Способ отображения опорного сигнала и устройство базовой станции беспроводной связи

Иллюстрации

Показать все

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности терминалов LTE, даже когда терминалы LTE и LTE+ терминалы сосуществуют. Для этого в устройстве на основании шаблона отображения опорных сигналов, используемых только в LTE+ терминалах, модуль (105) установки устанавливает в каждом подкадре группы блоков ресурсов, где отображаются опорные сигналы, используемые только LTE+ терминалами. Для символов, отображенных на антенны (110-1-110-4), модуль (106) отображения отображает на все блоки ресурсов в пределах одного кадра опорные сигналы, специфичные для ячейки, используемые как для терминалов LTE, так и для LTE+ терминалов. Для символов, отображенных на антенны (110-5-110-8), модуль (106) отображения отображает на множество блоков ресурсов, из которых состоит часть групп блоков ресурсов, в одном и том же подкадре в пределах одного кадра опорные сигналы для ячейки, используемые только для LTE+ терминалов, на основании результатов установки, вводимых от модуля (105) установки. 6 н. и 22 з.п. ф-лы, 25 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к способу отображения опорного сигнала и устройству базовой станции радиосвязи.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0002] 3GPP-LTE принимает OFDMA (множественный доступ с ортогональным частотным разделением каналов) в качестве схемы связи нисходящей линии связи. Согласно 3GPP-LTE, устройство базовой станции радиосвязи (в дальнейшем называемое "базовой станцией") передает опорные сигналы (сигналы RS), используя предварительно определенные ресурсы связи, и устройство терминала радиосвязи (в дальнейшем называемое "терминалом") выполняет оценку канала, используя принятые опорные сигналы, и демодулирует данные (см. непатентную литературу 1). Кроме того, используя опорные сигналы, терминал выполняет измерение качества приема для адаптивного управления MCS (схемой модуляции и кодирования канала) для управления PMI (индикатором матрицы предварительного кодирования) в передаче MIMO (множественного ввода и множественного вывода) или для адаптивного планирования. Затем терминал передает обратно полученный PMI и принятую информацию качества приема (CQI: индикатор качества канала) на базовую станцию.

[0003] Кроме того, когда базовая станция обеспечивается множеством антенн, базовая станция может выполнять передачу с разнесением. Например, базовая станция может реализовывать высокоскоростную передачу посредством передачи множества потоков данных от множества антенн (передачу MIMO). Для того чтобы терминал принимал сигнал, переданный с разнесением без ошибок, терминал должен знать канальное условие от множества антенн, используемых для передачи посредством базовой станции на терминал. Поэтому, сигналы RS должны быть переданы от всех антенн, обеспеченных базовой станции, без помех друг другу. Чтобы это реализовать, 3GPP-LTE использует способ передачи RS от каждой антенны базовой станции, используя распределения времени и частоты несущей, отличающиеся друг от друга во временной области и частотной области.

[0004] Фиг. 1 показывает конфигурацию базовой станции с 4 антеннами (базовой станции 4Tx передачи данных), предусмотренной посредством 3GPP-LTE, и Фиг. 2 показывает способ передачи RS посредством базовой станции 4Tx передачи данных (см. непатентную литературу 2). В настоящем описании на Фиг. 2 вертикальная ось (частотная область) соответствует единице поднесущей, и горизонтальная ось (временная область) соответствует единице символа OFDM. Кроме того, R0, R1, R2 и R3 представляют сигналы RS, переданные от антенн 0, 1, 2 и 3 (первой, второй, третей и четвертой антенн), соответственно. Кроме того, на Фиг. 2 единица из одного блока, обведенная рамкой с толстой линией (шесть поднесущих в частотной области и четырнадцать символов OFDM во временной области), называется "блоком ресурсов (RB)." Хотя один RB состоит из 12 поднесущих, согласно 3GPP-LTE, в настоящем описании предполагается, что количество поднесущих, из которых состоит один RB, равно шести для простоты объяснения. Кроме того, единица из 1 поднесущей х 1 символ OFDM, из которого состоит один RB, называется "элементом ресурсов (RЕ)". Как ясно из Фиг. 2, базовая станция 4Tx передачи данных уменьшает частоты передачи сигналов RS (R2 и R3) от антенны 2 (третей антенны) и антенны 3 (четвертой антенны), чтобы минимизировать служебные расходы, включенные в передачу сигналов RS.0005. Сигналы RS, показанные на Фиг. 2, являются общими для всех терминалов в ячейке, охваченной базовой станцией, и называются "сигналами RS, специфичными для ячейки (опорными сигналами, специфичными для ячейки)". Кроме того, базовая станция может также дополнительно передавать сигналы RS (сигналы RS, специфичные для терминала (опорные сигналы, специфичные для UE)), умноженные на вес, специфичный для каждого терминала, для передачи формирования диаграммы направленности.

[0006] Как описано выше, количество антенн базовой станции, согласно 3GPP-LTE, максимум равно четырем, и терминал, совместимый с 3GPP-LTE, демодулирует данные и измеряет качество сигнала нисходящей линии связи, используя сигналы RS (R0-R3, показанные на Фиг. 2), переданные от базовой станции (базовой станции 4Tx передачи данных), обеспеченной максимумом четырьмя антеннами.

[0007] В отличие от этого, усовершенствованный LTE, который является усовершенствованной версией 3GPP-LTE, изучает базовую станцию, оборудованную максимумом 8 антеннами (базовую станцию 8Tx передачи данных). Однако усовершенствованный LTE также обязан обеспечить базовую станцию, совместимую с 3GPP-LTE, чтобы позволить терминалам, совместимым только с базовой станцией 3GPP-LTE (базовой станцией 4Tx передачи данных), передавать данные. Другими словами, усовершенствованный LTE обязан обеспечить как терминалы, совместимые только с базовой станцией 4Tx передачи данных (в дальнейшем называемые "терминалами LTE"), так и терминалы, также совместимые с базовой станцией 8Tx передачи данных (в дальнейшем называемые "LTE+ терминалы").

Список цитат

Непатентная литература

NPL 1

3GPP TS 36.213 V8.2.0 (ftp://ftp.3gpp.org/specs/2008-03/Rel-8/36_series/36213-820.zip)

NPL 2

3GPP TS 36.211 V8.2.0

(ftp://ftp.3gpp.org/specs/2008-03/Rel-8/36_series/36211-820.7ip)

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ПРОБЛЕМА

[0009] В усовершенствованном LTE для того чтобы LTE+ терминалы приняли сигнал, переданный с разнесением, без ошибок, базовая станция должна передать сигналы RS, соответствующие 8 антеннам. Например, как показано на Фиг. 3, R0-R7, которые являются сигналами RS, соответствующими 8 антеннам, могут быть отображены на все блоки RB. Это позволяет LTE+ терминалам принимать сигнал без ошибок. Кроме того, терминалы могут получить CQI и PMI каждой антенны в единицах подкадра и, таким образом, могут повысить пропускную способность посредством передачи MIMO.

[0010] Однако, терминалы LTE захватывают только позиции отображения сигналов RS (R0-R3), показанных на Фиг. 2. Таким образом, терминалы LTE не знают о наличии сигналов RS, используемых только для LTE+ терминалов - то есть, R4-R7, показанных на Фиг. 3. Поэтому, в элементах RE, которым отображаются сигналы RS (R4-R7), используемые только для LTE+ терминалов, терминалы LTE принимают сигналы, распознающие, что сигналы данных были отображены. Таким образом, когда терминалы LTE и LTE+ терминалы сосуществуют, терминалы LTE могут не быть в состоянии корректно принимать сигналы. В результате, характеристики частоты появления ошибок и пропускная способность терминалов LTE ухудшаются.

[0011] Поэтому, цель настоящего изобретения заключается в обеспечении способа отображения опорного сигнала и устройства базовой станции радиосвязи, способных предотвратить ухудшение пропускной способности терминалов LTE, даже когда терминалы LTE и LTE+ терминалы сосуществуют.

РЕШЕНИЕ ПРОБЛЕМЫ

[0012] Способ отображения опорного сигнала согласно настоящему изобретению отображает первый опорный сигнал, используемый как для первого устройства терминала радиосвязи, соответствующего устройству базовой станции радиосвязи, обеспеченному N антеннами, так и для второго устройства терминала радиосвязи, соответствующего устройству базовой станции радиосвязи, обеспеченному более чем N антеннами, на все блоки ресурсов в одном кадре, и отображает второй опорный сигнал, используемый только для второго устройства терминала радиосвязи, на множество блоков ресурсов, из которых состоит часть групп блока ресурсов, в одном и том же подкадре в одном кадре.

[0013] Устройство базовой станции радиосвязи согласно настоящему изобретению является устройством базовой станции радиосвязи, которое передает первый опорный сигнал, используемый как для первого устройства терминала радиосвязи, соответствующего устройству базовой станции радиосвязи, обеспеченному N антеннами, так и для второго устройства терминала радиосвязи, соответствующего устройству базовой станции радиосвязи, обеспеченному более чем N антеннами, и второй опорный сигнал, используемый только для второго устройства терминала радиосвязи, и содержит секцию установки, которая устанавливает блоки ресурсов, на которые отображается второй опорный сигнал, в каждом подкадре на основании шаблона отображения второго опорного сигнала, и секцию отображения, которая отображает первый опорный сигнал на все блоки ресурсов в одном кадре и отображает второй опорный сигнал на множество блоков ресурсов, из которых состоит часть групп блока ресурсов, в одном и том же подкадре в одном кадре.

Преимущественные эффекты изобретения

[0014] Даже когда терминалы LTE и LTE+ терминалы сосуществуют, настоящее изобретение может предотвратить ухудшение пропускной способности терминалов LTE.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0015]

Фиг. 1 является блок-схемой, иллюстрирующей конфигурацию обычной базовой станции 4Tx передачи данных;

Фиг. 2 показывает способ передачи RS посредством обычной базовой станции 4Tx передачи данных;

Фиг. 3 показывает способ передачи RS посредством обычной базовой станции 8Tx передачи данных;

Фиг. 4 является блок-схемой, иллюстрирующей конфигурацию базовой станции согласно варианту осуществления 1 настоящего изобретения;

Фиг. 5 является блок-схемой, иллюстрирующей конфигурацию LTE+ терминала согласно варианту осуществления 1 настоящего изобретения;

Фиг. 6 показывает RB, на который отображаются только сигналы RS, используемые как для терминалов LTE, так и для LTE+ терминалов, согласно варианту осуществления 1 настоящего изобретения;

Фиг. 7 показывает RB, на который отображаются только сигналы RS, используемые для LTE+ терминалов, согласно варианту осуществления 1 настоящего изобретения;

Фиг. 8 показывает шаблон отображения RS согласно варианту осуществления 1 настоящего изобретения (способ отображения 1);

Фиг. 9 показывает шаблон отображения RS согласно варианту осуществления 1 настоящего изобретения (способ отображения 1);

Фиг. 10 показывает шаблон отображения RS согласно варианту осуществления 1 настоящего изобретения (способ отображения 1);

Фиг. 11 показывает шаблон отображения RS согласно варианту осуществления 1 настоящего изобретения (способ отображения 2);

Фиг. 12 показывает шаблон отображения RS согласно варианту осуществления 1 настоящего изобретения (способ отображения 2);

Фиг. 13 показывает шаблон отображения RS согласно варианту осуществления 1 настоящего изобретения (способ отображения 3);

Фиг. 14 показывает проблемы, ассоциированные с вариантом осуществления 3 настоящего изобретения;

Фиг. 15 показывает шаблон отображения RS согласно варианту осуществления 3 настоящего изобретения;

Фиг. 16 показывает проблемы, ассоциированные с вариантом осуществления 4 настоящего изобретения;

Фиг. 17 показывает шаблон отображения RS согласно варианту осуществления 4 настоящего изобретения;

Фиг. 18 показывает другой шаблон отображения RS согласно варианту осуществления 4 настоящего изобретения;

Фиг. 19 показывает шаблон отображения RS согласно варианту осуществления 5 настоящего изобретения;

Фиг. 20 показывает шаблон отображения RS согласно варианту осуществления 6 настоящего изобретения;

Фиг. 21 показывает другой шаблон отображения RS согласно варианту осуществления 6 настоящего изобретения;

Фиг. 22 показывает дополнительный шаблон отображения RS согласно варианту осуществления 6 настоящего изобретения;

Фиг. 23 показывает шаблон отображения RS согласно варианту осуществления 7 настоящего изобретения;

Фиг. 24 показывает шаблон отображения RS согласно варианту осуществления 8 настоящего изобретения; и

Фиг. 25 показывает другой шаблон отображения RS согласно варианту осуществления 8 настоящего изобретения.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0016] В дальнейшем варианты осуществления настоящего изобретения будут описаны подробно с ссылками на сопроводительные чертежи. В следующих описаниях базовая станция обеспечивается восьмью антеннами и передает данные передачи на терминалы LTE и LTE+ терминалы. Кроме того, один кадр делится на множество подкадров. Кроме того, множество поднесущих одного подкадра делится на множество блоков RB. Таким образом, один RB состоит из нескольких поднесущих одного подкадра.

[0017] (Вариант осуществления 1)

Конфигурация базовой станции 100 согласно настоящему варианту осуществления показана на Фиг. 4.

[0018] Секция 101 кодирования/модуляции базовой станции 100 обеспечена таким количеством секций 11 кодирования и секций 12 модуляции для данных передачи, сколько есть N, количество терминалов, с которыми может связываться базовая станция 100. В секции 101 кодирования/модуляции секции 11-1-11-N кодирования выполняют обработку кодирования в отношении данных передачи терминалов 1-N, и секции 12-1-12-N модуляции выполняют обработку модуляции в отношении закодированных данных передачи и генерируют символы данных. Секция 101 кодирования/модуляции определяет соответствующие скорости кодирования и схемы модуляции (то есть, MCS) секций 11 кодирования и секций 12 модуляции на основании информации CQI, вводимой от секций 118-1-118-N декодирования.

[0019] В секции 102 кодирования/модуляции секция 13 кодирования выполняет обработку кодирования в отношении информации, указывающей шаблон отображения сигналов RS, специфичных для ячейки, используемых только для LTE+ терминалов (информации отображения RS), и секция 14 модуляции выполняют обработку модуляции в отношении закодированной информации отображения RS и генерирует символы информации отображения RS. В настоящем описании базовая станция 100 может передавать информацию отображения RS на все LTE+ терминалы в ячейке, охваченной базовой станцией 100, используя сигнал BCH (канала вещания).

[0020] Секция 103 распределения распределяет символы данных и символы информации отображения RS каждой поднесущей, составляющей символ OFDM, согласно информации CQI, вводимой от секций 118-1-118-N декодирования, и выводит распределенные символы в секцию 104 отображения.

[0021] Секция 104 отображения отображает соответствующие символы, вводимые от секции 103 распределения, на антенны 110-1-110-8. Кроме того, секция 104 отображения выбирает вектор предварительного кодирования, используемый для каждой антенны, на основании информации PMI, вводимой от секций 118-1-118-N декодирования. Секция 104 отображения умножает символ, отображенный каждой антенне, на выбранный вектор предварительного кодирования. Затем секция 104 отображения выводит символ, отображенный на каждую антенну, в секцию 106 отображения.

[0022] Секция 105 установки устанавливает блоки RB, на которые отображаются сигналы RS, специфичные для ячейки (R4-R7), переданные от антенн 110-5-10-8 для каждого подкадра на основании информации отображения RS. Более конкретно, секция 105 установки устанавливает блоки RB, на которые отображаются сигналы RS, специфичные для ячейки, для каждого подкадра на основании шаблона отображения, указывающего позиции отображения сигналов RS, специфичных для ячейки (R4-R7), используемых только для LTE+ терминалов. Здесь согласно шаблону отображения, используемому секцией 105 установки, сигналы RS, специфичные для ячейки (R0-R3), используемые как для терминалов LTE, так и для LTE+ терминалов, отображаются на все блоки RB в одном кадре, и сигналы RS, специфичные для ячейки (R4-R7), используемые только для LTE+ терминалов, отображаются на часть блоков RB в одном кадре. Секция 105 установки выводит результат установки в секцию 106 отображения.

[0023] Секция 106 отображения добавляет сигналы RS, специфичные для ячейки, (R0-R7) к символам, вводимым от секции 104 отображения и отображенным на соответствующие антенны. Более конкретно, в символах, отображенных на антенны 110-1-110-4, секция 106 отображения отображает сигналы RS, специфичные для ячейки (R0-R3), используемые как для терминалов LTE, так и для LTE+ терминалов, на все блоки RB в одном кадре. С другой стороны, в символах, отображенных на антенны 110-5-110-8, секция 106 отображения отображает сигналы RS, специфичные для ячейки (R4-R7), используемые только для LTE+ терминалов, на установленную часть сигналов RB на основании результата установки, вводимого от секции 105 установки. Кроме того, когда данные передачи, направленные на LTE+ терминалы, распределяются на блоки RB, за исключением блоков RB, указанных в результате установки, вводимом от секции 105 установки, секция 106 отображения отображает сигналы RS, специфичные для терминала, на блоки RB. Например, секция 106 отображения использует R4-R7 в качестве сигналов RS, специфичных для терминала. Секция 106 отображения может также использовать R4-R7, умноженные на веса, специфичные для терминала. Секция 106 отображения выводит последовательность символов, на которую отображается RS, в секцию 107-1-107-8 IFFT (обратного быстрого преобразования Фурье).

[0024] Секции 107-1-107-8 IFFT, секции 108-1-108-8 добавления CP (циклического префикса) и секции 109-1-109-8 радиопередачи обеспечиваются в связи с соответствующими антеннами 110-1-110-8.

[0025] Секции 107-1-107-8 IFFT выполняют IFFT в отношении множества поднесущих, составляющих блоки RB, на которые распределяются символы, и генерируют символы OFDM, которые являются сигналами мультинесущей. Затем секции 107-1-107-8 IFFT выводят сгенерированные символы OFDM на секции 108-1-108-8 добавления CP, соответственно.

[0026] Секции 108-1-108-8 добавления CP добавляют тот же сигнал, что и сигнал в задней части символа OFDM, к заголовку символа OFDM в качестве CP.

[0027] Секции 109-1-109-8 радиопередачи выполняют обработку передачи, такую как преобразование D/A (цифроаналоговое), усиление и преобразование с повышением частоты, в отношении символов OFDM с добавленным CP и передают символы OFDM от антенн 110-1-110-8 на соответствующие терминалы. Таким образом, базовая станция 100 передает множество потоков данных от антенн 110-1-110-8.

[0028] С другой стороны, секция 111 радиоприема принимает N сигналов, одновременно переданных от максимум N терминалов с помощью антенн 110-1-110-8, и выполняет обработку приема, такую как преобразование с понижением частоты, преобразование A/D (аналогово-цифровое), в отношении этих сигналов.

[0029] Секция 112 удаления CP удаляет префиксы CP из сигналов после обработки приема.

[0030] Секция 113 FFT (быстрого преобразования Фурье) выполняет FFT в отношении сигналов с удаленными префиксами CP и получает сигналы, специфичные для терминала, мультиплексированные в частотной области. При этом каждый сигнал, специфичный для терминала, включает в себя сигнал данных каждого терминала и информацию управления, включающую в себя информацию CQI и информацию PMI каждого терминала.

[0031] Секция 114 разделения разделяет сигнал каждого терминала, вводимого от секции 113 FFT, в сигналы данных и информацию управления каждого терминала. Секция 114 разделения выводит сигналы данных терминалов 1-N в секции 115-1-115-N демодуляции, соответственно, и выводит информацию управления терминалов 1-N в секции 117-1-117-N демодуляции, соответственно.

[0032] Базовая станция 100 обеспечивается таким количеством секций 115-1-115-N демодуляции, секций 116-1-116-N декодирования, секций 117-1-117-N демодуляции и секций 118-1-118-N декодирования, сколько N, количество терминалов, с которыми может связаться базовая станция 100.

[0033] Секции 115-1-115-N демодуляции выполняют обработку демодуляции в отношении сигналов данных, вводимых от секции 114 разделения, и секции 116-1-116-N декодирования выполняют обработку декодирования в отношении демодулированных сигналов данных. Это позволяет получить принятые данные, специфичные для терминала.

[0034] Секции 117-1-117-N демодуляции выполняют обработку демодуляции в отношении информации управления, вводимой от секции 114 разделения, и секции 118-1-118-N декодирования выполняют обработку декодирования в отношении демодулированной информации управления. Секции 118-1-118-N декодирования выводят информацию CQI и информацию PMI информации управления в секцию 101 кодирования/модуляции, секцию 103 распределения и секцию 104 отображения.

[0035] Ниже описан терминал 200 (LTE+ терминал) согласно настоящему варианту осуществления. Фиг. 5 показывает конфигурацию терминала 200 согласно настоящему варианту осуществления.

[0036] В терминале 200, показанном на Фиг. 5, секции 202-1-202-8 радиоприема, секции 203-1-203-8 удаления СР, секции 204-1-204-8 FFT и секции 205-1-205-8 извлечения обеспечиваются в связи с соответствующими антеннами 201-1-201-8.

[0037] Секции 202-1-202-8 радиоприема принимают символы OFDM, переданные от базовой станции 100 (Фиг. 4) с помощью антенн 201-1-201-8, и выполняют обработку приема, такую как преобразование с понижением частоты, преобразование A/D, в отношении символов OFDM.

[0038] Секции 203-1-203-8 удаления СР удаляют префиксы CP из символов OFDM после обработки приема.

[0039] Секции 204-1-204-8 FFT выполняют FFT в отношении символов OFDM с удаленным CP и получают сигналы в частотной области.

[0040] Секции 205-1-205-8 извлечения извлекают сигналы RS, специфичные для ячейки (R0-R7), и сигналы RS, специфичные для терминала (например, R4-R7, умноженные на веса, специфичные для терминала) из сигналов, вводимых от секций 204-1-204-8 FFT, на основании информации отображения RS, вводимой от секции 211 декодирования. Секции 205-1-205-8 извлечения выводят сигналы RS, специфичные для ячейки, в секцию 206 оценки канала и секцию 212 измерения, и выводят сигналы RS, специфичные для терминала, в секцию 206 оценки канала. Кроме того, секции 205-1-205-8 извлечения выводят сигналы, вводимые от секций 204-1-204-8 FFT, в секцию 207 пространственной обработки приема. Терминал 200 может также захватить информацию отображения RS посредством приема сигнала BCH, включенного в информацию отображения RS, от базовой станции 100.

[0041] Секция 206 оценки канала выполняет оценку канала, используя сигналы RS, специфичные для ячейки, и сигналы RS, специфичные для терминала, вводимые от секций 205-1-205-8 извлечения, и выводит результат оценки канала в секцию 207 пространственной обработки приема.

[0042] Секция 207 пространственной обработки приема выполняет пространственную обработку приема в отношении сигналов, вводимых от секций 205-1-205-8 извлечения - то есть, сигналов, принятых от антенн 201-1-201-8 - используя результат оценки канала, вводимый от секции 206 оценки канала. Затем секция 207 пространственной обработки приема выводит сигналы данных разделенных потоков данных в секцию 208 демодуляции и выводит информацию отображения RS в секцию 210 демодуляции.

[0043] Секция 208 демодуляции выполняет обработку демодуляции в отношении сигналов данных, вводимых от секции 207 пространственной обработки приема, и секция 209 декодирования выполняет обработку декодирования в отношении демодулированных сигналов данных. Таким образом, получаются принятые данные.

[0044] Секция 210 демодуляции выполняет обработку демодуляции в отношении информации отображения RS, вводимой от секции 207 пространственной обработки приема, и секция 211 декодирования выполняет обработку декодирования в отношении демодулированной информации отображения RS. Затем секция 211 декодирования выводит декодированную информацию отображения RS в секции 205-1-205-8 извлечения.

[0045] С другой стороны, секция 212 измерения измеряет индикаторы CQI антенн 201-1-201-8 и оценивает индикаторы PMI для получения хорошего качества приема, используя сигналы RS, специфичные для ячейки (R0-R7), водимые от секций 205-1-205-8 извлечения. Секция 212 измерения выводит информацию CQI, указывающую измеренные индикаторы CQI, и информацию PMI, указывающую предполагаемый PMI, в секцию 215 кодирования в качестве информации управления.

[0046] Секция 213 кодирования выполняет обработку кодирования в отношении данных передачи, и секция 214 модуляции выполняет обработку модуляции в отношении закодированных данных передачи и генерирует символы данных. Секция 214 модуляции выводит сгенерированные символы данных на секцию 217 мультиплексирования.

[0047] Секция 215 кодирования выполняет обработку кодирования в отношении информации управления, включающей в себя информацию CQI и информацию PMI, вводимую от секции 212 измерения, и секция 216 модуляции выполняет обработку модуляции в отношении закодированной информации управления и генерирует символы информации управления. Секция 216 модуляции выводит сгенерированные символы информации управления на секцию 217 мультиплексирования.

[0048] Секция 217 мультиплексирования мультиплексирует символы данных, вводимые от секции 214 модуляции, и символы информации управления, вводимые от секции 216 модуляции, и выводит мультиплексированный сигнал в секцию 218 IFFT.

[0049] Секция 218 IFFT выполняет IFFT в отношении множества поднесущих, на которые распределяются сигналы, вводимые от секции 217 мультиплексирования, и выводит сигнал после IFFT в секцию 219 добавления CP.

[0050] Секция 219 добавления CP добавляет тот же сигнал, что и сигнал в задней части сигнала, вводимого от секции 218 IFFT, к заголовку сигнала в качестве CP.

[0051] Секция 220 радиопередачи выполняет обработку передачи, такую как преобразование D/A, усиление и преобразование с повышением частоты, в отношении сигнала с добавленным CP и передает сигнал от антенны 201-1 на базовую станцию 100 (Фиг. 4).

[0052] Ниже описан способ отображения RS, специфичного для ячейки, согласно настоящему варианту осуществления.

[0053] В следующем описании, как показано, например, на Фиг. 8, один кадр состоит из пяти подкадров (подкадров 0-4). Кроме того, в качестве примера описан случай, где множество поднесущих однородно делится на четыре блока RB RB0-RB3 в одном подкадре. Кроме того, как показано на Фиг. 6 и Фиг. 7, один RB состоит из шести поднесущих x один подкадр. Кроме того, сигналы RS, специфичные для ячейки (R0-R3), используемые как для терминалов LTE, так и для LTE+ терминалов, отображаются в элементы RE, заранее установленные в RB, как показано на Фиг. 6 и Фиг. 7. Кроме того, сигналы RS, специфичные для ячейки (R4-R7), используемые только для LTE+ терминалов, отображаются в элементы RE, заранее установленные в RB, как показано на Фиг. 7.

[0054] Кроме того, в следующем описании, как показано на Фиг. 8, блоки RB (Фиг. 6), на которые отображаются четыре сигнала RS R0-R3, представлены "4 сигналами RS", и блоки RB (Фиг. 7), на которые отображаются восемь сигналов RS R0-R7, представлены "8 сигналами RS." Таким образом, на Фиг. 8 сигналы RS, специфичные для ячейки (R0-R3), используемые как для терминалов LTE, так и для LTE+ терминалов, отображаются на всем блоки RB в одном кадре, тогда как сигналы RS (R4-R7), используемые только для LTE+ терминалов, отображаются только на блоки RB, представленные 8 сигналами RS.

[0055] <Способ отображения 1 (Фиг. 8)>

Настоящий способ отображения отображает сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, только на часть блоков RB в одном кадре.

[0056] В настоящем описании, если сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, фиксированно отображаются только на ограниченную часть частотных диапазонов в одном кадре, базовая станция 100 может распределить сигналы данных как LTE+ терминалов, так и терминалов LTE только ограниченным частотным диапазонам. Например, от подкадра 0 до подкадра 4 в одном кадре, если сигналы RS, специфичные для ячейки (R4-R7), используемые только для LTE+ терминалов, фиксировано отображаются только на RB0 и RB1 среди RB0-RB3, базовая станция 100 может распределить сигналы данных, направленные на терминалы LTE, только на RB2 и RB3. Таким образом, если сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, фиксированно отображаются только на ограниченную часть частотных диапазонов в одном кадре, блоки RB, которым могут быть распределены терминалы LTE, являются ограниченными, что вызывает ухудшение эффекта частотного планирования.

[0057] Таким образом, настоящий способ отображения отображает сигналы RS, специфичные для ячейки (R4-R7), используемые только для LTE+ терминалов, на блоки RB различных частотных диапазонов в соседних подкадрах.

[0058] Более конкретно, как показано на Фиг. 8, R4-R7 отображаются в RB0 в подкадре 0, R4-R7 отображаются в RB1 в подкадре 1, R4-R7 отображаются в RB2 в подкадре 2, R4-R7 отображаются в RB3 в подкадре 3, и R4-R7 отображаются в RB0 в подкадре 4.

[0059] Таким образом, как показано на Фиг. 8, секция 105 установки (Фиг. 4) базовой станции 100 устанавливает RB0 в подкадре 0 и устанавливает RB1 в подкадре 1 в качестве RB, на который отображаются сигналы RS, специфичные для ячейки (R4-R7), используемые только для LTE+ терминалов. То же самое также относится к подкадрам 2-4.

[0060] Как показано на Фиг. 7, секция 106 отображения отображает R4-R7 на их соответствующие элементы RE в RB0 подкадра 0 и отображает R4-R7 на их соответствующие элементы RE в RB1 подкадра 1. То же самое также относится к подкадрам 2-4.

[0061] Как показано на Фиг. 8, R4-R7 отображаются только на пять блоков RB из двадцати блоков RB в одном кадре ("пять подкадров подкадров 0-4" × "четыре блока RB RB0-3"). Таким образом, только R0-R3, которые могут быть приняты терминалами LTE, передаются в пятнадцати блоках RB ("4 сигнала RS", показанные на Фиг. 8), за исключением некоторых блоков RB ("8 сигналов RS", показанных на Фиг. 8), на которые отображаются R4-R7. Таким образом, базовая станция 100 может распределять терминалы LTE на блоки RB ("4 сигнала RS", показанные на Фиг. 8), за исключением некоторых блоков RB ("8 сигналов RS", показанных на Фиг. 8), на которые отображаются R4-R7. Это предотвращает терминалы LTE от ошибочного приема элементов RE, на которые отображаются R4-R7 в качестве символов данных, и, таким образом, может предотвратить ухудшение характеристик частоты появления ошибок.

[0062] Кроме того, как показано на Фиг. 8, блоки RB ("8 сигналов RS", показанных на Фиг. 8), на которые отображаются R4-R7, отображаются на блоки RB различных частотных областей в соседних подкадрах. Более конкретно, как показано на Фиг. 8, R4-R7 отображаются на RB0 в подкадре 0, в то время как R4-R7 отображаются на RB1 в частотной области, отличающейся от частотной области RB0 в подкадре 1, смежном с подкадром 0. Аналогично, R4-R7 отображаются на RB2 в частотной области, отличающейся от частотной области RB1 в подкадре 2, смежном с подкадром 1. То же самое также относится к подкадрам 3 и 4. Таким образом, R4-R7 отображаются на RB, смещенный на один RB, в частотной области каждый подкадр.

[0063] Таким образом, терминал 200 (LTE+ терминал) может выполнять измерение CQI и оценку PMI, используя восемь сигналов RS, специфичных для ячейки (R0-R7), в любом одном RB одного подкадра и может обновлять CQI и PMI для всех блоков RB 0-3 в четырех непрерывных подкадрах. Терминал 200 (LTE+ терминал) передает обратно полученные CQI и PMI на базовую станцию 100. Кроме того, базовая станция 100 выполняет адаптивное управление MCS на основании переданного обратно CQI, и дополнительно передает данные передачи MIMO, используя переданный обратно PMI. Терминал 200 (LTE+ терминал) может также передавать обратно CQI и PMI, полученные в каждом подкадре, на базовую станцию каждый подкадр. Таким образом, терминал 200 (LTE+ терминал) может уменьшать величину обратной связи в подкадре и может передавать обратно более новые CQI и PMI в RB - то есть, точные CQI и PMI. Кроме того, терминал 200 (LTE+ терминал) может получать все индикаторы CQI и PMI RB0-RB3 и затем передавать обратно индикаторы CQI и PMI на базовую станцию за один раз.

[0064] В настоящем описании высокоскоростная передача (передача MIMO), использующая восемь антенн базовой станции 100, как предполагается, должна быть выполнена в микро ячейке, имеющей маленький радиус ячейки. Таким образом, высокоскоростная передача, использующая восемь антенн базовой станции 100, поддерживает только LTE+ терминалы, которые перемещаются с низкой скоростью. Таким образом, как показано на Фиг. 8, даже когда требуется долгий временной интервал из четырех подкадров для выполнения измерения CQI и оценки PMI во всех блоках RB, флуктуация качества канала по четырем подкадрам является небольшим, и поэтому ухудшение в точности измерения CQI и оценки PMI является небольшим. Таким образом, базовая станция 100 может выполнять адаптивное управление MCS и передачу MIMO, используя CQI и PMI достаточной точности от терминала 200 (LTE+ терминала), и, таким образом, может повысить пропускную способность.

[0065] Кроме того, когда данные терминала 200 (LTE+ терминал) распределяются на блоки RB ("4 сигнала RS", показанные на Фиг. 8), на которые не отображаются R4-R7, базовая станция 100 отображает сигналы RS, специфичные для терминала, для демодуляции данных (R4-R7, умноженные на веса, специфичные для терминала) на блоки RB, на которые были распределены данные, и передает эти данные. Таким образом, используя сигналы RS, специфичные для терминала, базовая станция 100 может распределять сигналы данных, направленные на LTE+ терминалы, не только на блоки RB ("8 сигналов RS", показанных на Фиг. 8), на которые отображаются R4-R7, но также и на любые RB 0-3. Таким образом, базовая станция 100 больше не имеет ограничений планировщика при распределении LTE+ терминалов и, таким образом, может улучшить эффекты частотного планирования.

[0066] Однако, блоки RB, посредством которых передаются сигналы RS, специфичные для терминала, изменяются в зависимости от блоков RB, на которые базовая станция 100 распределяет LTE+ терминалы, и базовая станция 100 уведомляет только блоки RB, распределенные на каждый LTE+ терминал. Поэтому, каждый LTE+ терминал знает только сигналы RS, специфичные для терминала, блока RB, распределенного на терминал. Таким образом, другие LTE+ терминалы не могут выполнять измерение CQI и оценку PMI, используя сигналы RS, специфичные для терминала. Однако, согласно настоящему способу отображения сигналы RS, специфичные для ячейки, передаются по любому одному RB каждый подкадр, и поэтому другие LTE+ терминалы могут выполнять измерение CQI и оценку PMI, не зная сигналы RS, специфичные для терминала.

[0067] Таким образом, настоящий способ отображения отображает сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, только в части множества блоков RB в одном кадре. Это позволяет базовой станции распределять сигналы данных, направленные на терминалы LTE, на блоки RB, за исключением блоков RB, на которые отображаются сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов. Таким образом, терминалы LTE не принимают ошибочно сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, в качестве сигналов данных и, таким образом, возможно предотвратить ухудшение характеристик частоты появления ошибок. Поэтому, даже когда терминалы LTE и LTE+ терминалы сосуществуют, настоящий способ отображения может предотвратить ухудшение в пропускной способности терминалов LTE. Кроме того, когда сигналы данных, направленные на LTE+ терминалы, распределяются на блоки RB, на которые не отображаются сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, базовая станция отображает сигналы RS, специфичные для терминала, на блоки RB. Это позволяет базовой станции распределять сигналы данных, направленные на LTE+ терминалы, на все блоки RB и, таким образом, возможно повысить эффект частотного планирования.

[0068] Кроме того, настоящий способ отображения отображает сигналы RS, специфичные для ячейки, используемые только для LTE+ терминалов, на блоки RB отличных частотных областей между соседними подкадрами, и отображает сигналы RS на блоки RB, смещенные на один RB, каждый подкадр. Это гарантирует, что LTE+ терминалы принимают сигналы RS, специфичные для ячейки, по множеству непрерывных подкадров даже в блоках RB, на которые не распределяются сигналы данных LTE+ терминалов. Таким образом, LTE+ терминалы могут выполнять измерение CQI и оценку PMI точно во всех частотных диапазонах. Степень смещения сигналов RS, специфичных для ячейки, не обязательно должна быть равна одному RB.

[0069] Настоящий способ отображения может также использовать шаблон отображения RS, временная область и частотная область которого отличаются от одной ячейки к другой. Например, из двух соседних базовых станций одна базовая станция может использовать шаблон отображения, показанный на Фиг. 8, в то время как другая базовая станция может использовать шаблон отображения, показанный на Фиг. 9. В шаблоне отображения, показанном на Фиг. 8, R4-R7 отображаются на блоки RB 0, 1, 2, 3 и 0 в порядке подкадров 0, 1, 2, 3 и 4, в то время как в шаблоне отображения, показанном на Фиг. 9, R4-R7 отображаются на блоки RB 0, 2, 1,3 и 0 в порядке подкадров 0, 1, 2, 3 и 4. Таким образом, в шаблоне отображения, показанном на Фиг. 9, R4-R7 отображаются на несколько блоков RB, смещенных на множество блоков RB (в настоящем описании на два блока RB) в частотной области каждый подкадр в одном кадре. Альтернативно, в то время как одна из двух соседних базовых станций использует шаблон отображения, показанный на Фиг. 8, другая базовая станция может также использовать шаблон отображения, показанный на Фиг. 10. В шаблоне отображения, показанном на Фиг. 10, R4-R7 отображаются на блоки RB 1, 2, 3, 0 и 1 в порядке подкадров 0, 1, 2, 3 и 4. Таким образом, в шаблоне отображения, показанном на Фиг. 8, R4-R7 отображаются на блоки RB, смещенные на один RB от RB0 в подкадре 0, в то время как в шаблоне отображения, показанном на Фиг. 10, R4-R7 отображаются на блоки