроорганизмов путем выращивания их на твердой или полутвердой среде и отбора выросших колоний. Таким образом, в одной форме осуществления изобретения образец не является образцом из колонии микроорганизма (например, бактерии, дрожжей или плесневого гриба), выращенной на твердой или полутвердой поверхности.
Объем образца должен быть достаточно большим, чтобы получить изолированный образец микроорганизмов или осадок микроорганизмов, который можно исследовать после осуществления стадии разделения/изоляции способов по изобретению. Соответствующие объемы будут зависеть от источника образца и предполагаемого уровня микроорганизмов в образце. Например, положительная гемокультура будет содержать более высокий уровень микроорганизмов на объем, чем образец питьевой воды, подлежащий тестированию на заражение, поэтому меньший объем среды гемокультуры может быть необходим по сравнению с образцом питьевой воды. Как правило, размер образца может составлять менее чем примерно 50 мл, например менее чем примерно 40, 30, 20, 15, 10, 5, 4, 3 или 2 мл. В некоторых формах осуществления размер образца может составлять примерно 1 мл, например примерно 0,75, 0,5 или 0,25 мл. В некоторых формах осуществления, в которых разделение осуществляют в микромасштабе, размер образца может составлять менее чем примерно 200 мкл, например менее чем примерно 150, 100, 50, 25, 20, 15, 10 или 5 мкл. В некоторых формах осуществления (например, когда ожидают, что образец содержит малое число микроорганизмов) размер образца может составлять примерно 100 мл или более, например примерно 250, 500, 750 или 1000 мл или более.
Необязательная стадия лизиса
В некоторых формах осуществления после получения образца следующая стадия в способе по настоящему изобретению состоит в селективном лизисе нежелательных клеток, которые могут присутствовать в образце, например клеток крови и/или клеток ткани. Клетки можно подвергать лизису, чтобы дать возможность разделения микроорганизмов от других компонентов образца. Разделение микроорганизмов от других компонентов предотвращает интерференцию во время стадии исследования. Если не ожидают, что клетки немикроорганизмов присутствуют в образце, или не ожидают, что они интерферируют на стадии исследования, может не быть необходимости проводить стадию лизиса. В одной форме осуществления клетками, подлежащими лизису, являются клетки немикроорганизмов, которые присутствуют в образце, но клетки микроорганизмов, которые могут присутствовать в образце, не подвергаются лизису. Однако в некоторых формах осуществления селективный лизис определенных классов микроорганизмов может быть желателен, и, следовательно, его можно осуществлять в соответствии со способами, как описанными в данной заявке, так и хорошо известными в данной области техники. Например, класс нежелательных микроорганизмов можно подвергать селективному лизису, например дрожжи подвергаются лизису, тогда как бактерии не подвергаются, или наоборот. В другой форме осуществления желательные микроорганизмы подвергают лизису с целью отделения конкретного субклеточного компонента микроорганизмов, например клеточных мембран или органелл. В одной форме осуществления все клетки немикроорганизмов подвергают лизису. В других формах осуществления часть клеток немикроорганизмов подвергают лизису, например достаточное количество клеток, чтобы предотвратить интерференцию на стадии исследования. Лизис клеток можно осуществлять любым способом, известным в данной области техники как эффективный для селективного лизиса клеток без лизиса или с лизисом микроорганизмов, включающим без ограничения добавление раствора