Способ и устройство для логического вывода возможности подавления помех пользовательским оборудованием из сообщения об измерениях

Иллюстрации

Показать все

Изобретение относится к технике беспроводной связи и может быть использовано для подавления помех. Технический результат - улучшение спектральной эффективности и услуг, уменьшение затрат. Способ беспроводной связи, выполняемый пользовательским оборудованием, заключается в приеме информации конфигурации, идентифицирующей первый набор ресурсов для измерения качества сигнала, и приеме по меньшей мере одного идентификатора соты, причем каждый идентификатор соты соответствует соте, от которой должны быть устранены помехи. Помеху, которая принята от соты, соответствующей одному или более идентификаторам, удаляют и отправляют отчет, содержащий измерение качества первого набора ресурсов в принятом сигнале без помех. 6 н. и 51 з.п. ф-лы, 15 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СВЯЗАННУЮ ЗАЯВКУ(И)

[0001] Настоящая заявка испрашивает приоритет предварительной заявки США № 61/323,766, названной "Method and apparatus for inferring UE Interference Suppression Capability from Measurement Report" и поданной 13 апреля 2010, которая полностью включена здесь посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0002] Настоящее описание в целом относится к системам связи и, более конкретно, к логическому выводу возможности подавления помех пользовательским оборудованием из сообщений управления радио ресурсами (RRM).

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0003] Системы беспроводной связи широко применяются для предоставления различных телекоммуникационных услуг, таких как, например, телефония, видео, данные, обмен сообщениями и вещание. Обычные системы беспроводной связи могут реализовывать технологии множественного доступа, способные поддерживать связь с множеством пользователей посредством совместного использования доступных ресурсов системы (например, полосы частот, мощности передачи). Примеры таких технологий множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением каналов (FDMA), системы множественного доступа с ортогональным частотным разделением каналов (OFDMA), системы множественного доступа с частотным разделением каналов и единственной несущей (SC-FDMA) и системы множественного доступа с синхронным временным разделением каналов и кодовым разделением каналов (TD-SCDMA).

[0004] Эти технологии множественного доступа были приняты в различных телекоммуникационных стандартах для обеспечения общего протокола, который позволяет различным беспроводным устройствам связываться на муниципальном, национальном, региональном и даже глобальном уровнях. Примером развивающегося телекоммуникационного стандарта является проект долгосрочного развития (LTE). LTE является набором усовершенствований для мобильного стандарта универсальной мобильной телекоммуникационной системы (UMTS), опубликованной проектом партнерства третьего поколения (3GPP). Он разработан для лучшей поддержки мобильного широкополосного доступа в Интернет посредством совершенствования спектральной эффективности, более низких затрат, улучшения услуг, использования нового спектра и лучшего интегрирования с другими открытыми стандартами, используя OFDMA по нисходящей линии связи (DL), SC-FDMA по восходящей линии связи (UL) и технологию антенны с множественными входами и множественными выходами (MIMO). Однако, так как потребности в широкополосном мобильном доступе продолжают увеличиваться, существует потребность в дополнительных усовершенствованиях технологии LTE. Предпочтительно, эти усовершенствования должны применяться к другим технологиям множественного доступа и телекоммуникационным стандартам, которые используют эти технологии.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] Пользовательское оборудование (UE), которое в состоянии устранить помехи от специфичных для ячейки опорных сигналов (CRS), физического совместно используемого канала нисходящей линии связи (PDSCH), физического канала управления нисходящей линией связи (PDCCH) или физического канала индикатора формата управления (PCFICH), может сделать это без явной сигнализации этой возможности обслуживающему усовершенствованному Узлу B (eNB). Обслуживающий eNB может передать на UE множество идентификаторов ячейки для указания того, от какой ячейки должны быть устранены помехи. UE принимает CRS, PDSCH, PDCCH или PCFICH от обслуживающего eNB и устраняет помехи CRS, PDSCH, PDCCH или PCFICH, соответственно, из сигнала, принятого от eNB. UE устраняет помехи от ячеек, которые соответствуют идентификаторам ячейки. UE может затем передавать сообщение в виде отчета на eNB с измерением качества без помех.

[0006] В одном аспекте настоящего описания представлены способ, устройство и компьютерный программный продукт для беспроводной связи, в которых принимают по меньшей мере один идентификатор ячейки. Каждый идентификатор ячейки соответствует ячейке, помехи от которой должны быть устранены. Дополнительно, помехи, принятые от ячеек, соответствующих одному или более из по меньшей мере одного идентификатора ячейки, удаляют из принятого сигнала. Дополнительно, передают сообщение в виде отчета, включающее в себя измерение качества принятого сигнала без помех.

[0007] В одном аспекте настоящего описания предоставлены способ, устройство и компьютерный программный продукт для беспроводной связи, в которых по меньшей мере один идентификатор ячейки передают на пользовательское оборудование. Каждый идентификатор ячейки соответствует ячейке, помехи от которой должны быть устранены. Кроме того, сигнал передают на пользовательское оборудование. Кроме того, принимают сообщение в виде отчета, включающее в себя измерение качества переданного сигнала без помех.

[0008] В одном аспекте настоящего описания предоставлены способ, устройство и компьютерный программный продукт для беспроводной связи, в которых принимают информацию. Информация включает в себя временный идентификатор радио сети для каждой радио сети, от которой по меньшей мере одно из: физического канала управления нисходящей линией связи или физического канала индикатора формата управления принимают, уровень агрегации элемента канала управления и относительное отношение мощности между элементами ресурсов, используемыми для по меньшей мере одного из: физического канала управления нисходящей линией связи или физического канала индикатора формата управления, и элементами ресурсов, используемыми для опорных сигналов. Дополнительно, помехи устраняют на основании этой информации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0009] ФИГ. 1 является диаграммой, иллюстрирующей пример реализации аппаратного обеспечения для устройства, использующего систему обработки.

[0010] ФИГ. 2 является диаграммой, иллюстрирующей пример архитектуры сети.

[0011] ФИГ. 3 является диаграммой, иллюстрирующей пример сети доступа.

[0012] ФИГ. 4 является диаграммой, иллюстрирующей пример структуры кадра для использования в сети доступа.

[0013] ФИГ. 5 показывает примерный формат для UL в LTE.

[0014] ФИГ. 6 является диаграммой, иллюстрирующей пример архитектуры радио протокола для плоскости управления и плоскости пользователя.

[0015] ФИГ. 7 является диаграммой, иллюстрирующей пример усовершенствованного Узла B и пользовательского оборудования в сети доступа.

[0016] ФИГ. 8 является диаграммой для иллюстрации примерного способа.

[0017] ФИГ. 9 является блок-схемой последовательности операций первого способа беспроводной связи.

[0018] ФИГ. 10 является блок-схемой последовательности операций второго способа беспроводной связи.

[0019] ФИГ. 11 является блок-схемой последовательности операций третьего способа беспроводной связи.

[0020] ФИГ. 12 является блок-схемой последовательности операций четвертого способа беспроводной связи.

[0021] ФИГ. 13 является концептуальной блок-схемой, иллюстрирующей функциональные возможности первого примерного устройства.

[0022] ФИГ. 14 является блок-схемой последовательности операций пятого способа беспроводной связи.

[0023] ФИГ. 15 является концептуальной блок-схемой, иллюстрирующей функциональные возможности второго примерного устройства.

ПОДРОБНОЕ ОПИСАНИЕ

[0024] Подробное описание, сформулированное ниже совместно с приложенными чертежами, предназначено в качестве описания различных конфигураций и не предназначено для представления только тех конфигураций, в которых могут быть осуществлены понятия, описанные в настоящем описании. Подробное описание включает в себя конкретные подробности с целью предоставления полного понимания различных понятий. Однако для специалистов в данной области техники будет очевидно, что эти понятия могут быть осуществлены без этих конкретных подробностей. В некоторых случаях известные структуры и компоненты показаны в форме блок-схемы, чтобы избежать затруднения понимания этих понятий.

[0025] Несколько аспектов телекоммуникационных систем представлены ниже со ссылками на различные устройства и способы. Эти устройства и способы описаны в нижеследующем подробном описании и иллюстрированы на сопроводительных чертежах различными блоками, модулями, компонентами, схемами, этапами, процессами, алгоритмами и т.д. (все вместе называется "элементами"). Эти элементы могут быть реализованы посредством использования электронного аппаратного обеспечения, программного обеспечения или любой их комбинации. Реализованы ли такие элементы в качестве аппаратного обеспечения или программного обеспечения, зависит от конкретного приложения и структурных ограничений, наложенных на всю систему.

[0026] Посредством примера элемент или любая часть элемента, или любая комбинация элементов могут быть реализованы с "системой обработки", которая включает в себя один или более процессоров. Примеры процессоров включают в себя микропроцессоры, микроконтроллеры, цифровые сигнальные процессоры (процессоры DSP), программируемые пользователем вентильные матрицы (матрицы FPGA), программируемые логические устройства (устройства PLD), конечные автоматы, схемы на логических вентилях, дискретные схемы аппаратного обеспечения и другое подходящее аппаратное обеспечение, сконфигурированное для выполнения различных функциональных возможностей, описанных на протяжении настоящего описания. Один или более процессоров в системе обработки могут выполнять программное обеспечение. Программное обеспечение должно быть рассмотрено в широком смысле для обозначения команд, наборов команд, кода, сегментов кода, программного кода, программ, подпрограмм, программных модулей, приложений, программных приложений, пакетов программ, программ, подпрограмм, объектов, выполняемых объектов, потоков выполнения, процедур, функций и т.д., также называемых программным обеспечением, программно-аппаратным обеспечением, промежуточным программным обеспечением, микрокодом, языком описания аппаратного обеспечения или иначе. Программное обеспечение может постоянно находиться на считываемом компьютером носителе. Считываемый компьютером носитель может быть не-временным считываемым компьютером носителем. Не-временный считываемый компьютером носитель включает в себя, например, магнитное устройство хранения (например, жесткий диск, дискету, магнитные ленты), оптический диск (например, компакт-диск (CD), цифровой универсальный диск (DVD)), смарт-карту, устройство флэш-памяти (например, карту, стик, ключевой носитель), оперативное запоминающее устройство (RAM), постоянное запоминающее устройство (ROM), программируемое ROM (PROM), стираемое PROM (EPROM), электрически стираемое PROM (EEPROM), регистр, сменный диск и любой другой подходящий носитель для хранения программного обеспечения и/или команд, которые могут быть доступны и считаны посредством компьютера. Считываемый компьютером носитель может быть расположен в системе обработки, внешней по отношению к системе обработки или распределенной по множественным объектам, включающим в себя систему обработки. Считываемый компьютером носитель может быть включен в компьютерный программный продукт. Например, компьютерный программный продукт может включать в себя считываемый компьютером носитель в упаковочном материале. Специалисты в данной области техники поймут, как лучше всего реализовать описанные функциональные возможности, представленные во всем настоящем описании в зависимости от конкретного приложения и полных структурных ограничений, наложенных на всю систему.

[0027] Соответственно, в одном или более аспектах описанные функции могут быть реализованы в аппаратном обеспечении, программном обеспечении, программно-аппаратном обеспечении или любой их комбинации. Если реализуется в программном обеспечении, функции могут быть сохранены или переданы в качестве одной или более команд или кода на считываемый компьютером носитель. Считываемые компьютером носители включают в себя компьютерные запоминающие носители. Запоминающий носитель может быть любым доступным носителем, который может быть доступен посредством компьютера. Посредством примера, а не ограничения, такие считываемые компьютером носители могут содержать RAM, ROM, EEPROM, CD-ROM или другое запоминающее устройство на оптических дисках, запоминающее устройство на магнитных дисках или другие магнитные запоминающие устройства, или любой другой носитель, который может быть использован для переноса или сохранения желаемого программного кода в форме команд или структур данных, и который может быть доступным посредством компьютера. Диск (disk) и диск (disc), как используются в настоящем описании, включают в себя компакт-диск (CD), лазерный диск, оптический диск, универсальный цифровой диск (DVD), дискету и диск blue-ray, где диски (disks) обычно воспроизводят данные магнитным способом, в то время как диски (discs) воспроизводят данные оптическим образом посредством лазеров. Комбинации вышеупомянутого должны быть также включены в понятие считываемых компьютером носителей.

[0028] ФИГ. 1 является концептуальной диаграммой, иллюстрирующей пример реализации аппаратного обеспечения для устройства 100, использующего систему 114 обработки. В этом примере система 114 обработки может быть реализована шинной архитектурой, в общем представленной посредством шины 102. Шина 102 может включать в себя любое количество шин и мостов межсоединений в зависимости от конкретного применения системы 114 обработки и общих структурных ограничений. Шина 102 соединяет вместе различные схемы, включающие в себя один или более процессоров, в целом представленных процессором 104, и считываемых компьютером носителей, в целом представленных считываемым компьютером носителем 106. Шина 102 может также связывать различные другие схемы, такие как источники синхросигналов, периферийные устройства, регуляторы напряжения и схемы управления мощностью, которые известны в данной области техники, и поэтому, не будут описаны дальше. Шинный интерфейс 108 предоставляет интерфейс между шиной 102 и приемопередатчиком 110. Приемопередатчик 110 предоставляет средство для связи с отличным другим устройством с помощью носителя передачи. В зависимости от природы устройства может также быть обеспечен пользовательский интерфейс 112 (например, клавиатура, дисплей, динамик, микрофон, джойстик).

[0029] Процессор 104 является ответственным за управление шиной 102 и общей обработкой, включающей в себя выполнение программного обеспечения, сохраненного на считываемых компьютером носителях 106. Программное обеспечение при выполнении процессором 104 побуждает систему 114 обработки выполнять различные функции, описанные ниже, для любого конкретного устройства. Считываемый компьютером носитель 106 может также использоваться для хранения данных, которые управляются процессором 104, при выполнении программного обеспечения.

[0030] ФИГ. 2 является диаграммой, иллюстрирующей архитектуру 200 сети LTE, использующую различные устройства 100 (См. ФИГ. 1). Архитектура 200 сети LTE может называться развитой системой пакетной передачи (EPS) 200. EPS 200 может включать в себя одно или более пользовательских оборудований 202 (UE), усовершенствованную наземную сеть 204 радио доступа UMTS (E-UTRAN), усовершенствованное ядро 210 пакетной передачи (EPC), домашний сервер 220 абонента (HSS) и службы 222 IP оператора. EPS может связываться с другими сетями доступа, но для простоты эти объекты/интерфейсы не показаны. Как показано, EPS предоставляет услуги с коммутацией пакетов, однако, как понятно специалистам в данной области техники, различные понятия, представленные в этом описании, могут распространяться на сети, предоставляющие услуги с коммутацией схем.

[0031] E-UTRAN включает в себя усовершенствованный Узел B (eNB) 206 и другие узлы eNB 208. eNB 206 обеспечивает завершения пользовательской плоскости и плоскости протокола управления для UE 202. eNB 206 может быть подсоединен к другим узлам eNB 208 с помощью проводного или беспроводного интерфейса, который может включать в себя интерфейс X2 (то есть, транзитное соединение) или беспроводные передачи. eNB 206 может также называться специалистами в данной области техники базовой станцией, базовой приемопередающей станцией, базовой радиостанцией, радио приемопередатчиком, функциональным узлом приемопередатчика, набором базовых служб (BSS), расширенным набором служб (ESS) или некоторой другой подходящей терминологией. eNB 206 предоставляет точку доступа EPC 210 для UE 202. Примеры оборудований UE 202 включают в себя сотовый телефон, смартфон, телефон согласно протоколу инициирования сеанса (SIP), ноутбук, персональный цифровой ассистент (PDA), спутниковое радио, глобальную систему определения местоположения, мультимедийное устройство, видео устройство, устройство воспроизведения цифровой звукозаписи (например, MP3-плейер), камеру, игровой пульт или любое другое, функционирующее подобным образом устройство. UE 202 может также называться специалистами в данной области техники мобильной станцией, станцией абонента, мобильным блоком, абонентским блоком, беспроводным блоком, удаленным блоком, мобильным устройством, беспроводным устройством, устройством беспроводной связи, удаленным устройством, мобильной станцией абонента, терминалом доступа, мобильным терминалом, беспроводным терминалом, удаленным терминалом, мобильным телефоном, пользовательским агентом, мобильным клиентом, клиентом или некоторой другой подходящей терминологией.

[0032] eNB 206 связывается посредством проводного интерфейса с EPC 210, которое может включать в себя интерфейс S1. EPC 210 может включать в себя объект 212 управления мобильностью (MME), другие объекты ММЕ 214, обслуживающий шлюз 216 и шлюз 218 сети пакетных данных (PDN). MME 212 является узлом управления, который обрабатывает сигнализацию между UE 202 и EPC 210. Обычно MME 212 предоставляет управление однонаправленным каналом и соединением. Все пользовательские IP-пакеты пересылаются с помощью обслуживающего шлюза 216, который сам связывается со шлюзом 218 PDN. Шлюз 218 PDN обеспечивает UE назначение IP адреса, а также другие функции. Шлюз 218 PDN связывается со службами 222 IP Оператора. Службы 222 IP оператора могут включать в себя или предоставлять доступ к, например, Интернету, Интранету, подсистеме IP мультимедиа (IMS) и службе потоковой передачи PS (PSS).

[0033] ФИГ. 3 является диаграммой, иллюстрирующей пример сети доступа в архитектуре сети LTE. В этом примере сеть 300 доступа разделяется на множество сотовых областей 302 (ячеек). Один или более узлов eNB 308, 312 класса более низкой мощности могут быть сотовыми областями 310, 314, соответственно, которые перекрываются с одной или более ячейками 302. Узлы eNB 308, 312 класса более низкой мощности могут быть фемто ячейками (например, домашними узлами eNB (узлами HeNB)), пико ячейками, микро ячейками или ретрансляционными станциями. eNB 304 класса более высокой мощности или макро eNB 304 назначается на ячейку 302 и конфигурируется для предоставления точки доступа к EPC 210 для некоторой части или всем оборудованиям UE в ячейке 302. Не существует централизованного контроллера в этом примере сети 300 доступа, но централизованный контроллер может использоваться в альтернативных конфигурациях. eNB 304 выполняет относящиеся к радио функции, включающие в себя управление однонаправленным каналом, управление оплатой, управление мобильностью, планирование, безопасность и возможность подсоединения к обслуживающему шлюзу 216 (см. ФИГ. 2).

[0034] Модуляция и схема множественного доступа, используемые сетью 300 доступа, могут изменяться в зависимости от конкретного развертываемого телекоммуникационного стандарта. В приложениях LTE OFDM используется по DL, и SC-FDMA используется по UL для поддержания как дуплексной передачи с разделением по частоте (FDD), так и дуплексной передачи с разделением по времени (TDD). Как специалисты в данной области техники с готовностью оценят из следующего подробного описания, различные понятия, представленные в настоящем описании, прекрасно подходят для приложений LTE. Однако эти понятия могут быть легко распространены на другие телекоммуникационные стандарты, использующие другую модуляцию и способы множественного доступа. Например, эти понятия могут распространяться на эволюционировавшая оптимизированная передача данных (EV-DO) или ультра мобильную широкополосную сеть (UMB). EV-DO и UMB являются стандартами воздушного интерфейса, опубликованными проектом партнерства третьего поколения 2 (3GPP2) в качестве части семейства стандартов CDMA2000, и использует CDMA для предоставления широкополосного доступа в Интернет мобильным станциям. Эти понятия могут также распространяться на систему универсального наземного радио доступа (UTRA), использующую широкополосный CDMA (W-CDMA) и другие варианты CDMA, такие как TD-SCDMA; глобальную систему мобильной связи (GSM), использующую TDMA; и усовершенствованную UTRA (E-UTRA), ультра мобильную широкополосная сеть (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20 и флэш-OFDM, использующую OFDMA. UTRA, E-UTRA, UMTS, LTE и GSM описаны в документах от организации 3GPP. CDMA2000 и UMB описаны в документах от организации 3GPP2. Фактический стандарт беспроводной связи и используемая технология множественного доступа будут зависеть от конкретного приложения и полных ограничений структуры, наложенных на систему.

[0035] eNB 304 может иметь множественные антенны, поддерживающие технологию MIMO. Использование технологии MIMO позволяет eNB 304 эксплуатировать пространственную область для поддержания пространственного мультиплексирования, формирования диаграммы направленности и передачи с разнесением.

[0036] Пространственное мультиплексирование может использоваться для передачи различных потоков данных одновременно на одной и той же частоте. Потоки данных могут быть переданы на единственное UE 306 для увеличения скорости передачи данных или множество оборудований UE 306 для увеличения полной емкости системы. Это достигается посредством пространственного предварительного кодирования каждого потока данных (то есть, посредством применения масштабирования амплитуды и фазы) и затем посредством передачи каждого пространственно предварительно закодированного потока через множественные антенны передачи по нисходящей линии связи. Пространственно предварительно закодированные потоки данных достигают UE 306 (оборудований UE) с различными пространственными сигнатурами, которые позволяют каждому из UE 306 (оборудований UE) восстанавливать один или более потоков данных, предназначенных для этого UE 306. По восходящей линии связи каждое UE 306 передает пространственно предварительно закодированный поток данных, который позволяет eNB 304 идентифицировать источник каждого пространственно предварительно закодированного потока данных.

[0037] Пространственное мультиплексирование обычно используется, когда канальные условия являются благоприятными. Когда канальные условия менее благоприятны, формирование диаграммы направленности может использоваться для сосредоточения энергии передачи в одном или более направлениях. Это может быть достигнуто посредством пространственного предварительного кодирования данных для передачи через множественные антенны. Для достижения хорошего охвата на краях ячейки, передача формирования диаграммы направленности единственного потока может использоваться в комбинации с передачей с разнесением.

[0038] В подробном описании, которое представлено ниже, различные аспекты сети доступа описаны с ссылками на систему MIMO, поддерживающую OFDM по нисходящей линии связи. OFDM является способом расширения по спектру, который модулирует данные по множеству поднесущих в символе OFDM. Поднесущие разнесены на точных частотах. Разнесение предоставляет "ортогональность", которая позволяет приемнику восстанавливать данные из поднесущих. Во временной области защитный интервал (например, циклический префикс) может быть добавлен к каждому символу OFDM, чтобы противостоять помехам внутри символа OFDM. Восходящая линия связи может использовать SC-FDMA в форме сигнала OFDM, расширенного посредством DFT для компенсации высокого отношения пиковой к средней мощности (PAPR).

[0039] Различные структуры кадра могут использоваться для поддержания передач DL и UL. Пример структуры кадра DL представлен ниже со ссылками на ФИГ. 4. Однако, как понятно специалистам в данной области техники, структура кадра для любого конкретного приложения может быть различной в зависимости от любого количества факторов. В этом примере кадр (10 миллисекунд) разделяется на 10 одинаковых по размеру подкадров. Каждый подкадр включает в себя два последовательных временных слота.

[0040] Сетка ресурсов может использоваться для предоставления двух временных слотов, каждый временной слот включает в себя блок ресурсов. Сетка ресурсов разделяется на множественные элементы ресурсов. В LTE блок ресурсов содержит 12 последовательных поднесущих в частотной области и, для нормального циклического префикса в каждом символе OFDM, 7 последовательных символов OFDM во временной области или 84 элемента ресурсов. Некоторые из элементов ресурсов, также указанных как R 402, 404, включают в себя опорные сигналы DL (DL-RS). DL-RS включают в себя CRS 402 (также иногда называемые общими RS) и RS 404, специфичные для UE (UE-RS). UE-RS 404 передаются только в блоках ресурсов, на которые отображается канал PDSCH. Количество битов, переносимых каждым элементом ресурсов, зависит от схемы модуляции. Таким образом, чем больше блоков ресурсов, которые принимает UE, и выше схема модуляции, тем выше скорость передачи данных для UE.

[0041] Пример структуры 500 кадра UL будет теперь представлен со ссылками на ФИГ. 5. ФИГ. 5 показывает примерный формат для UL в LTE. Доступные блоки ресурсов для UL могут быть разделены на секцию данных и секцию управления. Секция управления может быть сформирована на двух краях полосы частот системы и может иметь конфигурируемый размер. Блоки ресурсов в секции управления могут быть назначены на оборудования UE для передачи информации управления. Секция данных может включать в себя часть или все блоки ресурсов, не включенные в секцию управления. Структура на ФИГ. 5 приводит к секции данных, включающей в себя непрерывные (смежные) поднесущие, которые могут обеспечивать, чтобы единственному UE назначались все смежные поднесущие в секции данных.

[0042] На UE могут быть назначены блоки 510a, 510b ресурсов в секции управления для передачи информации управления к eNB. На UE также могут быть назначены блоки 520a, 520b ресурсов в секции данных для передачи данных к eNB. UE может передавать информацию управления по физическому каналу управления по восходящей линии связи (PUCCH) в назначенных блоках ресурсов в секции управления. UE может передавать только данные или как данные, так и информацию управления по совместно используемому физическому каналу восходящей линии связи (PUSCH) в назначенных блоках ресурсов в секции данных. Передача UL может охватывать оба слота подкадра и может осуществлять скачки по частоте, как показано на ФИГ. 5.

[0043] Как показано на ФИГ. 5, набор блоков ресурсов может использоваться для выполнения первоначального доступа системы и достижения синхронизации UL по физическому каналу произвольного доступа (PRACH) 530. PRACH 530 переносит случайную последовательность и не может переносить данные/сигнализацию UL. Каждая преамбула произвольного доступа занимает полосу частот, соответствующую шести последовательным блокам ресурсов. Начальная частота определяется сетью. Таким образом, передача преамбулы произвольного доступа ограничивается некоторыми временными и частотными ресурсами. Не существует скачков по частоте для PRACH. Попытка PRACH выполняется в единственном подкадре (1 миллисекунда), и UE может сделать только единственную попытку PRACH для каждого кадра (10 миллисекунд).

[0044] Архитектура радио протокола может принимать различные формы в зависимости от конкретного применения. Примерная система представлена ниже со ссылками на ФИГ. 6. ФИГ. 6 является концептуальной диаграммой, иллюстрирующей пример архитектуры радио протокола для плоскости управления и пользовательской плоскости.

[0045] На ФИГ. 6 архитектура радио протокола для UE и eNB показана тремя уровнями: Уровень 1, Уровень 2 и Уровень 3. Уровень 1 является самым низким уровнем и реализует различные функции обработки сигнала физического уровня. Уровень 1 в настоящем описании будет называться физическим уровнем 606. Уровень 2 (уровень L2) 608 находится выше физического уровня 606 и ответственен за линию связи между UE и eNB по физическому уровню 606.

[0046] В пользовательской плоскости уровень L2 608 включает в себя подуровень 610 управления доступом к среде (MAC), подуровень 612 управления линией радио связи (RLC) и подуровень 614 протокола конвергенции пакетных данных (PDCP), которые завершаются в eNB на стороне сети. Хотя не показано, UE может иметь несколько более высоких уровней выше уровня L2 608, включающих в себя сетевой уровень (например, IP уровень), которые завершаются в шлюзе PDN 208 (см. ФИГ. 2) на стороне сети, и уровень приложений, который завершается на другом конце соединения (например, удаленный UE, сервер и т.д.).

[0047] Подуровень 614 PDCP обеспечивает мультиплексирование между различными радио несущими и логическими каналами и может дополнительно включать в себя сжатие заголовка для пакетов данных верхнего уровня для уменьшения служебных расходов радиопередачи, безопасности, шифрования пакетов данных и поддержания передачи обслуживания оборудований UE между узлами eNB. Подуровень 612 RLC включает в себя функциональные возможности для сегментации и повторной сборки пакетов данных верхнего уровня, повторной передачи потерянных пакетов данных и переупорядочения пакетов данных для компенсации прием не по порядку из-за гибридного автоматического запроса на повторную передачу данных (HARQ). Подуровень 610 MAC обеспечивает мультиплексирование между логическим и транспортным каналами и может дополнительно включать в себя назначение различных радио ресурсов (например, блоков ресурсов) среди оборудований UE и управлять операциями HARQ.

[0048] В плоскости управления архитектура радио протокола для UE и eNB, по существу, является одинаковой для физического уровня 606 и уровня 608 L2 за исключением того, что не имеется функции сжатия заголовка для плоскости управления. Плоскость управления также включает в себя подуровень 616 управления радио ресурсами (RRC) на Уровне 3. Подуровень 616 RRC ответственен за получение радио ресурсов (то есть, однонаправленных каналов) и за конфигурацию более низких уровней, используя сигнализацию RRC между eNB и UE.

[0049] ФИГ. 7 является блок-схемой eNB 710 при осуществлении связи с UE 750 в сети доступа. По DL пакеты верхнего уровня от основной (базовой) сети выдаются в контроллер/процессор 775. Контроллер/процессор 775 реализует функциональные возможности уровня L2, описанного ранее со ссылками на ФИГ. 6. По DL контроллер/процессор 775 предоставляет функциональные возможности, включающие в себя сжатие заголовка, шифрование, сегментацию и повторное упорядочение пакетов, мультиплексирование между логическими и транспортными каналами и распределение радио ресурсов UE 750 на основании различных метрик приоритета, операций HARQ, повторной передачи потерянных пакетов и сигнализации на UE 750.

[0050] Процессор 716 TX передачи данных реализует различные функции обработки сигнала для уровня L1 (то есть, физического уровня). Функции обработки сигнала включают в себя кодирование и перемежение для облегчения прямой коррекции ошибок (FEC) в UE 750 и отображение на совокупности (созвездия) сигналов на основании различных схем модуляции (например, двоичной фазовой манипуляции (BPSK), квадратурной фазовой манипуляции (QPSK), M-фазной манипуляции (М-PSK), М-квадратурной амплитудной модуляции (М-QAM)). Кодированные и модулированные символы затем разделяются на параллельные потоки. Каждый поток затем отображается на поднесущую OFDM, мультиплексированную с опорным сигналом (например, пилот-сигналом) во временной и/или частотной области, и затем объединяется вместе, используя обратное быстрое преобразование Фурье (IFFT), для получения физического канала, переносящего символьный поток OFDM во временной области. Поток OFDM пространственно предварительно кодируется для формирования множественных пространственных потоков. Оценки канала от блока 774 оценки канала могут использоваться для определения схемы кодирования и модуляции, а также для пространственной обработки. Оценка канала может быть получена из опорного сигнала и/или обратной связи канальных условий, переданных посредством UE 750. Каждый пространственный поток затем выдается в различную антенну 720 с помощью отдельного передатчика 718 TX. Каждый передатчик 718 TX модулирует несущую RF соответствующим пространственным потоком для передачи.

[0051] В UE 750 каждый приемник 754 RX приема данных принимает сигнал через свою соответствующую антенну 752. Каждый приемник 754 RX приема данных восстанавливает информацию, модулированную по РЧ-несущей, и выдает информацию в процессор 756 приемника (RX) данных.

[0052] Процессор 756 RX реализует различные функции обработки сигнала уровня L1. Процессор 756 RX выполняет пространственную обработку информации для восстановления любых пространственных потоков, предназначенных для UE 750. Если множественные пространственные потоки предназначены для UE 750, они могут быть объединены процессором 756 RX в единственный символьный поток OFDM. Процессор 756 RX затем преобразует символьный поток OFDM из временной области в частотную область, используя быстрое преобразование Фурье (FFT). Сигнал частотной области содержит отдельный символьный поток OFDM для каждой поднесущей сигнала OFDM. Символы на каждой поднесущей и опорном сигнале восстанавливаются и демодулируются посредством определения наиболее вероятных точек совокупности сигналов, переданных посредством eNB 710. Эти мягкие решения могут быть основаны на оценках канала, вычисленных блоком 758 оценки канала. Мягкие решения затем декодируются и обращенно перемежаются для восстановления данных и сигналов управления, которые были первоначально переданы посредством eNB 710 по физическому каналу. Данные и сигналы управления затем выдаются в контроллер/процессор 759.

[0053] Контроллер/процессор 759 реализует уровень L2, описанный ранее совместно с ФИГ. 6. По UL контроллер/процессор 759 предоставляет функциональные возможности, включающие в себя демультиплексирование между транспортным и логическим каналами, повторную сборку пакета, расшифровку, декомпрессию заголовка, обработку сигнала управления для восстановления пакетов верхнего уровня из основной сети. Пакеты верхнего уровня затем выдаются в накопитель 762 данных, который представляет все уровни протокола выше уровня L2. Различные сигналы управления могут также быть выданы в накопитель 762 данных для обработки L3. Контроллер/процессор 759 также ответственен за обнаружение ошибок посредством использования протокола подтверждения (квитирования) (ACK) и/или отрицательного подтверждения (NACK) для поддержания операции HARQ.

[0054] По UL источник 767 данных используется для выдачи пакетов верхнего уровня в контроллер/процессор 759. Источник 767 данных представляет все уровни протокола выше уровня L2 (L2). Подобно функциональным возможностям, описанным совместно с передачей DL посредством eNB 710, контроллер/процессор 759 реализует уровень L2 для пользовательской плоскости и плоскости управления посредством предоставления сжатия заголовка, шифрования, сегментации пакета и повторного назначения, и мультиплексирования между логическим и транспортным каналами на основании распределений радио ресурсов посредством eNB 710. Контроллер/процессор 759 также ответственен за операции HARQ, повторную передачу потерянных пакетов и сигнализацию к eNB 710.

[0055] Оценки канала, полученные блоком 758 оценки канала из опорного сигнала или обратной связи, переданной посредством eNB 710, могут использоваться процессором 768 TX для выбора соответствующих схем кодирования и модуляции и облегчения пространственной обработки. Пространственные потоки, генерируемые процессором 768 TX выдаются в различную антенну 752 с помощью раздельных передатчиков 754TX. Каждый передатчик 754 TX модулирует РЧ-несущую соответствующим пространственным потоком для передачи.

[0056] Передача UL обрабатывается в eNB 710 способом, подобным описанному в связи с функцией приемника в UE 750. Каждый приемник 718 RX принимает сигнал через с