Сообщение информации состояния канала в сети беспроводной связи

Иллюстрации

Показать все

Изобретение относится к технике для сообщения информации состояния канала в сети беспроводной связи. Технический результат заключается в повышении эффективности передачи данных. Способ беспроводной связи содержит этапы, на которых: периодически сообщают информацию состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте, периодически сообщают CSI для второго набора ресурсов и принимают информацию конфигурации, указывающую, когда сообщать CSI для первого и второго наборов ресурсов. 8 н. и 60 з.п. ф-лы, 12 ил., 2 табл.

Реферат

Перекрестная ссылка на родственные заявки

[0001] Данная заявка испрашивает приоритет предварительной патентной заявки США № 61/323829, озаглавленной “PERIODIC CQI REPORTING IN A WIRELESS COMMUNICATION NETWORK” и поданной 13 апреля 2010 г., которая включена в настоящее описание в полном объеме посредством ссылки.

Область техники

[0002] Настоящее раскрытие относится, в целом, к области связи и, в частности, к технике для сообщения информации состояния канала (CSI) в сети беспроводной связи.

Уровень техники

[0003] Сети беспроводной связи широко развертываются для обеспечения разнообразного контента связи, например, речи, видео, пакетных данных, передачи сообщений, вещания и т.д. Эти беспроводные сети могут представлять собой сети множественного доступа, способные обслуживать множественных пользователей посредством совместного использования доступных сетевых ресурсов. Примеры таких сетей множественного доступа включают в себя сети множественного доступа с кодовым разделением (CDMA), сети множественного доступа с временным разделением (TDMA), сети множественного доступа с частотным разделением (FDMA), сети ортогонального FDMA (OFDMA) и сети FDMA на одной несущей (SC-FDMA).

[0004] Сеть беспроводной связи может включать в себя некоторое количество базовых станций, которые могут обеспечивать связь некоторому количеству устройств пользовательского оборудования (UE). UE может осуществлять связь с базовой станцией по нисходящей линии связи и восходящей линии связи. Нисходящая линия связи (или прямая линия связи) это линия связи от базовой станции к UE, и восходящая линия связи (или обратная линия связи) это линия связи от UE к базовой станции.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] Некоторые аспекты настоящего раскрытия предусматривают способ для беспроводной связи. Способ, в общем случае, включает в себя периодическое сообщение информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте и периодическое сообщение CSI для второго набора ресурсов.

[0006] Некоторые аспекты настоящего раскрытия предусматривают способ для беспроводной связи. Способ, в общем случае, включает в себя прием периодически сообщаемой информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте и прием периодически сообщаемой CSI для второго набора ресурсов.

[0007] Некоторые аспекты настоящего раскрытия предусматривают устройство для беспроводной связи. Устройство, в общем случае, включает в себя средство для периодического сообщения информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте, и средство для периодического сообщения CSI для второго набора ресурсов.

[0008] Некоторые аспекты настоящего раскрытия предусматривают устройство для беспроводной связи. Устройство, в общем случае, включает в себя средство для приема периодически сообщаемой информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте, и средство для приема периодически сообщаемой CSI для второго набора ресурсов.

[0009] Некоторые аспекты настоящего раскрытия предусматривают устройство для беспроводной связи. Устройство, в общем случае, включает в себя, по меньшей мере, один процессор, сконфигурированный для периодического сообщения информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте для периодического сообщения CSI для второго набора ресурсов; и память соединенную с по меньшей мере одним процессором.

[0010] Некоторые аспекты настоящего раскрытия предусматривают устройство для беспроводной связи. Устройство, в общем случае, включает в себя, по меньшей мере, один процессор, сконфигурированный для приема периодически сообщаемой информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте и для приема периодически сообщаемой CSI для второго набора ресурсов; и память соединенную с по меньшей мере одним процессором.

[0011] Компьютерный программный продукт, содержащий машиночитаемый носитель с хранящимися на нем инструкциями, причем инструкции выполняются одним или более процессорами для сообщения информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте, и периодического сообщения CSI для второго набора ресурсов.

[0012] Компьютерный программный продукт, содержащий машиночитаемый носитель с хранящимися на нем инструкциями, причем инструкции выполняются одним или более процессорами для приема периодически сообщаемой информации состояния канала (CSI) для первого набора ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте, и приема периодически сообщаемой CSI для второго набора ресурсов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0013] Фиг. 1 показывает сеть беспроводной связи.

[0014] Фиг. 2 показывает блок-схему базовой станции и UE.

[0015] Фиг. 3 показывает структуру кадра для дуплексной связи с частотным разделением (FDD).

[0016] Фиг. 4 показывает два иллюстративных формата подкадра для нисходящей линии связи.

[0017] Фиг. 5 показывает иллюстративный формат подкадра для восходящей линии связи.

[0018] Фиг. 6 показывает пример разделения ресурсов.

[0019] Фиг. 7 показывает пример функциональных компонентов базовой станции и UE, в соответствии с некоторыми аспектами настоящего раскрытия.

[0020] Фиг. 8 иллюстрирует пример операции, которые могут осуществляться UE, в соответствии с некоторыми аспектами настоящего раскрытия.

[0021] Фиг. 9 иллюстрирует пример операции, которые могут осуществляться BS, в соответствии с некоторыми аспектами настоящего раскрытия.

[0022] Фиг. 10-12 иллюстрируют пример схем для периодической передачи информации состояния канала, в соответствии с некоторыми аспектами настоящего раскрытия.

ПОДРОБНОЕ ОПИСАНИЕ

[0023] Описанные здесь техники могут использоваться для различных сетей беспроводной связи, например CDMA, TDMA, FDMA, OFDMA, SC-FDMA и других сетей. Термины “сеть” и “система” часто используются взаимозаменяемо. Сеть CDMA может реализовать технологию радиосвязи например универсальный наземный радиодоступ (UTRA), cdma2000, и т.д. UTRA включает в себя широкополосную CDMA (WCDMA), синхронную CDMA с временным разделением (TD-SCDMA) и другие варианты CDMA. cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. Сеть TDMA может реализовать технологию радиосвязи, например, Глобальную систему мобильной связи (GSM). Сеть OFDMA может реализовать технологию радиосвязи, например усовершенствованную UTRA (E-UTRA), Ультрамобильная связь в широкой полосе частот (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, и т.д. UTRA и E-UTRA входят в состав Универсальной системы мобильных телекоммуникаций (UMTS). Проект долгосрочного развития систем связи (LTE) 3GPP и LTE-Advanced (LTE-A), применительно к дуплексной связи с частотным разделением (FDD) и к дуплексной связи с временным разделением (TDD), являются новыми выпусками UMTS, которые используют E-UTRA, где OFDMA применяется на нисходящей линии связи, и SC-FDMA применяется на восходящей линии связи. UTRA, E-UTRA, UMTS, LTE, LTE-A и GSM описаны в документах от организации под названием “Проект партнерства третьего поколения” (3GPP). cdma2000 и UMB описаны в документах от организации под названием “Проект партнерства третьего поколения 2” (3GPP2). Описанные здесь техники могут использоваться для вышеупомянутых беспроводных сетей и технологий радиосвязи, а также других беспроводных сетей и технологий радиосвязи. Для наглядности, некоторые аспекты техник описаны ниже для LTE, и терминология LTE используется на протяжении большей части нижеследующего описания.

[0024] На фиг. 1 показана сеть 100 беспроводной связи, которая может представлять собой сеть LTE или какую-либо другую беспроводную сеть. Беспроводная сеть 100 может включать в себя некоторое количество усовершенствованных Узлов B (eNB) 110 и других сетевых объектов. eNB это объект, который осуществляет связь с UE и также может именоваться базовой станцией, Node B, точкой доступа и т.д. Каждый eNB может обеспечивать покрытие связи для конкретной географической области. В 3GPP, термин “сота” может относиться к зоне покрытия eNB и/или к подсистеме eNB, обслуживающей эту зону покрытия, в зависимости от контекста, в котором используется термин.

[0025] eNB может обеспечивать покрытие связи для макросоты, пикосоты, фемтосоты и/или других типов соты. Макросота может охватывать сравнительно большую географическую область (например, радиусом несколько километров) и может обеспечивать неограниченный доступ множеством UE, имеющих подписку на обслуживание. Пикосота может охватывать сравнительно малую географическую область и может обеспечивать неограниченный доступ множеством UE, имеющих подписку на обслуживание. Фемтосота может охватывать сравнительно малую географическую область (например, дом) и может обеспечивать ограниченный доступ множеством UE, ассоциированных с фемтосотой (например, UE, в закрытой группе абонентов (CSG)). eNB для макросоты может именоваться макро eNB. eNB для пикосоты может именоваться пико eNB. eNB для фемтосоты может именоваться фемто eNB или домашним eNB (HeNB). В примере, показанном на фиг. 1, eNB 110a может быть макро eNB для макросоты 102a, eNB 110b может быть пико eNB для пикосоты 102b, и eNB 110c может быть фемто eNB для фемтосоты 102c. eNB может поддерживать одну или несколько сот (например, три). Термины “eNB” и “базовая станция” используются здесь взаимозаменяемо.

[0026] Беспроводная сеть 100 также может включать в себя ретрансляционные станции. Ретрансляционная станция является объектом, который может принимать передачу данных от предшествующей в тракте передачи станции (например, eNB или UE) и отправлять передачу данных на следующую в тракте передачи станцию (например, UE или eNB). В качестве ретрансляционной станции также может выступать UE, способное ретранслировать передачи для других UE. В примере, показанном на фиг. 1, ретрансляционная станция 110d может осуществлять связь с макро eNB 110a и UE 120d для облегчения связи между eNB 110a и UE 120d. Ретрансляционная станция также может именоваться ретрансляционным eNB, ретрансляционной базовой станцией, ретранслятором и т.д.

[0027] Беспроводная сеть 100 может быть однородной сетью, которая включает в себя eNB разных типов, например, макро eNB, пико eNB, фемто eNB, ретрансляционный eNB и т.д. Эти различные типы eNB могут иметь разные уровни передаваемой мощности, разные зоны покрытия и разное влияние на помехи в беспроводной сети 100. Например, макро eNB может иметь высокий уровень передаваемой мощности (например, от 5 до 40 Ватт), тогда как пико eNB, фемто eNB и ретрансляционный eNB могут иметь более низкие уровни передаваемой мощности (например, от 0,1 до 2 Ватт).

[0028] Сетевой контроллер 130 может присоединяться к набору eNB и может обеспечивать координацию и управление для этих eNB. Сетевой контроллер 130 может осуществлять связь с eNB через транзитную линию связи. eNB также могут осуществлять связь друг с другом, например, прямо или косвенно через беспроводную или проводную транзитную линию связи.

[0029] UE 120 могут быть рассеяны по беспроводной сети 100, и каждый UE может быть стационарным или мобильным. UE также может именоваться терминалом, мобильной станцией, абонентским устройством, станцией и т.д. UE может представлять собой сотовый телефон, карманный персональный компьютер (КПК), беспроводной модем, устройство беспроводной связи, карманное устройство, портативный компьютер, радиотелефон, станцию беспроводного абонентского доступа (WLL), смартфон, нетбук, смартбук и т.д.

[0030] На фиг. 2 показана блок-схема исполнения базовой станции/eNB 110 и UE 120, которые могут быть одной/им из базовых станций/eNB и одним из UE, показанных на фиг. 1. Различные компоненты (например, процессоры), показанные на фиг. 2, могут использоваться для осуществления описанных здесь техник сообщения CSI. Используемый здесь термин CSI в целом относится к любому типу информации, описывающей характеристики беспроводного канала. Согласно нижеследующему более подробному описанию, обратная связь по CSI может включать в себя один или более из указания (индикатора) качества канала (CQI), указания (индикатора) ранга (RI) и индекса матрицы предварительного кодирования (PMI). Таким образом, хотя некоторые приведенные ниже описания могут относиться к CQI в качестве примера типа CSI, следует понимать, что CQI является всего лишь одним примером типа CSI, который может сообщаться в соответствии с рассмотренными здесь техниками.

[0031] Как показано, базовая станция 110 может передавать информацию конфигурации сообщения CSI на UE 120. Согласно нижеследующему более подробному описанию, UE 120 может отправлять сообщения для чистой CSI (для защищенных подкадров) и нечистой CSI (для незащищенных подкадров) в соответствии с информацией конфигурации CSI. Согласно нижеследующему более подробному описанию, сообщения CSI могут включать в себя чистую и нечистую CSI, совместно закодированные в одном и том же сообщении или мультиплексированные с временным разделением в раздельных сообщениях.

[0032] Базовая станция 110 может быть снабжена T антеннами 234a-234t, и UE 120 может быть снабжено R антеннами 252a-252r, где, в целом, T≥1 и R≥1.

[0033] На базовой станции 110 процессор 220 передачи может принимать данные из источника 212 данных для одного или более UE и информацию управления от контроллера/процессора 240. Процессор 220 может обрабатывать (например, кодировать и модулировать) данные и информацию управления для получения символов данных и символов управления, соответственно. Процессор 220 также может генерировать опорные символы для сигналов синхронизации, опорных сигналов и т.д. Процессор 230 передачи (TX) системы множественных входов и множественных выходов (MIMO) может осуществлять пространственную обработку (например, предварительное кодирование) в отношении символов данных, символов управления и/или опорных символов, если применимо, и может выдавать T выходных символьных потоков на T модуляторов (MOD) 232a-232t. Каждый модулятор 232 могут обрабатывать соответствующий выходной символьный поток (например, для OFDM и т.д.) для получения выходного потока выборок. Каждый модулятор 232 может дополнительно обрабатывать (например, преобразовывать в аналоговый вид, усиливать, фильтровать и повышать частоту) выходной поток выборок для получения сигнала нисходящей линии связи. T сигналов нисходящей линии связи от модуляторов 232a-232t могут передаваться через T антенн 234a-234t, соответственно.

[0034] На UE 120 антенны 252a-252r могут принимать сигналы нисходящей линии связи от базовой станции 110, сигналы нисходящей линии связи от других базовых станций и/или P2P сигналы от других UE и может выдавать принятые сигналы на демодуляторы (DEMOD) 254a-254r, соответственно. Каждый демодулятор 254 может приводить к заданным условиям (например, фильтровать, усиливать, понижать частоту и цифровать) соответствующий принятый сигнал для получения входных выборок. Каждый демодулятор 254 может дополнительно обрабатывать входные выборки (например, для OFDM и т.д.) для получения принятых символов. Детектор 256 MIMO может получать принятые символы от всех R демодуляторов 254a-254r, осуществлять детектирование MIMO в отношении принятых символов, если применимо, и выдавать детектированные символы. Процессор 258 приема может обрабатывать (например, демодулировать и декодировать) детектированные символы, выдавать декодированные данные для UE 120 на приемник 260 данных, и выдавать декодированную информацию управления на контроллер/процессор 280.

[0035] На восходящей линии связи на UE 120 процессор 264 передачи может принимать данные из источника 262 данных и информацию управления от контроллера/процессора 280. Процессор 264 может обрабатывать (например, кодировать и модулировать) данные и информацию управления для получения символов данных и символов управления, соответственно. Процессор 264 также может генерировать опорные символы для одного или более опорных сигналов, и т.д. Символы от процессора 264 передачи могут подвергаться предварительному кодированию процессором 266 MIMO TX, если применимо, дополнительно обрабатываться модуляторами 254a - 254r (например, для SC-FDM, OFDM и т.д.), и передаваться на базовую станцию 110, другие базовые станции и/или другие UE. На базовой станции 110 сигналы восходящей линии связи от UE 120 и других UE могут приниматься антеннами 234, обрабатываться демодуляторами 232, детектироваться детектором 236 MIMO, если применимо, и дополнительно обрабатываться процессором 238 приема для получения декодированных данных и информации управления, отправленных UE 120 и другими UE. Процессор 238 может выдавать декодированные данные на приемник 239 данных и декодированную информацию управления на контроллер/процессор 240.

[0036] Контроллеры/процессоры 240 и 280 могут управлять работой базовой станции 110 и UE 120, соответственно. Процессор 240 и/или другие процессоры и модули на базовой станции 110 могут осуществлять обработку или управлять ею для описанных здесь техник. Процессор 280 и/или другие процессоры и модули на UE 120 могут осуществлять обработку или управлять ею для описанных здесь техник. В блоках 242 и 282 памяти могут храниться данные и программные коды для базовой станции 110 и UE 120, соответственно. Блок 244 связи (Comm) обеспечивает базовой станции 110 возможность осуществления связи с другими сетевыми объектами (например, сетевым контроллером 130). Планировщик 246 может планировать передачу данных с UE по нисходящей линии связи и/или восходящей линии связи.

[0037] Согласно определенным аспектам, процессор 238 приема и/или контроллер/процессор 240 могут обрабатывать сообщения CSI, отправляемые с UE 120, и использовать эту информацию для управления передачами.

[0038] На фиг. 2 также показано исполнение сетевого контроллера 130, изображенного на фиг. 1. В сетевом контроллере 130, контроллер/процессор 290 может осуществлять различные функции для поддержки связи для UE. Контроллер/процессор 290 может осуществлять обработку для описанных здесь техник. В памяти 292 могут храниться программные коды и данные для сетевого контроллера 130. Блок 294 связи может обеспечивать сетевому контроллеру 130 возможность связи с другими сетевыми объектами.

[0039] Как отмечено выше, BS 110 и UE 120 могут использовать FDD или TDD. Для FDD, нисходящей линии связи и восходящей линии связи могут выделяться отдельные частотные каналы, и передачи нисходящей линии связи передачи и восходящей линии связи может отправляться одновременно на двух частотных каналах.

[0040] На фиг. 3 показана иллюстративная структура кадра 300 для FDD в LTE. Временная ось передачи для каждой из нисходящей линии связи и восходящей линии связи может делиться на блоки радиокадров. Каждый радиокадр может иметь заранее определенную длительность (например, 10 миллисекунд (мс)) и может делиться на 10 подкадров с индексами от 0 до 9. Каждый подкадр может включать в себя два слота. Каждый радиокадр может, таким образом, включать в себя 20 слотов с индексами от 0 до 19. Каждый слот может включать в себя L символьных периодов, например, семь символьных периодов для нормального циклического префикса (как показано на фиг. 2) или шесть символьных периодов для расширенного циклического префикса. 2L символьным периодам в каждом подкадре можно назначать индексы от 0 до 2L-1.

[0041] В LTE, eNB может передавать первичный сигнал синхронизации (PSS) и вторичный сигнал синхронизации (SSS) по нисходящей линии связи на центральной частоте полосы системы шириной 1.08 МГц для каждой соты, поддерживаемой eNB. PSS и SSS могут передаваться в символьных периодах 6 и 5, соответственно, в подкадрах 0 и 5 каждого радиокадра с нормальным циклическим префиксом, как показано на фиг. 2. UE может использовать PSS и SSS для поиска и захвата соты. eNB может передавать зависящий от соты опорный сигнал (CRS) в пределах полосы системы для каждой соты, поддерживаемой eNB. CRS может передаваться в некоторых символьных периодах каждого подкадра и может использоваться UE для осуществления оценки канала, измерения качества канала, и/или других функций. eNB также может передавать физический широковещательный канал (PBCH) в символьных периодах от 0 до 3 в слоте 1 некоторых радиокадров. PBCH может нести некоторую системную информацию. eNB может передавать другую системную информацию, например, блоки системной информации (SIB) на физическом совместно используемом канале нисходящей линии связи (PDSCH) в некоторых подкадрах.

[0042] На фиг. 4 показано два иллюстративных формата 410 и 420 подкадра для нисходящей линии связи с нормальным циклическим префиксом. Доступные частотно-временные ресурсы для нисходящей линии связи могут делиться на блоки ресурсов. Каждый блок ресурсов может охватывать 12 поднесущих в одном слоте и может включать в себя некоторое количество ресурсных элементов. Каждый ресурсный элемент может охватывать одну поднесущую в одном символьном периоде и может использоваться для отправки одного символа модуляции, который может иметь действительное или комплексное значение.

[0043] Формат 410 подкадра может использоваться для eNB, снабженного двумя антеннами. CRS может передаваться с антенн 0 и 1 в символьных периодах 0, 4, 7 и 11. Опорный сигнал - это сигнал заранее известный передатчику и приемнику, и также может именоваться пилот-сигналом. CRS - это опорный сигнал, зависящий от соты, например, генерируемый на основании идентификатора (ID) соты. На фиг. 4, для данного ресурсного элемента с меткой Ra, символ модуляции может передаваться на этом ресурсном элементе с антенны a, и с других антенн символы модуляции не могут передаваться на этом ресурсном элементе. Формат 420 подкадра может использоваться для eNB, снабженного четырьмя антеннами. CRS может передаваться с антенн 0 и 1 в символьных периодах 0, 4, 7 и 11 и с антенн 2 и 3 в символьных периодах 1 и 8. Для обоих форматов 410 и 420 подкадра CRS может передаваться на равноразнесенных поднесущих, которые можно определять на основании ID соты. Разные eNB могут передавать свои CRS на одних и тех же или разных поднесущих, в зависимости от их ID сот. Для обоих форматов 410 и 420 подкадра ресурсные элементы, не используемые для CRS, могут использоваться для передачи данных (например, данных трафика, данных управления и/или других данных).

[0044] На фиг. 5 показан иллюстративный формат для восходящей линии связи в LTE. Доступные блоки ресурсов для восходящей линии связи могут делиться на секцию данных и секцию управления. Секция управления может быть сформирована на двух краях полосы системы и может иметь конфигурируемый размер. Блоки ресурсов в секции управления можно назначать экземплярам UE для передачи информации управления/данных. Секция данных может включать в себя все блоки ресурсов, не включенные в секции управления. Исполнение, показанное на фиг. 5, предусматривает наличие секции данных, включающей в себя смежные поднесущие, что позволяет назначать единичному UE все смежные поднесущие в секции данных.

[0045] Оборудованию UE можно назначать блоки ресурсов в секции управления для передачи информации управления на eNB. Оборудованию UE также можно назначать блоки ресурсов в секции данных для передачи данных трафика на Node B. UE может передавать информацию управления на физическом канале управления восходящей линии связи (PUCCH) на назначенных блоках ресурсов в секции управления. UE может передавать только данные трафика или данные трафика совместно с информацией управления на физическом совместно используемом канале восходящей линии связи (PUSCH) на назначенных блоках ресурсов в секции данных. Передача восходящей линии связи может занимать оба слота подкадра и может осуществляться посредством скачкообразной перестройки частоты, как показано на фиг. 5.

[0046] PSS, SSS, CRS, PBCH, PUCCH и PUSCH в LTE описаны в 3GPP TS 36.211 под названием “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation”, который общедоступен.

[0047] Для каждой из нисходящей линии связи и восходящей линии связи для FDD в LTE могут использоваться различные шаблоны чередования. Например, можно задать Q чередований с индексами от 0 до Q-1, где Q может быть равно 4, 6, 8, 10 или какому-либо другому значению. Каждое чередование может включать в себя подкадры, разнесенные на Q кадров. В частности, чередование q может включать в себя подкадры q, q+Q, q+2Q и т.д., где q∈{0, …, Q-1}.

[0048] Беспроводная сеть может поддерживать гибридный автоматический запрос повторения передачи (HARQ) для передачи данных по нисходящей линии связи и восходящей линии связи. Для HARQ, передатчик (например, eNB) может отправлять одну или более передач пакета, пока пакет не будет правильно декодирован приемником (например, UE) или пока не будет выполнено какое-либо другое условие окончания. Для синхронного HARQ, все передачи пакета могут отправляться в подкадрах единичного чередования. Для асинхронного HARQ, каждая передача пакета может отправляться в любом подкадре.

[0049] UE может находиться в зоне покрытия множественных eNB. Один из этих eNB можно выбирать для обслуживания UE. Обслуживающий eNB можно выбирать на основании различных критериев, например, интенсивности принятого сигнала, качества принятого сигнала, потерь в тракте и т.д. Качество принятого сигнала можно количественно выражать отношением сигнала к шуму плюс помеха (SINR) или качеством принятого опорного сигнала (RSRQ) или какой-либо другой метрикой.

[0050] UE может работать в сценарии преобладающей помехи, в котором UE может испытывать высокую помеху от одного или более помеховых eNB. Сценарий преобладающей помехи может происходить в силу ограниченной ассоциации. Например, на фиг. 1, UE 120c может находиться вблизи фемто eNB 110c и может иметь высокую принимаемую мощность для eNB 110c. Однако UE 120c может не иметь доступа к фемто eNB 110c в силу ограниченной ассоциации и поэтому может соединяться с макро eNB 110a с более низкой принимаемой мощностью. В этом случае UE 120c может испытывать высокую помеху от фемто eNB 110c по нисходящей линии связи и также может создавать высокую помеху для фемто eNB 110c на восходящей линии связи.

[0051] Сценарий преобладающей помехи также может происходить в силу увеличения дальности, что является сценарием, в котором UE соединяется с eNB с более низкими потерями в тракте и, возможно, более низким SINR из всех eNB, детектированных UE. Например, на фиг. 1, UE 120b может находиться ближе к пико eNB 110b, чем к макро eNB 110a и может иметь более низкие потери в тракте для пико eNB 110b. Однако UE 120b может иметь более низкую принимаемую мощность для пико eNB 110b, чем для макро eNB 110a в силу более низкого уровня передаваемой мощности пико eNB 110b по сравнению с макро eNB 110a. Тем не менее, для UE 120b может быть желательно установить соединение с пико eNB 110b из-за более низких потерь в тракте. Это может приводить к снижению помехи в беспроводной сети для данной скорости передачи данных для UE 120b.

[0052] Связь в сценарии преобладающей помехи может поддерживаться путем осуществления координации межсотовой помехи (ICIC). Согласно некоторым аспектам ICIC, координация/разделение ресурсов может осуществляться для выделения ресурсов eNB, находящемуся вблизи eNB, являющегося источником сильной помехи. Оказывающий помехи eNB может избегать передачи на выделенных/защищенных ресурсах, возможно, за исключением CRS. В этом случае UE может осуществлять связь с eNB на защищенных ресурсах в присутствие оказывающего помехи eNB и может не испытывать помехи (возможно, за исключением CRS) от оказывающего помехи eNB.

[0053] В целом, временные и/или частотные ресурсы могут выделяться для eNB посредством разделения ресурсов. Согласно некоторым аспектам, полоса системы может делиться на которое количество поддиапазонов, и eNB могут выделяться один или более поддиапазонов. В другом исполнении, eNB может выделяться набор подкадров. В еще одном исполнении eNB может выделяться набор блоков ресурсов. Для наглядности на протяжении большей части нижеследующего описания рассмотрено исполнение разделения ресурсов для мультиплексирования с временным разделением (TDM), в которой eNB могут выделяться одно или более чередований. Подкадры выделяемого(ых) чередования(й) могут испытывать сниженную помеху или вовсе не испытывать помехи от eNB, являющихся источниками сильной помехи.

[0054] На фиг. 6 показан пример разделения ресурсов в TDM для поддержки связи в сценарии преобладающей помехи с участием eNB Y и Z. В этом примере eNB Y может выделяться чередование 0, и eNB Z может выделяться чередование 7 в полустатическом или статическом режиме, например, путем согласования между eNB через транзитную линию связи. eNB Y может передавать в подкадрах чередования 0 и может избегать передачи в подкадрах чередования 7. Напротив, eNB Z может передавать в подкадрах чередования 7 и может избегать передачи в подкадрах чередования 0. Подкадры оставшихся чередований с 1 по 6 могут адаптивно/динамически выделяться eNB Y и/или eNB Z.

[0055] В таблице 1 перечислены различные типы подкадров в соответствии с одним исполнением. С точки зрения eNB Y чередование, выделяемое eNB Y, может включать в себя “защищенные” подкадры (подкадры U, которые может использовать eNB Y, испытывающие малую или вовсе не испытывающие помехи от помеховых eNB. Чередование, выделяемое другому eNB Z, может включать в себя “запрещенные” подкадры (подкадры N), которые eNB Y не может использовать для передачи данных. Чередование, не выделяемое никакому eNB, может включать в себя “общие” подкадры (подкадры C), которые могут использовать разные eNB. Адаптивно выделяемый подкадр обозначается префиксом “A” и может быть защищенным подкадром (подкадром AU) или запрещенным подкадром (подкадром AN) или общим подкадром (подкадром AC). Различные типы подкадров также могут обозначаться разными названиями. Например, защищенный подкадр может именоваться зарезервированным подкадром или выделяемым подкадром.

Таблица 1
Типы подкадров
Тип подкадра Описание Ожидаемый CQI
U Защищенный подкадр, который можно использовать для передачи данных, испытывающий малую или вовсе не испытывающий помехи от оказывающих помехи eNB. Высокий CQI
N Запрещенный подкадр, который нельзя использовать для передачи данных. Низкий CQI
C Общий подкадр, который разные eNB могут использовать для передачи данных. Высокий или низкий CQI

[0056] Согласно некоторым аспектам, eNB может передавать информацию разделения ресурсов (RPI) на свой UE. В ряде случаев RPI, которая изменяется нечасто, может именоваться статической RPI (SRPI). Согласно некоторым аспектам SRPI может содержать Q полей для Q чередований. Полю для каждого чередования может быть присвоено значение “U” для указания того, что чередование выделяется для eNB и включает в себя подкадры U, или значение “N” для указания того, что чередование выделяется другому eNB и включает в себя подкадры N, или значение “X” для указания того, что чередование адаптивно выделяется любому eNB и включает в себя подкадры X. UE может принимать SRPI от eNB и может идентифицировать подкадры U и подкадры N для eNB на основании SRPI. Для каждого чередования, помеченного как “X” в SRPI, UE может не знать, будут ли подкадры X в этом чередовании подкадрами AU, подкадрами AN или подкадрами AC. UE может знать только полустатическую часть разделения ресурсов через SRPI, тогда как eNB может знать как полустатическую часть так и адаптивную часть разделения ресурсов.

СООБЩЕНИЕ CSI ДЛЯ ЗАЩИЩЕННЫХ И НЕЗАЩИЩЕННЫХ РЕСУРСОВ

[0057] UE может оценивать качество принятого сигнала от eNB на основании CRS, принятого от eNB. UE может определять информацию качества канала (CQI) и, возможно, другие типы CSI, на основании качества принятого сигнала и может сообщать CQI на eNB. eNB может использовать CQI, например, для адаптации линии связи для выбора схемы модуляции и кодирования (MCS) для передачи данных на UE. Различные типы подкадров могут иметь разные величины помехи и, следовательно, могут иметь сильно отличающиеся CQI. В частности, защищенные подкадры (например, подкадры U и AU) могут характеризоваться более высоким CQI, поскольку eNB, служащие основным источником помехи, не передают в этих подкадрах. Напротив, CQI может быть значительно ниже для других подкадров (например, подкадров N, AN и AC), в которых один или более eNB, служащих основным источником помехи, могут передавать. С точки зрения CQI подкадры AU могут быть эквивалентны подкадрам U (оба являются защищенными), и подкадры AN могут быть эквивалентны подкадрам N (оба являются запрещенными). Подкадры AC могут характеризоваться совершенно разными CQI. Для достижения хорошего показателя адаптации линии связи eNB должен иметь сравнительно точный CQI для каждого подкадра, в котором eNB передает данные трафика на UE.

[0058] Согласно некоторым аспектам UE может определять CQI для защищенных подкадров, имеющих сниженную или не имеющих помехи от оказывающих помехи eNB. CQI для защищенного подкадра может именоваться “чистым” CQI, чтобы подчеркнуть тот факт, что он измеряется по подкадру, в котором eNB, служащие основным источником помехи, не передают данные. UE также может определять по меньшей мере один дополнительный CQI для по меньшей мере одного незащищенного подкадра. Незащищенный подкадр может быть подкадром N, подкадром AN или подкадром AC. CQI для по меньшей мере одного незащищенного подкадра может именоваться “нечистым” CQI, чтобы подчеркнуть тот факт, что он измеряется по по меньшей мере одному подкадру, в котором могут передавать один или более оказывающих помехи eNB. Комбинация чистого и нечистого CQI может именоваться векторным CQI.

[0059] Некоторые аспекты настоящего раскрытия предусматривают периодическое сообщение чистого и нечистого CQI, которое позволяет предоставлять eNB более точную информацию CQI и повышать эффективность передач.

[0060] Фиг. 7 иллюстрирует пример системы 700, содержащей базовую станцию 710 (например, eNB) и UE 720, способное осуществлять периодическое сообщение CQI, в соответствии с представленными здесь техниками. Как показано, базовая станция 710 может включать в себя модуль 714 планирования, сконфигурированный для генерации информации конфигурации сообщения CQI для отправки на UE 720, через модуль 712 передачи. Модуль 714 планирования также может быть сконфигурирован для генерации информации разделения ресурсов (RPI) для отправки на UE 720.

[0061] Как показано, UE 720 может включать в себя модуль 726 приема, который принимает информацию конфигурации сообщения CQI. Модуль 726 приема может выдавать информацию конфигурации сообщения CQI на модуль 724 сообщения CQI, сконфигурированный для генерации и передачи сообщений CQI для чистого и нечистого CQI, в соответствии с информацией конфигурации сообщения CQI. Модуль 724 сообщения CQI также может использовать информацию разделения ресурсов (RPI), принятую от базовой станции 710.

[0062] Сообщения чистого/нечистого CQI могут быть предоставлены на модуль 722 передачи для передачи на базовую станцию 710. Базовая станция 710 может принимать сообщения через модуль 726 приема и использовать содержащуюся в них информацию для последующих передач на UE 720 (например, для выбора одной или более схем модуляции и кодирования). Согласно нижеследующему подробному описанию сообщения также могут включать в себя информацию, например, указание ранга (RI) и индикатор матрицы предварительного кодирования (PMI) для защищенных и незащищенных ресурсов.

[0063] Фиг. 8 показывает пример операций 800 для сообщения канальной информации обратной связи в соответствии с аспектами настоящего раскрытия. Операции 800 могут быть осуществлены, например, UE (как описано ниже) или каким-либо другим объектом.

[0064] Операции начинаются на этапе 802 с приема информации разделения ресурсов (RPI), указывающей набор защищенных ресурсов, в которых передачи в первой соте защищены путем ограничения передач во второй соте. Как отмечено выше, защищенные ресурсы могут включать в себя защищенные подкадры (например, подкадры U). Однако защищенные ресурсы также могут включать в себя разделенные частотные ресурсы (например, защищенные наборы поддиапазонов) или блоки ресурсов (RB).

[0065] На этапе 804 UE принимает информацию конфигурации сообщения CSI, которая может указывать, какой тип канальной информации обратной связи сообщать и когда сообщать ее. На этапе 806 UE сообщает “чистую” CSI для защищенных ресурсов и “нечистую” CSI для других ресурсов, в соответствии с конфигурацией сообщения. Как отмечено выше, сообщаемая CSI может включать в себя CQI, RI и/или PMI.

[0066] Согласно нижеследую