Измерительная система для среды, протекающей в трубопроводах, и способ измерения разности давлений внутри протекающей среды

Иллюстрации

Показать все

Измерительная система включает первичный измерительный преобразователь (MW) вибрационного типа и электрически соединенный с ним преобразующий электрический блок (МБ). Первичный измерительный преобразователь имеет, по меньшей мере, одну измерительную трубу (10, 10'), по меньшей мере, один возбудитель колебаний, первый датчик (51) колебаний для регистрации, по меньшей мере, вибрации со стороны впуска, по меньшей мере, одной трубы и для формирования первого первичного сигнала (s1) первичного измерительного преобразователя и второй датчик (52) колебаний для регистрации, по меньшей мере, вибрации со стороны выпуска, по меньшей мере одной измерительной трубы и для формирования второго первичного сигнала (s2) первичного измерительного преобразователя. Преобразующий электронный блок подает задающий сигнал (iexc) для возбудителя колебаний, вызывающий, по меньшей мере, вибрацию, по меньшей мере, одной измерительной трубы, и генерирует с помощью первого первичного сигнала и с помощью второго первичного сигнала, также при применении измеренного значения числа Рейнольдса, генерирует измеренное значение (ХΔp) разности давлений, который представляет разность давлений, возникающую между двумя заданными опорными точками в протекающей среде. Технический результат - улучшение измерительной системы, а также достаточно точное измерение нежелательно высокого падения давления в протекающей среде. 2 н. и 34 з.п. ф-лы, 12 ил.

Реферат

Изобретение относится к измерительной системе, образованной, в частности в виде компактного измерительного прибора и/или расходомера, использующего эффект Кориолиса, для способных к течению, в частности, жидких сред, которая включает, по меньшей мере, один первичный измерительный преобразователь вибрационного типа, через который при работе, по меньшей мере периодически протекает среда, генерирующий первичные сигналы, находящиеся под воздействием, по меньшей мере, одной характеризирующей протекающую среду измеряемой величины, в частности, массового расхода, плотности, вязкости и т.д., а также преобразующий электронный блок, электрически соединенный с первичным измерительным преобразователем и обрабатывающий первичные сигналы, подаваемые первичным измерительным преобразователем с формированием измеренных значений.

В промышленной технике измерения, в частности, в связи регулированием и контролем за автоматизированными технологическими процессами для определения характеристических измеряемых величин сред, текущих в технологической магистрали, например, трубопроводе, например, жидкостей или газов, часто применяются такие измерительные системы, которые с помощью первичного измерительного преобразователя и присоединенного к нему, в большинстве случаев установленного в отдельном корпусе электронного блока преобразующего электронного блока, индуцируют в протекающей среде силы реакции, например силы Кориолиса, и от них с возвращением в виде производных создают измеренные значения, соответственно представляющие, по меньшей мере, одну измеряемую величину, например, скорость массового расхода, плотность, вязкость или другой технологический параметр. Подобного рода образованные часто с помощью встроенного измерительного прибора в компактную конструкцию с интегрированным первичным измерительным преобразователем, как примерно расходомер, использующий эффект Кориолиса, измерительные системы известны давно и оправдали себя в промышленном применении. Например, такие измерительные системы с первичным измерительным преобразователем вибрационного типа или также отдельными компонентами от него описаны, например, в ЕР-А 317340, JP-A 8-136311, JP-A 9-015015, US-A 2007/0119264, US-A 2007/0119265, US-A 2007/0151370, US-A 2007/151371, US-A 2007/0186685, US-A 2008/0034893, US-A 2008/0141789, US-A 4680974, US-A 4738144, US-A 4777833, US-A 4801897, US-A 4823614, US-A 4879911, US-A 5009109, US-A 5024104, US-A 5050439, US-A 5291792, US-A 5398554, US-A 5476013, US-A 5531126, US-A 5602345, US-A 5691485, US-A 5734112, US-A 5796010, US-A 5796011, US-A 5796012, US-A 5804741, US-A 5861561, US-A 5869770. US-A 5945609, US-A 5979246, US-A 6047457, US-A 6092429, US-A 6073495, US-A 6311136, US-B 6223605, US-B 6330832, US-B 6397685, US-B 6513393, US-B 6557422, US-B 6651513, US-B 6666098, US-B 6691583, US-B 6840109, US-B6868 740, US-B 6883387, US-B 7017424, US-B 7040179, US-B 7073396, US-B 7077014, US-B 7080584, US-B 7134348, US-B 7216550, US-B 7299699, US-B 7305892, US-B 7360451, US-B 7392709, US-B 7406878, WO-A 00/14485, WO-A 01/02816, WO-A 2004/072588, WO-A 2008/013545, WO-A 2008/077574, WO-A 95/29386, WO-A 95/16897, WO-A 9940394. Каждый из показанных в них первичных измерительных преобразователей включает, по меньшей мере, установленную в корпусе первичного измерительного преобразователя в основном прямую или изогнутую измерительную трубу для ведения, при необходимости, экстремально быстро или экстремально медленно протекающей среды. При работе измерительной системы, по меньшей мере, измерительная труба побуждается к вибрации с целью генерирования форм колебаний, на которые оказывается воздействие от протекающей среды.

В первичных измерительных преобразователях с двумя измерительными трубами они с помощью делителя потока со стороны впуска, простирающегося между измерительными трубами и присоединительным фланцем со стороны впуска, а также с помощью делителя потока со стороны выпуска, простирающегося между измерительными трубами и присоединительным фланцем со стороны выпуска, устанавливаются в технологическую магистраль. В первичных измерительных преобразователях с одной единственной трубой последняя соединяется с технологической магистралью, по меньшей мере, с помощью впадающей со стороны впуска в основном прямой трубчатой соединительной детали, а также с помощью впадающей со стороны выпуска в основном прямой трубчатой соединительной детали. Дальше каждый из показанных первичных измерительных преобразователей с одной единственной измерительной трубой включает соответственно, по меньшей мере, один цельный или выполненное из нескольких частей, например, в форме трубы, короба или пластины устройство для создания встречных колебаний, которое при образовании первой зоны соединения со стороны впуска соединено с измерительной трубой и при образовании второй зоны соединения со стороны выпуска соединено с измерительной трубой, которое при работе в основном бездействует или колеблется симметрично, т.е. с равной частотой и противофазно по отношению к измерительной трубе. Внутренняя часть первичного измерительного преобразователя, образованная с помощью измерительной трубы и устройства для встречных колебаний, по меньшей мере, одна с помощью двух соединительных трубчатых деталей, через которые измерительная труба соединена с технологической магистралью, закреплена в защищающем корпусе первичного измерительного преобразователя, в частности, позволяющим колебания внутренней части относительно корпуса первичного измерительного преобразователя способом. Например, в показанных в US-A 5291792, US-A 5796010, US-A 5945609, US-B 7077014, US-A 2007/0119264, WO-A 0102816 или также WO-A 99 40394 первичных измерительных преобразователях с одной единственной в основном прямой измерительной трубой последняя и устройство для встречных колебаний, как принято в существующих первичных измерительных преобразователях, ориентированы к друг другу в основном соосно. В распространенных первичных измерительных преобразователях названного выше вида, по меньшей мере, устройство для встречных колебаний образовано в основном в форме трубы и виде в основном прямого полого цилиндра, которое в первичном измерительном преобразователе расположено так, что измерительная труба, по меньшей мере, частично окружена устройством для встречных колебаний. В качестве материалов для такого устройства встречных колебаний находят применение, в частности, титан или цирконий для измерительной трубы, сравнительно недорогие сорта стали как конструкционная сталь или автоматная сталь.

В качестве формы колебаний - так называемой полезной моды - в первичных измерительных преобразователях с изогнутой измерительной трубой, например, в форме U, V или подобно 'Ω, обычно выбирается та форма собственных колебаний, в которой измерительная труба, по меньшей мере, по частям колеблется при самой низкой естественной резонансной частоте вокруг виртуальной продольной оси наподобие закрепленной одним концом консоли, вследствие чего в протекающей среде индуцируются силы Кориолиса, зависящие от массового расхода. Они ведут опять же к тому, что на возбужденные колебания полезной моды, в случае изогнутых измерительных труб, следовательно, подобных маятнику колебаний, накладываются одинаковые по частоте изгибные колебания согласно, по меньшей мере, точно также естественной второй форме колебаний, так называемой моде Кориолиса. В первичных измерительных преобразователях с изогнутой трубой соответствуют эти вызванные силами Кориолиса колебания консоли в моде Кориолиса обычно той форме собственных колебаний, при которой измерительная труба совершает также вращательные колебания вокруг виртуальной вертикальной оси, ориентированной перпендикулярно к продольной оси. В первичных измерительных преобразователях с прямой измерительной трубой, напротив с целью создания сил Кориолиса, зависящих от массового расхода, часто выбирается такая полезная мода, в которой измерительная труба, по меньшей мере, по частям выполняет изгибные колебания в основном в единственной виртуальной плоскости колебаний, так что колебания в моде Кориолиса соответственно этому образованы в виде компланарных к колебаниям полезной моды изгибных колебаний одинаковой частоты колебаний. По причине наложения полезной моды и моды Кориолиса имеют место колебания вибрирующей измерительной трубы, регистрируемые с помощью системы датчиков со стороны впуска и со стороны выпуска, измеряемую разность фаз, зависящую также от массового расхода. Обычно имеющий измерительные трубы подобного рода, например, применяемые в расходомерах, использующих эффект Кориолиса, первичный измерительный преобразователь при работе возбуждается в мгновенной естественной резонансной частоте, выбранной для полезной моды формы колебаний, в частности, постоянно регулируемой амплитуде колебаний. Так как эта резонансная частота, в частности, зависит также от мгновенной плотности среды, с помощью распространенных расходомеров, использующих эффект Кориолиса, наряду с массовым расходом дополнительно может измеряться также и плотность протекающей среды. Дальше также возможно, как, например, показано в US-B 6651513 или US-B 7080564, с помощью первичных измерительных преобразователей вибрационного типа непосредственное измерение вязкости протекающей среды, например, базирующееся на энергии возбуждения, необходимой для поддержания колебаний соответственно мощности возбуждения и/или базирующееся на глушении колебаний, получающемся в результате рассеяния энергии колебаний, по меньшей мере, одной измерительной трубы, в частности, колебаний в названной выше полезной моде. Кроме этого могут определяться также другие, измеряемые величины, выведенные из названных выше первичных измеренных значений скорости массового расхода, плотности и вязкости, как примерно согласно US-B 6513393 число Рейнольдса.

Для возбуждения колебаний, по меньшей мере, одной измерительной трубы первичные измерительные преобразователи вибрационного типа имеют далее систему возбуждения, настраиваемую электрическим условным задающим сигналом, например, регулируемым током, генерированным упомянутым задающим электронным блоком, которая с помощью, по меньшей мере, при работе находящегося под действием электрического тока, практически воздействующего прямо на измерительную трубу механического, в частности, электродинамического возбудителя колебаний, заставляет колебаться измерительную трубу с образованием изгибных колебаний в полезной моде. Дальше подобные первичные измерительные преобразователи включают систему датчиков с, в частности, электродинамическими датчиками колебаний для, по меньшей мере, точечной регистрации колебаний со стороны впуска и выпуска, по меньшей мере, одной измерительной трубы, в частности, в моде Кориолиса, и для формирования электрических сигналов датчиков, находящихся под влиянием подлежащих регистрации параметров процесса, как массовый расход или плотность, служащих в качестве первичных сигналов первичного измерительного преобразователя. Как, например, в описанных в US-B 7216550 первичных измерительных преобразователях рассматриваемого вида, точно так же возбудители колебаний могут, по меньшей мере, периодически применяться в качестве датчиков колебаний и/или датчики колебаний, по меньшей мере, могут применяться периодически в качестве возбудителей колебаний. Система возбуждения первичных измерительных преобразователей, рассматриваемого вида, имеют обычно, по меньшей мере, электродинамический и/или дифференциально действующий на, по меньшей мере, одну измерительную трубу и при необходимости на имеющееся устройство для встречных колебаний и при необходимости имеющуюся другую измерительную трубу возбудитель колебаний, в то время как система датчиков включает со стороны впуска, по меньшей мере, точно также электродинамический датчик колебаний, а также, по меньшей мере, в основном точно также в основном идентичный по конструкции датчик колебаний со стороны выпуска. Такие электродинамические и/или дифференциальные возбудители колебаний распространенных первичных измерительных преобразователей вибрационного типа образованы с помощью, по меньшей мере, периодически находящейся под воздействием проходящего тока - в первичных измерительных преобразователях с измерительной трубой и соединенного с ней устройства для встречных колебаний, по меньшей мере, зафиксированной на последнем - катушки возбуждения, а также взаимодействующим с, по меньшей мере, одной катушкой возбуждения, в частности, погружающегося в нее, служащего в качестве якоря, скорее удлиненного, в частности, образованного в форме стержня постоянного магнита, который соответственно зафиксирован на измерительной трубе, которая подлежит движению. Постоянный магнит и катушка электромагнита, служащая в качестве катушки возбуждения, при этом обычно ориентированы так, что они проходят друг к другу в основном концентрически. К тому же в существующих первичных измерительных преобразователях система возбуждения обычно образована таким способом и расположена в первичном измерительном преобразователе так, что она по центру воздействует на, по меньшей мере, одну измерительную трубу. При этом возбудитель колебаний и в этом отношении система возбуждения, как, например, показано в предлагаемых в US-A 5796010, US-B 6840109, US-B 7077014, US-B 7017424 первичных измерительных преобразователях в большинстве случаев, по меньшей мере, точечно снаружи зафиксирована вдоль виртуальной центральной линии периметра измерительной трубы. В качестве альтернативы системе возбуждения, образованной скорее центрально и непосредственно действующими на измерительную трубу возбудителями колебаний, могут применяться, как предложено, среди прочего, в US-B 6557422, US-A 6092429 или US-A 4823614, системы возбуждения, образованные, например, также с помощью двух зафиксированных не в центре измерительной трубы, а скорее со стороны впуска, соответственно выпуска на ней возбудителей колебаний или, как предлагается, среди прочего, в US-B 6223605 или US-A 5531126, применяются системы возбуждения, образованные, например, также с помощью возбудителя колебаний, действующего между при необходимости имеющимся устройством для встречных колебаний и корпусом первичного измерительного преобразователя. В большинстве распространенных первичных измерительных преобразователях вибрационного типа датчики колебаний системы датчиков, как уже отмечалось, по меньшей мере в этом отношении образованы в основном идентично по конструкции, как, по меньшей мере, один возбудитель колебаний, так как они работают по одинаковому принципу действия. Сообразно с этим также датчики колебаний такой системы датчиков в большинстве случаев образованы соответственно с помощью, по меньшей мере, обычно зафиксированной на при необходимости имеющемся устройстве встречных колебаний, по меньшей мере, периодически находящимся под воздействием изменяющегося магнитного поля и с этим соответственно, по меньшей мере, периодически нагружаемого индуцированным измеряемым напряжением, а также зафиксированным на измерительной трубе, взаимодействующим с, по меньшей мере, одной катушкой, представляющим постоянный магнит якорем, который создает магнитное поле. Каждая из названных выше катушек к тому же с помощью, по меньшей мере, пары электрических присоединяющих проводов соединена с упомянутым преобразующим электронным блоком встроенного измерительного прибора, которые в большинстве случаев возможно коротким путем проведены от катушек через устройство для встречных колебаний к корпусу первичного измерительного преобразователя.

Как, среди прочего, обсуждается в однажды упомянутых US-B 7406878, US-B 7305892, US-B 7134348, US-B 6513393. US-A 5861561, US-A 5359881, соответственно WO-A 2004/072588, другим вполне важным параметром для режима работы измерительной системы как таковой и/или для режима работы установки, в которой применяется измерительная система, может быть падение давления потока, например, спровоцированное первичным измерительным преобразователем и в этом отношении измерительной системой; оно должно приниматься во внимание и соответственно безусловно устраняться, в частности, также для случая, когда среда образована двумя или большим количеством фаз, например, смесью жидкость-газ, и/или когда при работе приходится иметь дело с нежелательной кавитацией вследствие недостаточности минимального статического давления в протекающей среде. В показанных в US-A 5359881 или US-B 7406878 измерительных системах снижающаяся в первичном измерительном преобразователе разность давлений при работе, например, определяется с помощью того, что на первой точке измерения давления в области впуска первичного измерительного преобразователя соответственно непосредственно выше по течению с помощью первого датчика давления измеряется первое статическое давление в протекающей среде и во второй точке измерения в области выпуска первичного измерительного преобразователя соответственно непосредственно ниже по течению с помощью дополнительного второго датчика давления регистрируется второе статическое давление в протекающей среде и с помощью гидравлического измерительного механизма давления и/или с помощью соответствующего преобразующего электронного блока обратно преобразуется в соответствующее измеренное значение разности давлений. В US-В 7305892, соответственно US-B 7134348 дальше описан способ для измерения разности давлений, осуществляемый с помощью первичного измерительного преобразователя вибрационного типа, при котором реакции в виде колебаний, по меньшей мере, одной измерительной трубы на мультимодальное возбуждение колебаний, а также заложенной в преобразующем электронный блоке физико-математической модели динамики - здесь измерительной системы, образованной в виде расходомера, использующего эффект Кориолиса, определяется давление, соответственно падение давления в среде, протекающей через первичный измерительный преобразователь.

Недостаток известных из уровня техники решений для измерения давления, в частности, разности давлений с помощью первичного измерительного преобразователя вибрационного типа, правда, следует усматривать в том, что либо нужно применять соответственно модифицированные системы возбуждения и/либо соответственно модифицированный задающий электронный блок, либо следует предусмотреть дополнительные датчики давления. При этом могут повышаться в значительной мере как затраты собственно на конструкцию измерительной системы, так и затраты на опытные работы при тарировании таких измерительных систем, так как лежащие в основе физико-математическая модели для измерения давления, соответственно разности давлений с целью достижения высокой точности измерения очень сложны и при этом соответственно имеют большое число дополнительно требующих тарировки коэффициентов, при необходимости также в ходе «мокрой» тарировки, которая проводится на месте на установленной измерительной системе.

Отсюда задачей изобретения является улучшение измерительной системы, образованной с помощью первичного измерительного преобразователя вибрационного типа, в том отношении, что с ней для целей обнаружения, соответственно подачи тревожного сигнала возможно достаточно точное измерение нежелательно высокого падения давления в протекающей среде, при необходимости также в смысле генерирования признанных измеренных значений более точное измерение разности давлений в протекающей среде; в частности, также при применении в оправдавших себя в таких измерительных системах измерительной техники, как, примерно, приемлемая сенсорная техника и/или исполнительные механизмы или также оправдавшие себя и архитектура приемлемых преобразующих электронных блоков.

Для решения задачи изобретение заключается в измерительной системе, например, компактном измерительном приборе и/или расходомере, использующем эффект Кориолиса, для, например, сред, протекающих в трубопроводах, какова измерительная система включает первичный измерительный преобразователь вибрационного типа, через который при работе протекает среда, например, газ и/или жидкость, паста или порошок или другой способный к течению материал, для формирования первичных сигналов, корреспондирующих с параметрами протекающей среды, например, скоростью массового расхода, плотностью и/или вязкостью, а также электрически соединенный с первичным измерительным преобразователем преобразующий электронный блок (система технического обслуживания, ME) для настройки первичного измерительного преобразователя и для обработки поданных первичным измерительным преобразователем первичных сигналов. Первичный измерительный преобразователь имеет, по меньшей мере, одну измерительную трубу для ведения протекающей среды, по меньшей мере, один электромеханический, например, электродинамический возбудитель колебаний для возбуждения и/или поддержания вибрации, по меньшей мере, одной измерительной трубы, в частности, изгибных колебаний, по меньшей мере, одной измерительной трубы вокруг виртуальной оси колебаний, воображаемо соединяющей первый конец измерительной трубы со стороны впуска и второй конец измерительной трубы со стороны выпуска, с естественной резонансной частотой первичного измерительного преобразователя, например, первый электродинамический датчик колебаний для регистрации, например, по меньшей мере, вибрации со стороны впуска, по меньшей мере, одной измерительной трубы и для формирования первого первичного сигнала первичного измерительного преобразователя, представляющего, например, по меньшей мере, вибрацию со стороны впуска, по меньшей мере, одной измерительной трубы, и например, второй электродинамический датчик колебаний для регистрации, по меньшей мере, вибрации со стороны выпуска, по меньшей мере, одной измерительной трубы и для формирования, например, второго первичного сигнала, представляющего, по меньшей мере, вибрацию со стороны выпуска, по меньшей мере, одной измерительной трубы. Преобразующий электронный блок опять же подает задающий сигнал для возбудителя колебаний, вызывающий вибрацию, например, изгибные колебания, по меньшей мере, одной измерительной трубы, и с помощью первого первичного сигнала и с помощью второго первичного сигнала, а также при применении, например, предварительно сохраненного внутри в энергозависимом накопителе преобразующего электронного блока и/или сформированного при работе с помощью задающего сигнала и/или с помощью, по меньшей мере одного из первичных сигналов, числа Рейнольдса, Re, представляющего измеренное значение числа Рейнольдса для протекающей в первичном измерительном преобразователе среды, генерирует измеренное значение разности давлений, которое представляет разность давлений, возникающую между двумя заданными, например, локализированными внутри первичного измерительного преобразователя, опорными точками в протекающем потоке, например, таким образом, что первая из обеих опорных точек со стороны впуска и вторая из обеих опорных точек со стороны выпуска локализированы в первичном измерительном преобразователе.

Кроме этого изобретение заключается в способе измерения разности давлений внутри протекающей среды, каковой способ включает следующие этапы:

- пропуск среды через, по меньшей мере, одну измерительную трубу;

- формирование измеренного значения числа Рейнольдса, представляющего число Рейнольдса, Re, для протекающей среды, а также

- применение измеренного значения числа Рейнольдса для формирования измеренного значения разности давлений, которое представляет разность давлений, возникающую между двумя, например, локализированными внутри первичного измерительного преобразователя опорными точками в протекающей среде.

По первому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение числа Рейнольдса с помощью задающего сигнала.

По второму исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение числа Рейнольдса с помощью первого первичного сигнала и/или с помощью второго первичного сигнала.

По третьему исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение разности давлений при применении предварительно сохраненного в энергозависимом накопителе данных преобразующего электронного блока и/или сформированного при работе с помощью задающего сигнала и/или с помощью, по меньшей мере, одного из первичных сигналов измеренного значения вязкости, которое представляет вязкость η протекающей в первичном измерительном измерителе среды. В усовершенствованном варианте этого исполнения изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение вязкости с помощью задающего сигнала и/или что преобразующий электронный блок генерирует измеренное значение вязкости при применении первого первичного сигнала и/или второго первичного сигнала.

По четвертому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок для определения измеренного значения разности давлений с помощью первого первичного сигнала и с помощью второго первичного сигнала генерирует измеренное значение разности фаз, которое представляет разность фаз Δφ1, существующую между первым первичным сигналом и вторым первичным сигналом, зависящую, например, от скорости массового расхода, m, среды, протекающей в первичном измерительном преобразователе.

По пятому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок для определения измеренного значения разности давлений и/или формирования измеренного значения плотности, представляющего плотность ρ, протекающей в первичном измерительном преобразователе среды, с помощью, по меньшей мере, одного из первичных сигналов и/или с помощью, по меньшей мере, одного задающего сигнала генерирует измеренное значение частоты, которое представляет частоту fexe колебаний вибрации, по меньшей мере, одной измерительной трубы, например, изгибных колебаний, по меньшей мере, одной измерительной трубы вокруг виртуальной оси колебаний, воображаемо соединяющий первый конец измерительной трубы со стороны впуска и второй конец измерительной трубы со стороны выпуска, с естественной резонансной частотой первичного измерительного преобразователя.

По шестому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок для определения измеренного значения разности давлений с помощью первого первичного сигнала и с помощью второго первичного сигнала генерирует измеренное значение массового расхода, которое представляет скорость массового расхода m, среды, протекающей в первичном измерительном преобразователе.

По седьмому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение числа Рейнольдса при применении измеренного значения массового расхода, представляющего скорость массового расхода m, среды, протекающей в первичном измерительном преобразователе.

По восьмому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение числа Рейнольдса при применении измеренного значения вязкости, представляющего вязкость η среды, протекающей в первичном измерительном преобразователе.

По девятому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение числа Рейнольдса при применении как измеренного значения массового расхода, представляющего скорость массового расхода m среды, протекающей в первичном измерительном преобразователе, как и измеренное значение вязкости, представляющее вязкость η среды, протекающей в первичном измерительном преобразователе.

По десятому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок генерирует измеренное значение разности давлений при применении, например, предварительно сохраненного в энергозависимом накопителе данных преобразующего электронного блока и/или сформированного при работе с помощью задающего сигнала и/или с помощью, по меньшей мере, одного из первичных сигналов измеренного значения плотности, которое представляет плотность ρ среды, протекающей в первичном измерительном преобразователе.

По одиннадцатому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок для определения измеренного значения разности давлений с помощью первого первичного сигнала и с помощью второго первичного сигнала генерирует измеренное значение энергии течения, которое представляет кинетическую энергию ρU2 среды, протекающей в первичном измерительном преобразователе, зависящую от плотности ρ и скорости потока U среды, протекающей в первичном измерительном преобразователе.

По двенадцатому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок для определения измеренного значения разности давлений генерирует коэффициент падения давления, который представляет падение давления в первичном измерительном преобразователе, зависимое от мгновенного числа Рейнольдса Re текущей среды, отнесенное к мгновенной кинетической энергии среды, протекающей в первичном измерительном преобразователе.

По тринадцатому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок при применении измеренного значения разности давления и с помощью, например, предварительно сохраненного в энергозависимом накопителе данных внутри преобразующего электронного блока первого измеренного значения давления, господствующего, например, выше по течению выпускного конца первичного измерительного преобразователя и/или ниже по течению впускного конца первичного измерительного преобразователя в протекающей среде, например, измеренного с помощью датчика давления, сообщающегося с преобразующим электронным блоком, и/или представляет первое давление, определенное с помощью первого и второго первичного сигнала, генерирует второе измеренное значение давления, которое представляет, например, минимальное и/или классифицируемое как критическое для измерительной системы статическое давление pkrit внутри протекающей среды. В усовершенствованном варианте этого исполнения изобретения дальше предусмотрено, что преобразующий электронный блок при применении второго измеренного значения давления генерирует сигнал тревоги, который сигнализирует о недостаточности заранее определенного минимально допустимого статического давления в среде, с возможностью восприятия визуально или акустически, и/или что преобразующий электронный блок при применении второго измеренного значения давления генерирует сигнал тревоги, который сигнализирует с возможностью восприятия, например, визуально или акустически, например о начинающемся возникновении кавитации в среде.

По четырнадцатому исполнению измерительной системы изобретения она включает дальше для формирования измеренного значения давления, представляющего статическое давление, господствующее в протекающей среде, датчик давления, сообщающийся при работе с преобразующим электронным блоком, служащий для регистрации статического давления, господствующего, например, выше по течению впускного конца первичного измерительного преобразователя или ниже по течению выпускного конца первичного измерительного преобразователя в направляющем среду трубопроводе.

По пятнадцатому исполнению измерительной системы изобретения дальше предусмотрено, что преобразующий электронный блок при применении измеренного значения разности давлений генерирует сигнал тревоги, который, с возможностью восприятия, например, визуально или акустически, сигнализирует о превышении предварительно определенного, максимально допустимого снижения статического давления в среде, протекающей через первичный измерительный преобразователь, и/или что преобразующий электронный блок при применении измеренного значения разности давлений генерирует сигнал тревоги, который, с возможностью восприятия, например, визуально или акустически, сигнализирует о провоцируемом первичным измерительным преобразователем слишком высоком падении давления.

По шестнадцатому исполнению изобретения дальше предусмотрено, что первичный измерительный преобразователь имеет корпус первичного измерительного преобразователя с первым концом корпуса со стороны впуска, имеющим, в частности, присоединительный фланец для секции трубопровода, подводящей среду к первичному измерительному преобразователю, и вторым концом корпуса, имеющим, в частности, присоединительный фланец для секции трубопровода, отводящей среду от первичного измерительного преобразователя. Это исполнение изобретения в усовершенствованном варианте далее предусматривает, что первый конец корпуса первичного измерительного преобразователя со стороны впуска образован с помощью первого делителя потока со стороны впуска, имеющего два соответственно отстоящие друг от друга отверстия для потока, и второй конец корпуса первичного измерительного преобразователя со стороны выпуска образован с помощью второго делителя потока со стороны выпуска, имеющего два соответственно отстоящие друг от друга отверстия для потока, и что первичный измерительный преобразователь имеет две параллельные друг другу измерительные трубы для ведения протекающей среды, из которых первая измерительная труба с первым концом измерительной трубы со стороны впуска впадает в первое отверстие для потока первого делителя потока и вторым концом измерительной трубы со стороны выпуска впадает в первое отверстие для потока второго делителя потока, и вторая измерительная труба с первым концом измерительной трубы со стороны впуска впадает во второе отверстие для потока первого делителя потока и со вторым концом измерительной трубы со стороны выпуска впадает во второе отверстие для потока второго делителя потока.

По первому исполнению способа изобретения он включает дальше этапы возбуждения по меньшей мере, одной измерительной трубы с образованием вибрации, например, изгибных колебаний вокруг виртуальной оси колебаний, воображаемо соединяющей первый конец измерительной трубы со стороны впуска и второй конец измерительной трубы со стороны выпуска; а также формирование первого первичного сигнала, представляющего вибрацию со стороны впуска, по меньшей мере, одной измерительной трубы, а также второго первичного сигнала, представляющего вибрацию со стороны выпуска, по меньшей мере, одной измерительной трубы. Это исполнение способа согласно изобретению в усовершенствованном варианте включает дальше этап применения первого первичного сигнала и/или второго первичного сигнала для формирования измеренного значения числа Рейнольдса, в частности, также для формирования измеренного значения плотности, представляющего плотность протекающей среды, и/или для формирования измеренного значения массового расхода, представляющего скорость массового расхода протекающей среды.

Основная идея изобретения заключается в том, что при применении нескольких немногих приемлемых для измерения протекающей среды измеряемых значений, как-то скорость массового расхода, плотность, вязкость и/или число Рейнольдса, которые в измерительных системах рассматриваемого вида обычно имеют место, в частности, также определяются внутри и/или с помощью нескольких немногих генерированных внутри с помощью преобразующего электронного блока таких систем рабочих параметров, как первичные сигналы, представляющие разность фаз между колебаниями со стороны впуска и со стороны выпуска, и по частоте и/или амплитуде сигналов или типичным образом выведенную и без этого, в качестве представляющей интерес измеряемой величины определять разность давлений. Изобретение базируется при этом также на замечательных сведениях, что даже только с помощью приведенных выше рабочих параметров, соответственно выведенных из них, определенных обычно и так уже в измерительных системах рассмат