Автоматический привод механических наручных часов, механизм наручных часов с автоматическим приводом, механические наручные часы с автоматическим приводом и способ автоматического приведения в движение механических наручных часов

Иллюстрации

Показать все

Изобретение относится к области часовой промышленности и может быть использовано при производстве механических наручных часов с автоматическим приводом с возможностью получения энергии движения от разности температур у поверхности руки пользователя со стороны задней крышки корпуса часов и температуры воздуха со стороны циферблата и боковых сторон корпуса часов. Для упрощения конструкции привода (движителя) часов, автоматического завода и подзавода двигателя часового механизма и обеспечения автоматического завода и подзавода часового механизма даже при отсутствии движений пользователя в автоматическом приводе механизма наручных часов, содержащем источник энергии движения в качестве источника энергии движения, содержит тепловой двигатель с возможностью преобразования разницы температур в разных точках пространства в движение механизма наручных часов, в частности тепловой двигатель с возможностью преобразования разности температур у поверхности руки пользователя часов и температуры окружающего воздуха в движение механизма наручных часов в виде теплового двигателя Стирлинга гамма-типа, роторного типа или свободно-поршневого типа. Механизм наручных часов с автоматическим приводом и механические наручные часы содержат указанный автоматический привод. По способу автоматического приведения в движение механических наручных часов в качестве привода часов используют тепловой двигатель с возможностью преобразования разницы температур в разных точках пространства у корпуса часов в движение часового механизма, в частности используют тепловой двигатель Стирлинга с возможностью преобразования разности температур у поверхности руки пользователя со стороны задней крышки часов и температуры воздуха с боковых сторон корпуса часов или со стороны циферблата в движение часового механизма. 4 н. и 38 з.п. ф-лы, 13 ил.

Реферат

Область техники

Изобретение относится к области часовой промышленности и может быть использовано при производстве механических наручных часов с автоматическим приводом с возможностью получения энергии движения от разности температур различных областей пространства относительно корпуса часов, в частности с возможностью получения энергии движения от разности температур у поверхности руки пользователя со стороны задней крышки корпуса часов и температуры воздуха со стороны циферблата и боковых сторон корпуса часов.

Уровень техники

Распространенные в настоящее время механические часы обычно содержат: пружинный двигатель на основе спиральной пружины; механизм завода и перевода стрелок (на языке часовщиков - ремонтуар); спусковой механизм (на языке часовщиков - спуск, ход), преобразующий непрерывное вращательное движение в колебательное или возвратно-поступательное движение; колебательную систему в виде маятника или балансира (баланса); систему зубчатых колес или шестеренок, соединяющую пружинный двигатель и спусковой механизм (на языке часовщиков - ангренаж); стрелочный механизм и циферблат [1].

Пружинный двигатель на основе спиральной пружины обычно представляет собой прикрепленную к валу спиральную пружину, размещенную в цилиндрическом барабане с зубчатым краем. Раскручиваясь вокруг оси, спиральная пружина вращает барабан (внутри которого она находится), а его зубчатый край через него - систему колес, спусковой механизм и регулятор приводит в движение стрелочный механизм. При заводке часов вращением заводной головки через зубчатые передачи вращают соединенный с пружиной вал, на который, сжимаясь, наматывается спиральная пружина [1].

Главным недостатком пружинного двигателя на основе спиральных пружин является неравномерность скорости раскручивания пружины, что приводит к неточности хода часов. Каждая спиральная пружина в ходе своего разматывания изменяет свою приводную силу. Для устранения этого недостатка применяли и применяют различные способы: исключение в работе пружины, ее начальную и конечную фазу, путем использования кулачковых механизмов, из которых наиболее известны мальтийский механизм, кольцевидные и пальцевые кулачковые механизмы.

Изменчивость приводной силы спиральной пружины ограничивают удлинением пружины и увеличением запаса ее энергии, обычно за счет ее толщины. Для тонких пружин требуются также специальные сплавы, лучше выдерживающие нагрузку и усталость [2].

Таким образом главным недостатком пружинного двигателя на основе спиральных пружин является неравномерность скорости раскручивания спиральной пружины, что приводит к неточности хода часов. Кроме этого, точность хода механических часов зависит еще от множества факторов, таких как температура, положение часов, износ деталей и других. Поэтому для механических часов считается нормой расхождение с точным временем на 15-45 секунд в сутки, а лучшим результатом - 4-5 секунд в сутки.

Главным недостатком пружинного двигателя на основе спиральных пружин является неравномерность скорости раскручивания пружины, что приводит к неточности хода часов. Каждая спиральная пружина в ходе своего разматывания изменяет свою приводную силу. Для устранения этого недостатка применяли и применяют различные способы: исключение в работе пружины, ее начальную и конечную фазу, путем использования кулачковыХ механизмОВ, из которых известны мальтийский механизм, кольцевидные и пальцевые кулачковые механизмы.

Изменчивость приводной силы можно также ограничивать удлинением пружины и увеличением запаса ее энергии. Однако удлинение пружины идет за счет ее толщины, что требует увеличения ее размеров, а для тонких пружин требуются специальные сплавы, лучше выдерживающие нагрузку и усталость [3], но они дороги и сложны в изготовлении.

Главным недостатком обычного пружинного двигателя на основе спиральных пружин является неравномерность скорости раскручивания спиральной пружины, что приводит к неточности хода часов. Кроме этого, у механических часов точность хода зависит еще от множества факторов, таких как температура, положение часов, износ деталей и других. Поэтому для механических часов считается нормой расхождение с точным временем на 15-45 секунд в сутки, а лучшим результатом - 4-5 секунд в сутки.

В настоящее время широко используются механические часы с автоматическим подзаводом пружины (с автоподзаводом). Часы с автоподзаводом более точны, так как энергия пружины в течение дня остается почти постоянной, что приводит к постоянной величине импульса, передаваемого на регулятор-баланс [4].

По своим конструктивным особенностям механизмы автоподзавода различаются, но все известные конструкции имеют инерционный сектор, или подвижный груз, который при вращении часов оборачивается или качается вокруг своей оси и посредством силы тяжести передает пружине двигателя дополнительную энергию. Инерционный сектор обычно имеет достаточно большой вес, для того чтобы преодолеть силу сопротивления заводной пружины, поэтому и его крепление к механизму часов должно быть достаточно прочным и надежным.

В известных часах с исправным автоподзаводом пружина должна подзаводиться при повороте инерционного сектора в любую сторону. Если пружина заводится только при повороте инерционного сектора в одну сторону, это приводит к тому, что пружина не полностью подзаводится и часы останавливаются. Сектор автоподзавода при этом вращается при любых движениях руки человека, независимо от того, насколько заведена пружина часов. Для того чтобы пружина не порвалась от чрезмерного перенапряжения, она обычно имеет фрикционное крепление к барабану, посредством которого, достигнув максимального значения, пружина проскальзывает в барабане на два-три оборота, что дает возможность автоподзаводу постоянно работать и избегать его поломки.

Часы с автоподзаводом обычно толще и тяжелее обычных часов за счет механизма автоподзавода, который обычно располагается над основным механизмом часов.

В часах отечественного производства Слава 2427, Восток 2416 в системе автоподзавода используются фрикционные и передаточные колеса, что требует много энергии на вращение этих колес при заводе пружины часов.

В часах импортного производства - Ориент, Сейко, Ситизен и других система автоподзавода состоит из эксцентрика, гребенки, бархатного колеса. Инерционный сектор, вращаясь, поворачивает эксцентрик, на ось которого надета гребенка, гребенка в свою очередь начинает поворачивать бархатное колесо, которое, взаимодействуя с барабанным колесом, заводит пружину. Причем независимо в какую сторону поворачивается сектор автоподзавода бархатное колесо должно крутиться только в одну сторону. Для вращения одного бархатного колеса требуется меньше энергии, поэтому коэффициент полезного действия такой конструкции автоподзавода больше [4].

Первые механические карманные часы с автоподзаводом появились в XVIII веке, а в 1931 году Rolex выпустил первые наручные автоматические часы. Но по-настоящему массовое их производство началось только через 20 лет. С тех пор, благодаря своему удобству, автоподзавод завоевал огромную популярность [5].

Источником энергии в механических часах обычно является спиральная пружина. В большинстве часов она заводится вручную: вращением головки через систему колес передается на вал барабана.

Часы с автоподзаводом обычно имеют закрепленный на оси металлический груз, обычно выполненный в форме сектора. Центр тяжести сектора смещен к краю, и при любых движениях руки он поворачивается вокруг оси, заводя через систему шестерен пружину часов. Чтобы сектор мог преодолеть сопротивление пружины и завести часы, он должен обладать большой инерцией. Поэтому сектор обычно изготавливают из двух частей: тонкой легкой верхней пластины и полукольца из тяжелого вольфрамового сплава. Диаметр сектора стараются сделать максимально возможным.

Считается, что для полного автоматического завода пружины часы с автоподзаводом необходимо носить с движениями около 8 часов.

Основное достоинство часов с автоподзаводом состоит в том, что их не надо ежедневно заводить. При этом сектор постоянно поддерживает пружину в напряженном состоянии, близком к полному заводу, что позволяет достичь лучшей точности. Второе преимущество связано с водонепроницаемостью. Втулка заводной головки - одно из самых уязвимых мест в часах в плане водозащиты. В часах с автоподзаводом выше водонепроницаемость, т.к. заводная головка почти не используется, а значит у влаги и грязи меньше шансов попасть внутрь.

Недостатками механизмов автоподзавода являются значительный вес, конструктивная сложность и повышенная вероятность поломок. Известные часы с автоподзаводом толще и тяжелее обычных. Потребность в секторе большого размера ограничивает применение автоподзавода в женских часах. Усложнение механизма и использование груза из довольно дорогого вольфрама увеличивает стоимость часов.

Известные часы с автоподзаводом очень чувствительны к ударам. Бывает, что при сильных ударах под тяжестью грузового сектора ломаются его опоры.

Сегодня большинство выпускаемых в мире механических часов снабжены автоподзаводом, исключения составляют лишь самые дешевые и самые дорогие модели.

В дешевых часах автоподзавод не применяется с целью снижения стоимости.

В сложных дорогих часах использование автоподзавода известных конструкций часто становится невозможным, так как большое количество функций, во-первых, делает механизм и без того слишком толстым и увеличивать толщину еще, добавив автоподзавод, уже неразумно. Во-вторых, эти функции для своей работы требуют большей энергии и мощной пружины, и груз автоподзавода уже не в состоянии ее завести.

Известны механизмы автоподзавода («автоматического» завода), в котором качающийся неуравновешенный груз (грузовой сектор) осуществляет закручивание (завод) пружины пружинного двигателя, в которых неуравновешенный груз (ротор) 4 жестко соединен с трибом и свободно движется на оси в обоих направлениях или в которых триб постоянно сцеплен с зубчатым колесом обгонной муфты. В зависимости от направления вращения грузового сектора зубчатое колесо получает вращение в одном и том же направлении и при этом происходит подкручивание пружины [6].]

Известен часовой механизм для наручных часов, который для расширения арсенала технических средств и упрощения технологии изготовления часового механизма наручных часов содержит кинематическую цепь, включающую по меньшей мере один ремень для передачи движений и/или моментов между по меньшей мере двумя шкивами, которые удерживаются на нижней пластине или мостиках шарикоподшипниками. Подзавод механизма осуществляется посредством линейно колеблющейся массы, подзаводящей четыре барабана через парный распределитель. Барабаны не параллельны друг другу. Задняя крышка покрыта наклонными стеклами, позволяющими видеть барабаны, линейно колеблющуюся массу и, по меньшей мере, определенные шкивы. Регулирующий орган является съемным [7].

Известен автоподзавод пружинного двигателя наручных часов, содержащий центрально расположенный грузовой сектор с инерционным грузом и редуктор, отличающийся тем, что с целью упрощения конструкции и повышения его надежности редуктор снабжен пружинящей консолью круглого сечения, расположенной перпендикулярно оси грузового сектора и взаимодействующей свободным концом с храповым колесом, имеющим торцевые зубья и установленным на одной из осей редуктора, а средней частью, несущей камень с импульсной поверхностью, - со звездочкой, закрепленной на грузовом секторе и имеющей общую ось вращения [8].

Известны наручные часы, содержащие автоматический самоподзавод с асимметрично расположенным грузом и хронографный механизм, отличающиеся тем, что с целью повышения удобства в монтаже и ремонте в них хронографный механизм собран на отдельных платах и закреплен на платине часового механизма с помощью упоров, расположенных по всей высоте часового механизма [9].

Известен механизм подзавода наручных часов, содержащий центральный инерционный груз и планетарный редуктор, в котором для повышения надежности и уменьшения габаритов планетарный редуктор установлен на инерционном грузе и выполнен в виде центральных подвижного и неподвижного колес и двух сателлитов, каждый из которых состоит из двух соосных колес с числом зубьев, отличающимся по крайней мере на один, связанных разнонаправленными обгонными муфтами, причем колеса сателлитов, имеющие большее число зубьев, установлены с возможностью взаимодействия одного из них с подвижным центральным колесом, а другого - с неподвижным центральным колесом [10].

Известен механизм автоподзавода в виде инерционной массы, перемещающейся при изменении часов, отличающийся тем, что с целью возможности использования автоподзавода в сочетании с любым базовым элементом без его утолщения применено тяжелое полукольцо, размещенное по периметру механизма внутри корпусного кольца и удерживаемое в названном кольце с помощью трех роликов. При этом для передачи вращения груза на заводной вал пружины инерционный груз снабжен кольцом, внутренняя поверхность которого выполнена рифленой для взаимодействия с роликом, установленным на конце рычага, снабженного собачкой для перемещения храповика на заводном валу [11].

Известные механизмы автоподзавода могут быть использованы только в переносных часах, в которых по условиям эксплуатации возможно возникновение качательного движениЯ ротора.

Основным недостаткоМ всех известных механических часов с автоподзаводом для правильной работы механизма автоподзавода является необходимость активного подвижного образа жизни пользователя часов.

Как показывает практика, для работников сидячих профессий часы с автоподзаводом до конца не выполняют своей функции и автоподзавод часов у таких пользователей работает неэффективно. Поэтому разрабатываются часы с возможностью подзавода не от энергии механических движений, а от иных источников энергии.

Известны настольные часы Атмос с крутильным маятником, выпускаемые фирмой «Jaeger-leCoultre» (Швейцария) и работающие от изменения во времени температуры и атмосферного давления [12].

Источником энергии, поддерживающим колебания маятника в данных часах, служит перепад температуры окружающей среы воздуха в квартире или служебном помещении. Перепад температур в 1° обеспечивает функционирование часов в течение 2 суток. Часы функционируют с высокой степенью точности порядка 1 с в сутки. При отсутствии колебаний температуры окружающего воздуха в течение 2 суток (что мало вероятно) часы автономно функционируют в течение 100 суток за счет запаса энергии заводной пружины, заключенной в барабане.

Колебания температуры служат энергией подзавода пружины, которая работает в коротком интервале пологой кривой момента, обеспечивая тем самым высокую стабильность амплитуды колебаний и высокую степень точности хода.

Для использования колебания температуры воздуха на подзавод пружины используют особое химическое вещество C2H5Cl - хлористый этил. Пары хлористого этила создают давление, равное примерно атмосферному при температуре +12°C, при температуре +27°C давление паров максимальное, т.е. часы работают в широком диапазоне температур.

Хлористый этил помещают в герметический металлический корпус, имеющий форму короткого цилиндра. Хлористый этил заполняет внутренние кольцевые выступы в корпусе. При повышении температуры пары этила расширяются и давят на кольцевые выступы. Последние расширяются подобно мехам. Движение кольцевых выступов передается цепочке, которая одним концом прикреплена к пружине, а другим - к храповому устройству, осуществляющему непосредственно подзавод пружины в барабане.

При понижении температуры происходит сжатие кольцевых выступов. За счет разности температур и перемещения в ту или другую сторону кольцевых выступов, а вместе с ними пружины и цепочки, происходит подзавод пружины в барабане.

Для регулирования периода колебания маятника имеется головка, полный оборот которой соответствует изменению периода колебаний на 10 с в сутки. Часы регулируются с точностью 1 с в сутки. Часы работают только в стационарном положении, чувствительны к вибрациям. Они снабжены водяным уровнем и тремя установочными стойками, из которых одна неподвижна, а две другие регулируются по высоте. Для переноски часов маятник блокируется специальным устройством.

Недостатком этих часов является то, что эти часы работают только в стационарном положении, т.к. не допускается использование часов в качестве переносных. Так как энергия, получаемая от изменения давления и температуры, по времени очень мала, то в результате очень большого периода колебаний - под влиянием внешних воздействий - как правило они имеют очень сложную систему регулировки для обеспечения высокой точности хода. Кроме того, они требуют кропотливой и точной регулировки для обеспечения строго перпендикулярного плоскости Земли положения крутильного маятника.

Известны часы, у которых энергией подзавода пружины служит колебание давления воздушной среды.

Известно устройство для пневматического подзавода пружинного двигателя часов, содержащее пневмодвигатель, связанный через систему привода с заводным валом пружинного двигателя, которое снабжено последовательно соединенными триггером и усилителем, выход которого соединен с пневмодвигателем, а выходы триггера через путевые переключатели - с системой привода, выполненной в виде ходового винта с гайкой, одна сторона которого зафиксирована от проворачивания, а другая выполнена в виде заслонки переключения путевых выключателеЙ, и дополнительно снабжено последовательно соединенными системой аварийной сигнализации и логическим элементом «НЕ-ИЛИ», вход которого через путевой переключатель связан с заслонкой [13].

Недостатком данного устройства для пневматического подзавода пружинного двигателя часов является невозможность использования энергии разности температур.

Наиболее близким по технической сущности и достигаемому при использовании изобретения техническому результату (прототипом) являЮтся разработанные ранее автором механизм автоподзавода часов часы с механизмом автоподзавода, и способ автоподзавода часов облегчен и обладает повышенной чувствительностью к внешним воздействиям, компактен и прост по конструкции, надежен в использовании, дешев в производстве, что обеспечивается за счет того, что механизм автоподзавода часов содержит инерционную массу, перемещающуюся при изменении положения часов, и колесную систему с возможностью кинематической связи с барабаном пружинного двигателя часов, при этом, согласно изобретению, в качестве инерционной массы используют размещенный на плате часовой механизм с возможностью качания платы в неподвижном корпусе и подзавода пружинного двигателя при качании платы [14].

Задачи и технический результат

Задача предлагаемого изобретения и получаемый от его использования технический результат состоЯт в разработке и практическОЙ реализациИ простых по конструкции и дешевых в производстве часов и часовых механизмов с автоматическим заводом и подзаводом двигателя часов с получения энергии для завода и подзавода часов от разности температур различных областей пространства относительно корпуса часов.

Техническим результатом, получаемым при использовании изобретения, является упрощение конструкции привода (движителя) часов, автоматического завода и подзавода двигателя часового механизма и обеспечение автоматического завода и подзавода двигателя часового механизма даже при отсутствии движений пользователя посредством использования разности температур различных областей пространства относительно корпуса часов, в частности с получением энергии для хода, завода и подзавода наручных часов от разности температур у поверхности руки пользователя со стороны задней крышки часов и температуры воздуха со стороны циферблата и боковых сторон корпуса часов.

Раскрытие изобретения

Поставленная задача решается, а требуемый результат при использовании изобретения достигается тем, что в автоматическом приводе механизма наручных часов, содержащем источник энергии движения, согласно изобретению в качестве источника энергии движения содержится тепловой двигатель с возможностью преобразования разницы температур в разных точках пространства в движение механизма наручных часов, с возможностью преобразования разности температур у поверхности руки пользователя часов и температуры окружающего воздуха в движение механизма наручных часов, причем источник энергии выполнен в виде теплового двигателя Стирлинга гамма-типа, роторного типа или свободно-поршневого типа.

Автоматический привод механизма наручных часов может быть выполнен с возможностью

автоматического завода или подзавода двигателя механизма наручных часов;

автоматического завода или подзавода пружинного двигателя механизма наручных часов;

использования в качестве охладителя боковых сторон корпуса часов или стороны циферблата, а качестве теплоприемника (нагревателя) - задней крышки или части задней крышки корпуса часов с расположенным между ними теплоизоляционным материалом с низким коэффициентом теплопроводности;

использования в качестве охладителя механизма наручных часов движущихся деталей механизма наручных часов или маховика в форме крыльчатки;

использования в качестве охладителя ребер, канавок или дополнительных элементов охлаждения на корпусе наручных часов;

использования в качестве нагревателя соприкасающейся с рукой пользователя наручных часов части корпуса наручных часов, задней крышки часов, выполненной из материала с высоким коэффициентом теплопроводности, например из алюминия, сплавов алюминия, меди, медного сплава, серебра, сплава серебра или сплавов золота;

использования в качестве нагревателя соприкасающейся с рукой пользователя наручных часов части корпуса наручных часов, задней крышки часов, выполненной эргономичной формы, и/или ремешка/браслета часов, выполненного с внутренней стороны прилегающей к руке пользователя наручных часов с возможностью дополнительного теплоприема из материала с высокой теплопроводностью, а с наружной стороны накрытой теплоизоляционным материалом;

нагревания от Солнца или с возможностью создания разницы температур с использованием энергии Солнца;

функционирования совместно с дополнительными источником энергии движения, например с механизмом автоподзавода;

использования в качестве рабочего тела газа - воздуха, водорода, гелия, паров ацетона, спирта иного химического соединения или

с возможностью привода наручных часов с базовым серийно выпускаемым механизмом наручных часов как в обычном исполнении, так и с дополнительной доработкой, например с фрикционным внешним концом заводной пружины, для обеспечения «бесконечного завода» пружины механизма наручных часов.

При этом автоматический привод механизма наручных часов может быть выполнен с механизмом принудительного начального запуска с возможностью совместного функционирования с другими двигателями или с возможностью преобразования движения (вращательное, возвратно-поступательное) поступающего с теплового двигателя Стирлинга во вращение заводного вала или вала барабана часового механизма.

Поставленная задача решается, а требуемый результат при использовании изобретения достигается также тем, что механизм наручных часов с автоматическим приводом, содержащий автоматический привод с источником энергии движения в качестве источника энергии движения автоматический привод содержит тепловой двигатель с возможностью преобразования разницы температур в разных точках пространства в движение механизма наручных часов, с возможностью преобразования разности температур у поверхности руки пользователя часов и температуры окружающего воздуха в движение механизма наручных часов и может быть выполнен в виде теплового двигателя Стирлинга гамма-типа, роторного типа или свободно-поршневого типа.

При этом механизм наручных часов с автоматическим приводом может содержать описанный выше автоматический привод механизма наручных часов.

Поставленная задача решается, а требуемый результат при использовании изобретения достигается также тем, что наручные часы с автоматическим приводом, содержащие корпус и механизм с автоматическим приводом, содержащим источник энергии движения в качестве источника энергии движения автоматический привод содержит тепловой двигатель с возможностью преобразования разницы температур в разных точках пространства в движение механизма наручных часов, с возможностью преобразования разности температур у поверхности руки пользователя часов и температуры окружающего воздуха в движение механизма наручных часов, а источник энергии автоматического привода выполнен в виде теплового двигателя Стирлинга гамма-типа, роторного типа или свободно-поршневого типа.

При этом часы с автоматическим приводом содержат описанный выше автоматический привод механических наручных часов или содержат описанный выше механизм наручных часов с автоматическим приводом.

Поставленная задача решается, а требуемый результат при использовании изобретения достигается также тем, что по способу автоматического приведения в движение механических наручных часов в качестве привода часов используют тепловой двигатель с возможностью преобразования разницы температур в разных точках пространства у корпуса часов в движение часового механизма, с возможностью преобразования разности температур у поверхности руки пользователя со стороны задней крышки часов и температуры воздуха с боковых сторон корпуса часов или со стороны циферблата в движение часового механизма, при этом используют тепловой двигатель Стирлинга гамма-типа, роторного типа или свободно-поршневого типа с возможностью

автоматического завода или подзавода двигателя часового механизма;

автоматического завода или подзавода пружинного двигателя часового механизма.

При этом в качестве охладителя теплового двигателя используют боковые стороны корпуса часов, сторону циферблата, а качестве теплоприемника используют заднюю крышку или часть задней крышки корпуса часов с расположенным между ними теплоизоляционным материалом с низким коэффициентом теплопроводности или в качестве охладителя теплового двигателя используют часовой механизм, или отдельные движущиеся детали часового механизма, или маховик в форме крыльчатки.

Для интенсификации охлаждения теплового двигателя выполняют на корпусе часов ребра, канавки или дополнительные элементы охлаждения.

Для интенсификации нагревания теплового двигателя соприкасающуюся с рукой пользователя часть корпуса часов часть выполняют из материала с высоким коэффициентом теплопроводности, например из алюминия, сплавов алюминия, меди, медного сплава, серебра, сплава серебра или сплавов золота или соприкасающуюся с рукой пользователя часть корпуса часов выполняют эргономичной формы и/или ремешок/браслет часов с внутренней стороны, прилегающей к руке пользователя, выполняют с возможностью дополнительного теплоприема из материала с высокой теплопроводностью, а с наружной стороны он накрыт теплоизоляционным материалом.

При этом тепловой двигатель выполняют с возможностью нагревания от Солнца или с возможностью создания разницы температур путем расположения нагревателя к Солнцу или иному источнику внешнего тепла.

При этом тепловой двигатель выполняют с возможностью

функционирования совместно с дополнительными источниками энергии движения, например с механизмом автоподзавода;

использования в качестве рабочего тела газа - воздуха, водорода, гелия, паров ацетона, спирта иного химического соединения или привода часов с базовым серийно выпускаемым часовым механизмом как в обычном исполнении, так и с дополнительной доработкой, например с фрикционным внешним концом заводной пружины, для обеспечения «бесконечного завода» пружины.

При этом тепловой двигатель выполняют с механизмом принудительного начального запуска и могут одновременно использовать несколько тепловых двигателей.

Основные термины и определения

В настоящей заявке используются термины и определения, имеющие следующее значение:

Теплообменник - это основная часть теплового двигателя Стирлинга, предназначенная для передачи температуры от среды с более высокой температурой к среде с более низкой температурой.

Кривошипно-шатунный механизм - устройство, позволяющее преобразовать возвратно-поступательное движение поршня во вращательное движение вала.

Вытеснитель, дисплейсер - один из поршней двигателя Стирлинга, работающий в условиях высоких перепадов температур и низких перепадов давления; как правило он имеет небольшую массу.

Нагреватель - теплообменник двигателя Стирлинга, в котором осуществляется процесс передачи теплоты от источника к рабочему телу двигателя.

Рабочий поршень - один из поршней двигателя Стирлинга, работающий в условиях высоких перепадов давления и низких перепадов температур.

Цикл Стирлинга - идеализированный термодинамический цикл, состоящий из двух изотермических процессов сжатия и расширения и двух изохорических регенеративных процессов.

Рабочее тело - газ, жидкость или пар, которые периодически сжимаются или расширяются при соответствующих температурах в рабочей плоскости двигателя Стирлинга.

Спусковой регулятор - спусковым регулятором часового механизма называется устройство, состоящее из осциллятора, совершающего равномерные колебания, и спуска, преобразующего колебания в интервалы времени исполнительного устройства, при этом поступление энергии на осциллятор для поддержания его колебания регулируется тем же спуском.

Зубчатая передача (основная колесная система) состоит из зубчатых колес, связывает двигатель со спусковым регулятором и передает движение часовому механизму.

Механический аккумулятор (источник энергии, механический аккумулятор) необходим для аккумулирования энергии и приведения в действие и поддержания действия часового механизма. В основном в часах применяют пружинные и гиревые двигатели. Пружинный двигатель аккумулирует энергию завода часов. В наручных часах, как правило, используют барабан со спиральной пружиной внутри.

Стрелочный механизм является исполнительным устройством, как правило, состоит из системы зубчатых колес и передает движение от основной колесной системы стрелкам.

Механизм завода часов и перевода стрелок позволяет вручную завести пружинный двигатель и установить стрелки в нужное положение. Этот механизм может состоять из заводной головки, заводного вала, системы рычагов и зубчатых колес.

Осциллятор - система, которая при смещении из положения равновесия испытывает действие возвращающей силы, пропорциональной смещению. В часах осциллятором, как правило, является маятник или система баланс-спираль.

Краткое описание чертежей

Сущность изобретения поясняется чертежами.

В предпочтительных, показанных на чертежах вариантах конструктивного исполнения устройство теплового двигателя Стирлинга для часов часовой механизм с двигателем Стирлинга и часы с двигателем Стирлинга показаны: рабочий цилиндр 1, внутренняя область рабочего цилиндра 2, поршень рабочего цилиндра 3, нагреватель-теплосъемник 4, охладитель 5, теплообменный цилиндр 6, дисплейсер-вытеснитель 7, стенки теплообменного цилиндра 8, шток дисплейсера 9, втулка охладителя 10, маховик 11, кривошипный шарнир поршня теплообменника 12, кривошипный шарнир рабочего поршня 13, кривошипный шарнир теплообменного цилиндра 14, кривошип 15, шатун дисплейсера 16, шатун рабочего цилиндра 17, шарнир оси рабочего поршня 18, шток рабочего поршня 19, рука человека 20, лапки корпуса 21, корпус 22, радиатор корпуса 23, циферблат 24, стекло 25, часовой механизм 26, минутная стрелка 27, часовая стрелка 28, ремешок 29, заводная головка 30, теплопроводная подложка ремешка 31, коническое колесо вала маховика 32, коническое колесо передаточного механизма 33, первое колесо редуктора 34, второе колесо редуктора 35, барабанное колесо 36, вал барабана 37, стойка крепления маховика и кривошипа 38, выходной вал двигателя Стирлинга 39, первое дополнительное колесо 40, второе дополнительное колесо 41.

На фиг.1 показана структурно-функциональная схема простейших часов с тепловым двигателем Стирлинга, без аккумулятора энергии, на которой показаны сопряженные средствами кинематической связи тепловой двигатель Стирлинга, спусковой регулятор, стрелочный механизм.

На фиг.2 показана структурно-функциональная схема часового механизма с тепловым двигателем Стирлинга, на которой показаны соединенные средствами кинематической связи работающий от разницы температур двигатель Стирлинга, передаточный механизм, механический аккумулятор (пружинный двигатель, гиревой двигатель, пневматический аккумулятор, барабан часов и т.п.), зубчатая передача, спуск, осциллятор, стрелочный механизм. Пунктирной линией выделены функциональные блоки, присущие обычному стандартному часовому механизму.

На фиг.3 показана структурно-функциональная схема прибора с часовым механизмом с тепловым двигателем Стирлинга, включающая в себя соединенные средствами кинематической связи работающий от разницы температур двигателеь Стирлинга, передаточный механизм, механический аккумулятор (пружинный двигатель, гиревой двигатель, пневматический аккумулятор, барабан часов и т.п.), механизм завода и перевода стрелок, стрелочный механизм, зубчатая передача, спуск и осциллятор. Пунктирной линией выделены функциональные блоки, присущие обычному стандартному часовому механизму.

На фиг.4 показана конструкция теплового двигателя Стирлинга гамма-типа в возможной компоновке для использования в механизме часов, на которой показан рабочий цилиндр 1, внутренняя область рабочего цилиндра 2, поршень рабочего цилиндра 3, нагреватель 4, охладитель 5, теплообменный цилиндр 6, дисплейсер-вытеснитель 7, стенки теплообменного цилиндра 8, шток дисплейсера 9, втулка охладителя 10, маховик 11, кривошипный шарнир поршня теплообменника 12, кривошипный шарнир рабочего поршня 13, кривошипный шарнир теплообменного цилиндра 14, кривошип 15, шатун дисплейсера 16, шатун рабочего цилиндра 17, шарнир оси рабочего поршня 18, шток рабочего поршня 19.

На фиг.5 показан 1-й такт работы двигателя Стирлинга гамма-типа - такт сжатия рабочего тела при постоянной температуре: дисплейсер 7 находится вблизи нижней мертвой точки (НМТ) и остается условно неподвижным. Газ сжимается рабочим поршнем 3 малого цилиндра 1. Давление газа возрастает, а температура остается постоянной, так как теплота сжатия отводится через холодный торец теплообменного цилиндра 5 в окружающую среду. Под условной неподвижностью в данном случае подразумевают малую высоту перемещения поршня при прохождении кривошипом расстояния вблизи верхней или нижней мертвой точки.

На фиг.6 показан 2-й такт работы двигателя Стирлинга гамма-типа - такт нагревания рабочего тела при постоянном объеме: рабочий поршень 3 рабочего цилиндра 1 находится вблизи НМТ и полностью перемещает холодный сжатый газ в теплообменный цилиндр 6, вытеснитель 7 которого движется к верхней мертвой точке (ВМТ) и вытесняет газ в горячую полость. Так как при этом суммарный внутренний объем цилиндров двигателя остается постоянным, рабочее тело разогревается, давление повышается и достигает максимального значения. Прирост давления идет параллельно с выталкиванием рабочего поршня 3. В результате давление не достигает теоретически рассчитанного максимума. Данный факт также объясняет хороший к.п.д. на малых оборотах двигателя. Рабочее тело прогревается лучше и прирост давления приближается к максимуму.

На фиг.7 показан третий такт работы двигателя Стирлинга гамма-типа - такт расширения при постоянной температуре газа: дисп