Сероустойчивый носитель катализатора на основе оксида алюминия

Изобретение относится к способу формирования твердотельных частиц оксида алюминия, плакированных диоксидом титана, включающему: а) перемешивание водной суспензии от примерно 1 до примерно 30 мас.% твердотельных частиц оксида алюминия с водным раствором сульфата титанила, имеющим рН от примерно 0,5 до 1,5, в течение периода времени, обеспечивающего получение однородной смеси; b) увеличение рН смеси при скорости от 0,05 до 0,5 единиц рН в минуту до полученной величины рН между 3,4 и 4 посредством добавления водного щелочного раствора; c) предоставление возможности поддержания полученной суспензии при указанной полученной величине рН в течение периода времени от примерно 10 до 120 минут; d) удаление сульфатных ионов из обработанных твердотельных частиц, чтобы образовать материал, по существу, не содержащий сульфата; e) сушку твердотельных частиц с последующим нагреванием указанных твердотельных частиц при температуре от примерно 400° до 1000°С в течение периода времени от примерно 15 до 480 минут; и f) извлечение твердотельных частиц оксида алюминия, плакированных диоксидом титана. Также изобретение относится к твердотельным частицам оксида алюминия, плакированным диоксидом титана, полученным заявленным способом и имеющим нормализованное поглощение серы (NSU) менее чем 45 мкг/м2 образца. Технический результат заключается в формировании катализатора, способного к проявлению высокой устойчивости к сульфату, значительной долговечности и высокой каталитической активности после воздействия высоких температур и обработки потоков выхлопных газов, содержащих серосодержащие материалы. 2 н. и 10 з.п. ф-лы, 1 табл., 17 пр.

Реферат

Предшествующий уровень техники

Данное изобретение направлено на способ формирования твердотельных частиц оксида алюминия, плакированных диоксидом титана, которые обладают высокой устойчивостью к деградации под воздействием серы. Продукты, полученные способом по данному изобретению, предоставляют улучшенные носители катализатора и результирующие катализаторы. Эти катализаторы включают те, что применимы для обработки выхлопных газов двигателя внутреннего сгорания, особенно выхлопных газов дизельных двигателей, а также в других видах применения, включая те, что используются в процессе Фишера-Тропша и других реакциях гидрогенизации. Способ по данному изобретению предоставляет экономичное и осуществимое в промышленном масштабе средство формирования, по существу, равномерного плакирующего покрытия из диоксида титана на твердотельных частицах из оксида алюминия. Продукт, получаемый посредством данного изобретения, сохраняет большую площадь поверхности и пористость первоначального оксида алюминия, наряду с существенным уменьшением площади поверхности оксида алюминия, не имеющей защитного покровного слоя из диоксида титана по сравнению с теми продуктами, что получены обычными процессами импрегнирования.

Выхлопные газы двигателей внутреннего сгорания представляют собой известную опасность для здоровья людей, для животных, а также для растений. Загрязнителями являются обычно несожженные углеводороды, монооксид углерода, оксиды азота, а также остаточные количества серы и серосодержащих соединений. Эти загрязнители успешно обрабатывались посредством контактирования с мультифункциональными катализаторами на основе благородных металлов, которые способны к преобразованию высокой процентной доли загрязнителей в менее вредные продукты в виде диоксида углерода, воды (пара) и азота. Однако известно, что сера и серосодержащие соединения и агенты, присутствующие в топливах, особенно из нефти смешанного (промежуточного) основания (углеводороды C10 и выше), и, в свою очередь, в потоках выхлопных газов, отравляют благородные металлы, приводя к снижению их каталитической активности и уменьшению срока службы. Удаление таких серосодержащих материалов рассматривалось как трудновыполнимое, вследствие комплексной природы и объема таких материалов.

Серосодержащие материалы, содержащиеся в топливах, склонны к окислению в процессе сжигания, образуя оксиды серы. В свою очередь, эти оксиды серы могут затем реагировать с оксидом алюминия, поддерживающим каталитические материалы, расположенные в нижнем течении двигателя и конвертироваться в сульфаты, которые остаются на поверхности носителя на основе оксида алюминия. Полагают, что такое покрывание поверхности оксида алюминия сульфатом обычно вызывает потерю каталитической активности. Кроме того, сульфаты, первоначально находящиеся на поверхности оксида алюминия, могут затем преобразовываться в серную кислоту, которая после этого выводится из системы в качестве части потока выхлопных газов.

Носители катализаторов обычно получают из неорганических оксидов с высокой пористостью, таких как оксид алюминия и диоксид титана. Например, диоксид титана, как известно, обладает гораздо более низкой склонностью к реакционному взаимодействию с сульфатами и поэтому проявляет увеличенную долговечность в присутствии паров, которые включают серосодержащие материалы и т.п. Однако, когда диоксид титана используется в качестве носителя, он не проявляет гидротермической стабильности, требуемой для формирования носителей катализатора для эффективного контроля эмиссии. При воздействии соответствующих температур диоксид титана спекается в большей степени, чем оксид алюминия, и, соответственно, вызывает уменьшение площади поверхности материала и, следовательно, более низкую каталитическую активность, чем оксид алюминия в качестве его аналога. Соответственно, диоксид титана, сам по себе, не предоставляет желательный материал для поддержки катализатора.

В попытках преодолеть плохие гидротермические свойства, связанные с диоксидом титана, носители на основе оксида алюминия покрывали диоксидом титана обычными методами импрегнирования или совместным осаждением (см. опубликованную заявку на патент США 2005/0272827). В обоих случаях результирующий носитель сохраняет значительное количество открытого оксида алюминия вследствие тенденции к отторжению диоксида титана или его предшественника оксидом алюминия и вследствие того, что титановый материал, когда осажден на начальной стадии, действует в качестве зародышеобразующих мест для дальнейшего осаждения. Результатом является покровный слой, который состоит из прерывистых островков титанового материала, покрывающих опорную поверхность носителя на основе оксида алюминия. Обычно покрытые носители, тем не менее, имеют значительное число открытых участков поверхности оксида алюминия и поэтому проявляют большую степень восприимчивости к отравлению серой. Кроме того, диоксид титана, нанесенный обычными способами, склонен к осаждению в порах оксида алюминия, вызывая закупорку пор и, соответственно, уменьшая площадь поверхности, на которой может находиться благородный металл.

Патент США 4759918 раскрывает каталитический композит, рассматриваемый как применимый при обработке дизельной сажи. Данный композит содержит огнеупорный неорганический оксид, устойчивый к сере, такой как оксид алюминия, который был покрыт мокрым способом тонким слоем водной суспензии предварительно сформированного диоксида титана. Хотя продукт может проявлять некоторую устойчивость к деградации под воздействием серы, покровный слой не защищает всю поверхность оксида алюминия или должен быть нанесен в таких больших количествах, что он не только покрывает поверхность, но также и перекрывает отверстия пор оксида алюминия.

Патент США 4705770 раскрывает способ получения носителя катализатора на основе диоксида титана со структурой анатаза посредством образования раствора сульфата аммония и титанила из тетрахлорида титана и импрегнирования полученным раствором пористой основы несколько раз. После каждого импрегнирования осажденный материал разлагается посредством его нагревания до высоких температур и последующего прокаливания, чтобы преобразовать титан в диоксид титана со структурой анатаза. Результирующий продукт имеет толстый неравномерный покровный слой из диоксида титана при существенной потере пористости основы.

Опубликованная заявка на патент США 2005/0272827 раскрывает катализатор, используемый в реакциях гидрогенизации и Фишера-Тропша, который состоит из кобальта на носителе, покрытом диоксидом титана. Носитель, покрытый диоксидом титана, получен посредством обычных методов импрегнирования при использовании титанорганических соединений и органических жидкостей для образования из них покровных слоев. Такие процессы требуют дорогих органических исходных соединений и жидкостей, которые требуют специальных методов и оборудования (например, взрывобезопасного оборудования и т.п.), что делает процесс невозможным для промышленного применения.

Патент США 7169433 раскрывает процесс нанесения покровного слоя на базовые частицы, такие как железо, путем получения водной суспензии базовых частиц, имеющей pH между 7 и 12, добавления раствора перекиси водорода/аммиака, также имеющего pH от 7 до 12 и содержащего пероксотитановую кислоту. Когда раствор пероксотитановой кислоты вводится в суспензию, она разлагается, и образует пленочный покровный слой из диоксида титана на базовом порошке.

Выложенная заявка на патент Японии 2000-345072 раскрывает способ формирования синего порошка, имеющего гладкие поверхности. Порошок получают посредством первоначального нанесения на магнетит покровного слоя из кремнезема с последующим осаждением предварительно полученного диоксида титана. Диоксид титана был первоначально получен из водного раствора сульфата титанила, поддерживаемого буферизацией при pH 5,4 и при повышенной температуре, чтобы обусловить гидролиз водой сульфата титанила до диоксида титана. Раствор с полученным очень небольшим количеством диоксида титана затем приводили в соприкосновение с магнетитом, покрытым кремнеземом, при перемешивании ультразвуком, чтобы сформировать на нем покровный слой.

Было предложено осаждение из паровой фазы при использовании тетрахлорида титана (см. патент США 4459372), чтобы обеспечить равномерный покровный слой из диоксида титана. Однако такой процесс является нежелательным для широкого промышленного применения, вследствие проблем с выполнением, связанных с использованием тетрахлорида титана в качестве реагента и усложненным оборудованием, требующимся для технологии осаждения из паровой фазы. Другие попытки изготовления плакирующего покрытия из диоксида титана включали химическое осаждение из паровой фазы диоксида титана на поверхность оксида алюминия (см. опубликованную заявку на патент США 2005/0129601; опубликованную заявку на патент США 2003/0143421 и патент США 7022646). Также и такой способ требует усложненного оборудования и тщательного выполнения обработки.

Данное изобретение согласовывает как выгодные аспекты материалов, формирующих твердотельные частицы оксида алюминия с плакирующим покрытием из диоксида титана, так и осуществимые в промышленном масштабе и экономически эффективные стадии процесса, который обеспечивает простым образом формирование конечного катализатора, способного к проявлению высокой устойчивости к сульфату, значительной долговечности и высокой каталитической активности после воздействия высоких температур и обработки или потоков выхлопных газов, содержащих серосодержащие материалы. Данное изобретение направлено на экономичный и осуществимый в промышленном масштабе способ формирования высокодисперсного, по существу, равномерного слоя диоксида титана на оксидном носителе, состоящем из термически стабильного оксида алюминия. Кроме того, достигнутое в данном изобретении плакирующее покрытие из диоксида титана имеет размеры, которые предоставляют ему возможность быть сформированным на поверхности оксида алюминия без блокирования его пор, чтобы, соответственно, в основном поддерживать большую площадь поверхности первоначальных твердотельных частиц оксида алюминия.

Желательно предоставить экономичный и осуществимый в промышленном масштабе способ образования носителя катализатора на основе оксида алюминия, плакированного диоксидом титана, способного увеличить активность благородных металлов при конверсии монооксида углерода и углеводородных материалов в диоксид углерода и воду, наряду с проявлением высокой устойчивости к присутствию серы и серосодержащих соединений.

Также желательно формировать носитель катализатора на основе оксида алюминия, имеющий плакирующее покрытие из диоксида титана на поверхности носителя. Плакирующее покрытие должно быть, по существу, непрерывным по всей поверхности оксида алюминия, не вызывать или вызывать лишь незначительное уменьшение площади поверхности пористого оксида алюминия (например, тем, что оно не закупоривает поры) и предоставлять высокую эффективность в отношении устойчивости к присутствию серы и серосодержащих соединений и агентов.

Авторами было обнаружено, что материал в виде твердотельных частиц оксида алюминия, плакированных диоксидом титана, изготовленный в соответствии с данным изобретением, предоставляет носитель катализаторов на основе благородных металлов. Полученные носители проявляют повышенную устойчивость к сере по сравнению с носителями, имеющими такое же содержание диоксида титана, которые изготовлены обычными способами импрегнирования или совместного осаждения. Способ по данному изобретению предоставляет экономичный и осуществимый в промышленном масштабе способ изготовления желаемого носителя на основе оксида алюминия, плакированного диоксидом титана, в качестве продукта.

Способ по данному изобретению предоставляет возможность экономичного формирования желаемого носителя на основе оксида алюминия и образованного катализатора для эффективной обработки потоков продуктов, выпускаемых двигателями внутреннего сгорания, особенно двигателями на дизельном топливе, а также для других видов применения. Тонкое, по существу, равномерное плакированное покрытие из диоксида титана, достигаемое посредством данного изобретения, предоставляет возможность улучшенного массопереноса, наряду с тем, что оно не перекрывает поверхности пор, что могло бы уменьшить пористость сердцевины из оксида алюминия. Все данные преимущества могут быть достигнуты при применении легкодоступных, простых в обращении и легко обрабатываемых материалов и выполняемых простым образом этапов, чтобы, соответственно, предоставить экономичный, осуществимый в промышленном масштабе способ, полностью описанный в данном документе ниже.

Сущность изобретения

Данное изобретение направлено на способ изготовления оксида алюминия, плакированного диоксидом титана, с большой площадью поверхности, применимого в качестве носителя для катализаторов на основе благородных металлов, и продукт, полученный таким образом. Продукт, плакированный диоксидом титана, в соответствии со способом по данному изобретению и катализаторы, полученные на его основе, проявляют высокую устойчивость к отравлению серосодержащими материалами. Образованный продукт особенно полезен в тех видах применения, которые направлены на конверсию выхлопов двигателей внутреннего сгорания.

Более конкретно, данное изобретение направлено на новый, осуществимый в промышленном масштабе и экономически эффективный способ формирования твердотельных частиц оксида алюминия с большой площадью поверхности, содержащих примерно от 1 до 50 мас.%, предпочтительно от 5 до 40 и наиболее предпочтительно от 10 до 30 мас.% диоксида титана, по отношению к образованному носителю, в форме тонкого, по существу, равномерного плакирующего покрытия из диоксида титана на поверхности оксида алюминия.

Образованные твердотельные частицы оксида алюминия с плакирующим покрытием из диоксида титана, имеющие большую площадь поверхности, которые сформированы в соответствии с данным изобретением, неожиданным образом проявляют повышенную эффективность в отношении устойчивости к сере, составляющую менее чем примерно 40 мкг/м2, как показано посредством нормализованного поглощения серы (NSU), описанного в данном документе ниже. Достигнутая эффективность в отношении нормализованного поглощения серы (NSU) примерно в два раза больше по сравнению с носителями, сформированными обычными методами импрегнирования. Таким образом, способ по данному изобретению предоставляет образованный катализатор на носителе, обладающий превосходящими эксплуатационными качествами и более продолжительным сроком службы по сравнению с катализатором на носителе из оксида алюминия с таким же самым массовым относительным содержанием на нем диоксида титана, сформированном обычными методами.

Кроме того, материал в виде твердотельных частиц оксида алюминия, плакированных диоксидом титана, полученный в соответствии с данным изобретением, предоставляет носитель, в котором диоксид титана остается в аморфном состоянии даже после воздействия высоких температур, таких как те, что используются при прокаливании носителя в качестве продукта.

Способ по данному изобретению включает получение суспензии пористых твердотельных частиц оксида алюминия, применимых в качестве носителя катализатора для предполагаемого применения, смешивание указанной суспензии с раствором сульфата титанила, имеющего pH примерно 1, увеличение pH суспензионной смеси при небольшой контролируемой скорости от 0,005 до 0,5 единиц pH в минуту посредством добавления разбавленного водного раствора основания, чтобы увеличить pH суспензии до примерно от 3,5 до 4, отделение обработанных пористых твердотельных частиц оксида алюминия и промывку их для освобождения от сульфатных ионов, с последующей, сушкой и прокаливанием результирующих твердотельных частиц, чтобы изготовить продукт из оксида алюминия с плакирующим покрытием из диоксида титана. Такой материал может затем быть покрыт благородным металлом, чтобы образовать требуемый каталитический материал.

Подробное описание

Носитель, изготовленный способом по данному изобретению, находится обычно в форме твердотельных частиц, содержащих оксид алюминия, на которых сформировано плакирующее покрытие из диоксида титана.

Данное изобретение направлено на способ получения улучшенного носителя на основе оксида алюминия, который обладает высокой устойчивостью к отравлению серосодержащими материалами. Способ, полностью описанный в данном документе ниже, применим при получении носителя для катализаторов для обработки выхлопных газов на основе благородного металла, обладающих высокой устойчивостью к присутствию серосодержащих материалов, обычно присутствующих в потоках продуктов, выпускаемых двигателями внутреннего сгорания и т.п.

Приведенные ниже термины, используемые в данном описании и прилагаемой формуле изобретения, имеют следующие определения.

Термин «носитель» относится к материалу, на который наносится активный каталитический материал. В данном изобретении носитель, в качестве продукта, полученного способом по данному изобретению, имеет большую площадь поверхности, и твердотельные частицы оксида алюминия, плакированные диоксидом титана, обеспечивают осаждение на их поверхности металлов, например благородных металлов, в количестве, необходимом для катализа.

Термин «твердотельные частицы» относится к частицам в форме порошка, гранул, экструдатов и т.п. В идее данного изобретения он используется в отношении к сердцевинам, носителям, а также к результирующим продуктам с поддержкой благородного металла. Твердотельные частицы оксида алюминия, применимые в данном способе, обычно имеют размер от примерно 1 до примерно 200 мкм.

Термин «оксид алюминия» относится к любой из форм оксида алюминия в отдельности или в виде смеси с небольшими количествами других металлов и/или оксидов металлов и неметаллов.

Термин «сердцевина» относится к твердотельным частицам оксида алюминия перед плакированием в соответствии с данным изобретением. Такой материал в виде твердотельных частиц оксида алюминия без плакирующего покрытия использовался в качестве материала в предшествующем уровне техники.

Термин «покровный слой» относится к поверхностному покрытию, которое находится в форме прерывистого покровного слоя неравномерной толщины на сердцевине твердотельных частиц. Покровные слои обычно формируются посредством процессов импрегнирования и совместного осаждения, известных в данной области техники, и имеют сравнительно толстую неравномерную форму. Там, где имеется покровный слой, он обычно имеет толщину, соответствующую по меньшей мере примерно десяти (10) молекулам (диоксида титана). Что касается продуктов на основе оксида алюминия, покрытых диоксидом титана, то покровный слой может рассматриваться как прерывистая пленка на основе из оксида алюминия, как это показывает большая величина нормализованного поглощения серы (NSU), проявляемая покрытыми продуктами.

Термин «плакирующее покрытие» или «плакированный» относится к поверхностному покрытию в форме сравнительно тонкого (например, моно-, ди- или тримолекулярного) слоя, по существу, равномерного и покрывающего непрерывным образом твердотельные частицы из оксида алюминия, являющиеся сердцевиной. Обычно толщина составляет менее чем половина среднего диаметра пор носителя из оксида алюминия и, как правило, толщина составляет от 5 до 50 ангстрем, предпочтительно от 5 до 25 ангстрем. Соответственно, плакированный носитель предоставляет заметно более эффективный кроющий слой на единицу осажденного материала по сравнению с тем, который достигается посредством продуктов с покрытием, сформированным обычными способами импрегнирования или совместного осаждения. Материал с плакированными твердотельными частицами проявляет более низкие величины нормализованного поглощения серы (NSU) (определенные ниже) по сравнению с продуктом на основе оксида алюминия, покрытого диоксидом титана, имеющим такое же самое содержание в мас.% диоксида титана, который сформирован обычными методами импрегнирования.

Термин «адсорбированный» или «адсорбция» относится к явлению адсорбции (способности к удержанию или концентрированию газов, жидкостей или растворенных веществ на поверхности адсорбента [например, оксида алюминия]) или абсорбции (способности к удержанию или концентрированию газов, жидкостей или растворенных веществ на всем протяжении тела абсорбента [например, оксида алюминия]) или обоим явлениям, которые могут быть осуществлены посредством химической реакции ионной, ковалентной или смешанной природы или же, посредством физических сил.

Термин «серосодержащий материал» относится к сере, оксидам и соединениям серы и компонентам, содержащим атомы серы.

Способ по данному изобретению предоставляет простым образом улучшенный носитель, состоящий из твердотельных частиц оксида алюминия с большой площадью поверхности, имеющих плакирующее покрытие из диоксида титана в достаточном количестве и в форме, проявляющей значительное сдерживание адсорбции серосодержащего материала, как подробно описано в данном документе ниже.

Оксид алюминия может быть выбран из любой формы или смесей оксида алюминия, описанных для предполагаемых конкретных видов применения. Давно известно, что оксид алюминия не является материалом, который представляется просто формулой Al2O3. Вместо этого такие материалы обычно представляются как «гидраты», в том смысле, что они содержат различные количества воды, которая может быть удалена посредством обработки при повышенных температурах. Большей частью, «гидраты» проявляются как поверхностные гидроксильные группы, которые сами по себе существенно модифицируют поверхностные свойства оксида алюминия. Кроме того, также хорошо известно, что глинозем или оксид алюминия имеет различные кристаллографические модификации, из которых наиболее обычными являются следующие:

• гамма-оксид алюминия, форма, стабильная вплоть до температуры примерно 900ºC, при которой он преобразуется в дельта-оксид алюминия (предпочтительный материал);

• дельта-оксид алюминия, форма, стабильная вплоть до температуры примерно 1000ºC, при которой он преобразуется в тета-оксид алюминия;

• тета-оксид алюминия, форма, стабильная вплоть до температуры примерно 1100ºC, при которой он преобразуется в альфа-оксид алюминия;

• моногидрат алюминия или бемит, который приготавливается различными путями, такими как добавление гидроксида аммония к водному раствору хлорида алюминия. Данный материал первоначально осаждается в виде аморфных хлопьев, которые быстро преобразуются в кристаллический бемит. В качестве альтернативы, он приготавливается посредством реакции сульфата алюминия c алюминатом натрия;

• тригидрат алюминия или гиббсит;

• другие формы гидратированного оксида алюминия, такие как бейерит и т.п.;

• другие формы оксида алюминия, такие как эта-оксид алюминия и т.п.

Хотя любой из вышеуказанных оксидов алюминия может быть использован, предпочтительный оксид алюминия для применения в качестве сердцевины при получении носителя по данному изобретению выбирается из дельта-оксида алюминия, гамма-оксида алюминия или их смесей.

Оксид алюминия может быть легирован обычными легирующими примесями, такими как переходные металлы и оксиды металлов, оксиды щелочноземельных металлов, оксиды редкоземельных металлов, кремнезем и т.п. и их смеси. Примеры таких легирующих примесей включают редкоземельные металлы и их оксиды, такие как оксид магния, оксид кальция, оксид никеля, оксид цинка, кремнезем и т.п., при оксиде лантана, являющемся предпочтительной легирующей примесью. Легирующая примесь, когда она используется, обычно присутствует в небольших количествах, таких как от 0,1 до 10, предпочтительно от 1 до 5 мас.% от материала сердцевины в виде твердотельных частиц оксида алюминия с большой площадью поверхности (перед нанесением плакирующего покрытия в соответствии с данным изобретением).

Легирующие примеси обычно присутствуют в твердотельных частицах оксида алюминия, чтобы придать конкретные свойства, такие как гидротермическая стабильность, прочность на истирание, содействие каталитической активности и т.п., как это хорошо известно специалистам.

Твердотельные частицы оксида алюминия с большой площадью поверхности могут быть в виде порошка (предпочтительно), имеющего средний размер частиц от примерно 1 до 200 мкм, предпочтительно от 10 до 100 мкм; или гранул, имеющих средний размер частиц от 1 мм до 10 мм. В качестве альтернативы, твердотельные частицы оксида алюминия могут быть в виде таблеток или экструдатов (например, цилиндрической формы). Размер и конкретная форма определяются предполагаемым конкретным видом применения.

Во всех случаях, основа (сердцевина) носителя, образованная твердотельными частицами оксида алюминия, должна иметь большую (по БЭТ) площадь поверхности, составляющую по меньшей мере примерно 20 м2/г, например от примерно 20 до примерно 400 м2/г, предпочтительно от примерно 75 до 350 м2/г и более предпочтительно более чем 100 м2/г, например от 100 до 250 м2/г. Сердцевина твердотельных частиц оксида алюминия имеет объем пор по меньшей мере примерно 0,2 см3/г, например от 0,2 до 2 см3/г и предпочтительно от 0,5 до 1,2 см3/г и средний диаметр пор в интервале от 50 до 1000 ангстрем, предпочтительно более чем 100 ангстрем, например от 100 до 500 ангстрем, и более предпочтительно от 100 до 300 ангстрем. Такие твердотельные частицы с большой площадью поверхности предоставляет достаточную площадь поверхности для осаждения катализатора из благородного металла и обладания им способности к соприкосновению простым образом, например, с потоком выхлопных газов, чтобы осуществить эффективную каталитическую конверсию токсичных продуктов в более безопасные выпускаемые продукты, или реакционным потоком, чтобы увеличить скорость каталитической реакции.

Частицы гидратов алюминия обычно прокаливают, чтобы удалить остаточную воду и чтобы преобразовать гидроксильные группы алюминия в их оксидные эквиваленты (хотя остаточные гидроксильные группы остаются в качестве части структуры оксида алюминия, особенно на поверхности частиц).

Твердотельные частицы оксида алюминия, применимые в качестве сердцевины для представляемого плакированного носителя в качестве продукта, имеются в продаже. Однако, отдельные расчетные критерии (такие как применение конкретной легирующей примеси, объем пор твердотельных частиц и т.п.) для конкретных видов применения могут требовать получения твердотельных частиц оксида алюминия известными способами.

Ранее предлагалось объединять оксид алюминия с диоксидом титана методами совместного осаждения или импрегнирования, чтобы получить целевой носитель. Как обсуждалось выше, носители на основе оксида алюминия, имеющие фиксированные количества диоксида титана, которые образованы этими методами, все же имеют значительную долю открытой поверхности оксида алюминия, способной к адсорбции серосодержащего материала при уровнях, значительно больших, чем в случае оксида алюминия, плакированный диоксидом титана, который получен в соответствии с данным изобретением.

Когда диоксид титана делается частью носителя посредством обычных методов импрегнирования предшествующего уровня техники (см., например, патент США 4705770), диоксид титана осаждается на поверхность твердотельных частиц сердцевины из оксида алюминия. В этом случае диоксид титана предоставляет сравнительно толстый, прерывистый кроющий слой в виде пятнистого рисунка, который приводит к более низким отношениям поверхности диоксида титана к поверхности оксида алюминия на образованном продукте. Кроме того, покрытия из диоксида титана, сформированные импрегнированием склонны вызывать блокирование пор оксида алюминия и, соответственно, уменьшают площадь поверхности образованного носителя с покрытием.

Теперь было выяснено, что твердотельные частицы сердцевины из оксида алюминия могут быть плакированы посредством осуществимого в промышленном масштабе и экономичного способа небольшими количествами диоксида титана, чтобы предоставить носитель, который проявляет высокую устойчивость к присутствию серосодержащих материалов на единицу диоксида титана по отношению к оксиду алюминия, покрытому диоксидом титана. Способ по данному изобретению предоставляет носитель в качестве продукта, предоставляющий возможность получения, желательным в промышленном масштабе образом, катализатора, имеющего длительный период нормальной эксплуатации для борьбы с загрязнением атмосферы газообразными отходами. Получение твердотельных частиц оксида алюминия, плакированных диоксидом титана, по данному изобретению было выполнено посредством применения определенной конкретной комбинации параметров процесса, как подробно описано в данном документе ниже.

Твердотельные частицы на основе оксида алюминия первоначально формируются в виде водной суспензии, в которой твердотельное вещество находится в интервале от 1 до 30, предпочтительно от 2 до 20 и наиболее предпочтительно от 5 до 15 мас.%. Суспензия должна быть достаточно текучая, чтобы предоставить простым образом возможность смешивания суспензии с раствором сульфата титанила, описанным выше. Удельная концентрация, используемая в пределах этого интервала, будет зависеть от физических свойств (например, площади поверхности, объема пустот и т.п., а также размера и формы частиц) оксида алюминия, образующего суспензию. Концентрация должна быть такой, чтобы смешивание суспензии могло быть выполнено простым образом.

Суспензия может иметь температуру в интервале от температуры окружающей среды до 100ºC, предпочтительно от 20º до 50ºC и наиболее предпочтительно от 20º до 35ºC. Хотя могут быть использованы условия с повышенной температурой, однако они не являются обязательными. Повышенные температуры могут быть использованы, однако они требуют применения резервуаров повышенного давления. Отсутствует необходимость в усложненном оборудовании и увеличенных затратах на обработку, требуемых для предоставления повышенных температур, которые превышают те, что указаны выше.

Используется водный кислый раствор сульфата титанила. Величина pH раствора должна составлять от 0,5 до 1,5 при предпочтительном интервале от 0,9 до 1,2. Кислота, предоставляющая такую величину pH, предпочтительно является серной кислотой, хотя могут быть использованы другие неорганические кислоты, такие как азотная или хлористоводородная кислота или их смеси. Материал сульфата титанила не должен быть связан с органическими анионами, такими как алкоксиды и т.п. Концентрация сульфата титанила в растворе (в расчете на диоксид титана) должна составлять от 1 до 30, предпочтительно от 10 до 30 и наиболее предпочтительно от 20 до 30 мас.%. Хотя предпочтительно, чтобы раствор имел, по существу, такую же температуру, что и суспензия оксида алюминия перед смешиванием раствора с суспензией, это условие не является обязательным.

Количество кислого водного раствора сульфата титанила, подлежащего введению в суспензию оксида алюминия, будет зависеть от концентрации сульфата титанила в растворе и количества, требующегося для плакирования. Требуемое количество может быть легко вычислено на основании данных о площади поверхности используемого оксида алюминия, изменения молекулярной массы от сульфата титанила до диоксида титана и желательной толщины плакирующего покрытия, являющегося частью образованного продукта в виде плакированного оксида алюминия. Это количество может быть легко вычислено специалистом.

Обычно, количество используемого сульфата титанила в растворе (рассчитанного по диоксиду титана) по отношению к общему количеству оксидов (т.е. оксида алюминия + диоксида титана) образованного плакированного продукта должно составлять от 1 до 50, предпочтительно от 5 до 40 и наиболее предпочтительно от 5 до 30 мас.%. Необходимое количество может быть легко определено специалистом.

Водный раствор сульфата титанила смешивается с суспензией оксида алюминия, чтобы образовать равномерную смесь материалов. Температура смеси должна быть достаточной, чтобы поддерживать сульфат титанила в растворе. Такая температура обычно находится в интервале от температуры окружающей среды до 100ºC, предпочтительно от 20º до 50ºC и наиболее предпочтительно от 20º до 35ºC. Смесь должна поддерживаться в пределах этого температурного интервала в течение периода времени от примерно 1 до 120 минут, предпочтительно от примерно 1 до 30 минут и наиболее предпочтительно от примерно 1 до 15 минут, одновременно при поддержании достаточного перемешивания, чтобы создать и поддерживать равномерную смесь.

Во время первоначального перемешивания, если необходимо поддерживать pH при величине от 0,5 до 1,5, смесь может быть обработана водорастворимой кислотой в достаточных количествах, чтобы создать величину pH смеси, составляющую примерно 1 при интервале pH от 0,5 до 1,5 и предпочтительно от 0,9 до 1,2. Кислота может быть выбрана из любой неорганической минеральной кислоты при предпочтительном применении серной кислоты.

Полагают, хотя это не означает ограничения заявленного изобретения, что при низкой величине pH, описанной выше, компонент титанила может быть обычно представлен в стехиометрической форме [TiOSO4]·nH2O. Фактическая природа титансодержащих молекулярных частиц в растворах сульфата титанила в действительности не определена достаточно полным образом. Cotton и Wilkinson (Advanced Inorganic Chemisty, 4th edition, p. 696) установили, что имеются очень большие зигзагообразные цепи -Ti-O-Ti-O- с координированными сульфатными группами и водой. Молекулярные частицы, которые вероятным образом присутствуют в концентрированных водных сульфатных растворах, могут также быть производными от кристаллической структуры твердотельного моногидрата сульфата титанила (Gatehouse, et al., Acta. Cryst. (1993) B49, 428-435). Эти исследования показывают, что структура состоит из цепей групп [Ti-O]n2n+ в одном измерении, которые связаны сульфатными группами с образованием трехмерной структуры. Молекулярные частицы титанила, присутствующие при низкой величине pH на протяжении представленного титрования, могут быть присоединены к оксиду алюминия смещения координированного сульфата и конденсации ненасыщенных титановых центров с гидроксильными группами с расположением на протяжении поверхности оксида алюминия. Вышеуказанное приводит к тому предположению, что молекулярные частицы, присутствующие в высококислых растворах сульфата титанила, требующиеся в представленном процессе, являются уникальными и не могут быть получены другими путями.

Смесь, образующая кислую суспензию, затем обрабатывается водным раствором основания. Основание может быть выбрано из неорганического основания или органического основания, при этом неорганическое основание является предпочтительным. Примеры подходящих неорганических оснований являются гидроксид аммония, карбонат аммония, бикарбонат аммония, гидроксид, карбонат или бикарбонат щелочного металла или гидроксид, карбонат или бикарбонат щелочноземельного металла или же их смеси. В качестве альтернативы, могут быть использованы водорастворимые органические основания, например четвертичные амины, такие как соединения три-(C1-C3)-алкиламмония, а также моно-, ди- и три-(C1-C3)-алканоламины. Предпочтительными основаниями являются слабые неорганические основания, такие как основания, выбранные из гидроксида аммония, карбоната аммония и бикарбоната аммония. Основание должно быть добавлено при, по существу, постоянной скорости, чтобы вызвать увеличение pH смеси до величины pH между 3,4 и 4 (например, от 3,5 до 4), предпочтительно между 3,5