Красный флуоресцентный биосенсор для детекции пероксида водорода в живых клетках
Иллюстрации
Показать всеГруппа изобретений относится к области биотехнологии и направлена на молекулы нуклеиновых кислот, которые кодируют белок, проявляющий свойства биосенсора для детекции пероксида водорода в живых клетках, обладающий флуоресценцией в красной области спектра. Молекулы нуклеиновых кислот получены методами генной инженерии. Белок для детекции пероксида водорода имеет аминокислотную последовательность, показанную в SEQ ID NO:2. Также обеспечиваются клетка-хозяин и кассета экспрессии, содержащие указанные молекулы нуклеиновых кислот. Использование изобретений позволяет осуществлять микроскопию в толстых слоях тканей, а также обеспечивает возможность совместной микроскопии нескольких флуоресцентных конструкций. 4 н.п. ф-лы, 7 ил.
Реферат
1.Область изобретения
Данное изобретение относится в основном к области биологии и химии. В частности, изобретение направлено на биосенсоры для детекции пероксида водорода, сконструированные на основе флуоресцентных белков.
2. Уровень техники
[01] Флуоресцентные белки семейства GFP (Green Fluorescent Protein, GFP), включая собственно GFP из медузы Aequorea victoria (avGFP), его мутанты и гомологи, сегодня широко известны благодаря их интенсивному использованию в качестве флуоресцентных маркеров in vivo в биомедицинских исследованиях, что детально рассмотрено Lippincott-Schwartz и Patterson в Science (2003) 300(5616):87-91 и Chudakov et al. (Physiol Rev. 2010 Jul; 90(3): 1103-63).
[02] Флуоресцентные белки способны к флуоресценции при облучением светом подходящей длины волны. Флуоресцентные свойства этих белков обусловлены взаимодействием двух или более аминокислотных остатков, формирующих хромофор, а не флуоресценцией какого-либо одного аминокислотного остатка.
[03] GFP гидромедузы Aequorea aequorea (синоним A. victoria) был описан Johnson et al. в J Cell Comp Physiol. (1962), 60:85-104, как часть биолюминесцентной системы медузы, где GFP играет роль вторичного эммитера, преобразовывающего синий свет от фотобелка экворина в зеленый свет. кДНК, кодирующая A. victoria GFP была клонирована Prasher et al. (Gene (1992), 111(2):229-33). Оказалось, что этот ген может быть гетерологично экспрессирован в практически любом организме благодаря уникальной способности GFP автокаталитически образовывать хромофор (Chalfie et al., Science 263 (1994), 802-805). Эти сведения открыли широкие перспективы для использования GFP в клеточной биологи, в качестве генетически кодируемой флуоресцирующей метки.
[04] GFP был использован в широком спектре приложений, включая исследование экспрессии генов и локализацию белков (Chalfie et al., Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. (1994), 91: 12501-12504), как инструмент для визуализации внутриклеточного распределения органелл (Rizzuto et al., Curr. Biology (1995), 5: 635-642), для визуализации транспорта белков по секреторному пути (Kaether and Gerdes, FEBS Letters (1995), 369: 267-271).
[05] Были проведены многочисленные исследования для улучшения свойств avGFP (Aequorea victoria GFP) и для получения вариантов GFP, пригодных и оптимизированных для различных исследовательских целей. Была проведена оптимизация генетического кода avGFP (codon usage) для повышения уровня экспрессии в клетках млекопитающих ("гуманизированный" GFP, Haas, et al., Current Biology (1996), 6: 315-324; Yang, et al., Nucleic Acids Research (1996), 24: 4592-4593). Были получены различные мутанты GFP, в том числе "усиленный зеленый флуоресцентный белок" (EGFP), имеющий две аминокислотные замены: F64L и S65T (Heim et al., Nature 373 (1995), 663-664). Другие мутанты являются синим, голубым и желто-зеленым спектральными вариантами avGFP и содержат замены аминокислотных остатков, формирующих хромофор, и\или остатков, формирующих окружение хромофора.
[06] В 1999 г. гомологи GFP были клонированы из небиолюминесцентных видов Anthozoa (Matz et al., Nature Biotechnol. (1999), 17: 969-973). Это открытие продемонстрировало, что эти белки не являются обязательно компонентом биолюминесцентной системы. GFP-подобные белки из Anthozoa обладали большим спектральным разнообразием и включали циановые, зеленые, желтые, красные флуоресцентные белки и фиолетово-синие нефлуоресцентные хромопротеины (CPs) (Matz et al., Bioessays (2002), 24(10):953-959). В дальнейшем кДНК GFP-подобных белков были клонированы из ряда гидроидных медуз и из копепод (Shagin et al., Mol Biol Evol. (2004), 21(5):841-850). Сегодня семейство GFP-подобных белков включает сотни флуоресцентных и окрашенных гомологов GFP. Сходство этих белков с GFP варьирует от 80-90% до менее чем 25% идентичности аминокислотной последовательности.
[07] Были получены кристаллические структура avGFP дикого типа, GFP S65T мутанта и ряда гомологов GFP (Ormo et al. Science (1996) 273: 1392-1395; Wall et al. Nat Struct Biol (2000), 7: 1133-1138; Yarbrough et al. Proc Natl Acad Sci U S A (2001) 98: 462-467; Prescott et al. Structure (Camb) (2003), 11: 275-284; Petersen et al. J Biol Chem (2003), 278: 44626-44631; Wilmann et al. J Biol Chem (2005), 280: 2401-2404; Remington et al. Biochemistry (2005), 44, 202-212; Quillin et al. Biochemistry (2005), 44: 5774-5787). Было постулировано, что все члены семейства обладают общей 3D структурой (GFP-подобным доменом), представляющей собой так называемый "бочонок" из 11 бета-слоев, образующих компактную встречно-параллельную структуру, внутри которой располагается альфа-спираль, содержащая хромофор. Хромофор формируется внутри GFP-подобного домена путем окислительной циклизации трех консервативных аминокислотных остатков в центральном регионе альфа-спирали (Cody et al., Biochemistry (1993) 32, 1212-1218). Положения аминокислотных остатков, формирующих хромофор, соответствует Ser65-Tyr66-Gly67 региону avGFP. Эти аминокислотные остатки легко могут быть идентифицированы у любого GFP-подобного белка путем выравнивания его последовательности с последовательностью avGFP.
[08] Флуоресцентные белки представляют собой уникальное семейство структурно родственных белков, которые способны формировать хромофор автокаталитически без привлечения внешних субстратов или кофакторов. Под действием индуцирующего света, хромофор производит флуоресценцию, легко детектируемую с помощью современного лабораторного оборудования (спектрофлуориметр, флуоресцентный микроскоп, флуоресцентно-активируемый клеточный сортер, планшетный флуориметр).
[09] Процесс автокаталитического формирования хромофора белков с различными спектральными свойствами подробно описан в ряде статей и включает несколько химических реакций (Heim et al. Proc Natl Acad Sci USA. 1994; 91:12501-12504; Ormo et al. Science. 1996;273:1392-1395; Yang et al. Nat Biotechnol. 1996; 14:1246-1251; Brejc et al. J. Proc Natl Acad Sci USA. 1997; 94: 2306-2311; Palm et al. Nat Struct Biol. 1997;4:361-365; Gurskaya et al., BMC Biochem. 2001; 2:6; Gross et al. Proc Natl Acad Sci USA. 2000; 97:11990-11995; Wall et al. Nat Struct Biol. 2000; 7:1133-1138; Yarbrough et al., J. Proc Natl Acad Sci USA. 2001; 98:462-467; Pakhomov, A.A. and Martynov, V. I. Chem. Biol. 2008, 15, 755- 764; Quillinet al. (2005) Biochemistry 44, 5774-5787; Yampolsky et al. (2005) Biochemistry 44, 5788-5793; Shu et al. (2006) Biochemistry 45, 9639-9647; Kikuchi et al. (2008) Biochemistry 47, 11573-11580; Yampolsky et al., Biochemistry, 2009, 48 (33). pp 8077-8082).
[10] GFP-подобные белки широко используют для создания генетически-кодируемых биосенсоров. Исследование внутриклеточных процессов с помощью таких генетически кодируемых биосенсоров становятся все более популярным, так как только такие сенсоры могут дать информацию об изменении исследуемого параметра непосредственно в живой системе. Такие биосенсоры востребованы как в фундаментальных исследованиях сигнальных путей организма, так и при тестировании токсических и лекарственных препаратов на модельных клеточных линиях или организмах. В сравнении с химическими и физическими методами регистрации биологически активных субстанций биосенсорами, требующими экзогенно добавляемых красителей, субстратов или кофакторов, генетически кодируемые нанобиосенсоры относятся к классу безреагентных и многоразовых сенсоров. Использование флуоресцентных белков в качестве передатчиков информации стало наиболее эффективным подходом к разработке генетически-кодируемых сенсоров.
[11] Биосенсоры на основе флуоресцентных белков представляют собой химерные белки, в состав которых входит сенсорный домен - белковый домен, чувствительный к изменению определенного параметра клетки, например, изменению концентрации какого-либо иона или молекулы (ионов кальция, перекиси водорода, ионов водорода и т.д.). В качестве сигнальной части биосенсора используют GFP-подобные белки или их варианты, подвергнутые круговой пермутации (Suslova and Chudakov, Trends Biotechnol. 23 (12) (2005), 605-13; Griesbeck, Curr Opin Neurobiol., 2004, v.14(5), pp.636-641; Bunt and Wouters, Int Rev Cytol., 2004, v.237, pp.205-277).
[12] Создание пермутированных GFP-подобных белков необходимо для увеличения подвижности хромофорного окружения и, следовательно, для большей лабильности спектральных свойств белка. Круговая пермутация флуоресцентных белков описана Topell S. и Glockshuber R. (Methods in Molecular Biology. 183, 31-48; 2002). Например, для круговой пермутации avGFP в его первичную структуру вносится разрыв в область между 144 и 149 аминокислотами, нативные N- и С-концы совмещаются при помощи полипептидного линкера. Новые N- и С-концы находятся в непосредственной близости от хромофора и могут влиять на его микроокружение. Круговая пермутация производится на уровне нуклеиновой кислоты путем оперативного сшивания 3'- и 5'-концов нуклеотидной последовательности, кодирующей флуоресцентный белок, и внесения разрыва в последовательность между кодонами, кодирующими новые N и С-концевые аминокислоты. Методы для получения таких конструкций хорошо известны специалистам в данной области.
[13] В результате круговой пермутации кпФБ приобретает способность реагировать на конформационные перестройки в области новых N и С-концов изменением спектра флуоресценции (сенсоры с использованием обычных флуоресцентных белков оказались малочувствительными).
[14] Эффективность биосенсоров на основе кпФБ, полученных из avGFP была продемонстрирована на примере сенсора на ионы кальция (Nagai et al, Ргос Natl Acad Sci USA. 98(6) (2001), 197-202). кпФБ был так же использован для изготовления сенсора на пероксид водорода HyPer (Belousov et al., Nature Method.4, 281-286; 2006).
[15] HyPer представляет собой химерный белок, состоящий из регуляторного домена белка OxyR E.coli, реагирующего с пероксидом водорода и интегрированного в пептидную цепь OxyR пермутированного желтого флуоресцентного белка cpYFP (Рис.1). HyPer представляет собой конструкцию, в которой cpYFP соединен с двумя фрагментами чувствительного к Н2О2 домена OxyR посредством коротких пептидных линкеров. Нуклеотидные последовательности, кодирующие фрагменты белка OxyR и cpYFP, оперативно сшиты между собой с использованием линкерных последовательностей. Линкерные последовательности - нуклеотидные последовательности, кодирующие одну или несколько аминокислот, используются для повышения подвижности частей химерного белка относительно друг друга и способствуют его лучшему фолдированию (формированию правильной 3D-структуры) (Belousov et al. (2006), Nature Methods; 3(4): 281-286).
[16] Транскрипционный фактор Ε. coli OxyR активирует экспрессию ряда генов в ответ на увеличение концентрации Н2О2. OxyR состоит из двух доменов, различающихся функционально. N-концевой домен (первые 80 аминокислот) образует ДНК-связывающий участок, в то время как С-концевой домен (81-305 аминокислот) выполняет регуляторную функцию и способствует олигомеризации белка (Choi et al., Cell. 105, 103-113; 2001). В присутствии H2O2 происходит образование дисульфидной связи между цистеиновыми остатками Cys-199 и Cys-208 OxyR белка, что приводит к конформационным изменениям всего регуляторного домена OxyR (Belousov et al., Nature Method.4, 281-286; 2006).
[17] HyPer позволяет анализировать изменение концентрации перекиси водорода внутри живых клеток. Перекись водорода (Н2О2) - важная сигнальная молекула, ответственная за включение ряда внутриклеточных каскадов (Yoshizumi et al, J Biol Chem. 2000, V.275(16), pp.11706-11712; Abe et al, J Biol Chem. 1996, V.271(28), pp.16586-16590; Schrecket al, EMBO J. 1991, V.10(8), pp.2247-2258; Meyer et al, EMBO J. 1993, V.12(5), pp.2005-2015). Многие внешние стимулы вызывают внутриклеточную продукцию Н2О2, которая в свою очередь приводит к активации белковых каскадов. При появлении перекиси водорода в окружающей HyPer среде, происходит окисление домена OxyR и изменение его конформации, которое в свою очередь вызывает изменение спектральных характеристик флуоресцентного белка. Эти изменения могут быть зарегистрированы с помощью визуального скрининга, спектрофотометрии, спектрофлуориметрии, флуоресцентной микроскопии, с помощью FACS или другим общепринятым способом для регистрации спектральных характеристик флуоресценции. Через некоторое время происходит восстановление биосенсора за счет работы клеточных систем, восстанавливающих дисульфидные связи в домене OxyR. Восстановление OxyR in vitro глуторедоксином-1 и тиоредоксином было показано Aslund et al. (Biochemistry. 96, 6161-6165; 1999).
[18] Были разработаны улучшенные мутантные варианты HyPer с увеличенным динамическим диапазоном (Markvicheva et al., Bioorg Med Chem. 2011; 19(3):1079-84) и измененным временем полужизни (Bilan et al., ACS Chem Biol. 2013, 15;8(3):535-42).
[19] Все разработанные варианты HyPer имеют в своей основе cpYFP и имеют одинаковые максимумы возбуждения и эмиссии флуоресценции. Сходными спектральными характеристиками обладает и большинство биосенсоров на основе флуоресцентных белков, что делает невозможным их одновременное использование для мониторинга сразу нескольких биологических процессов внутри клетки. Таким образом, создание биосенсоров, имеющих иные спектральные характеристики, крайне востребовано и позволит осуществлять одновременный анализ нескольких клеточных параметров непосредственно в живой клетке.
[20] Наибольший интерес представляет создание биосенсоров с эмиссией в красной области спектра. Такие биосенсоры могут быть использованы в системах in vivo, благодаря лучшему прохождению красной флуоресценции через ткани животных. Поглощение и автофлуоресценция таких биомолекул, как меланины, кератин, гемоглобин в области 450-500 нм затрудняют возбуждение и детекцию флуоресценции биосенсоров на основе желтых и зеленых флуоресцентных белков, YFP и GFP. Красные флуоресцентные белки поглощают свет в области 550-580 нм и флуоресцируют в области длин волн 600-620 нм, таким образом, их спектральные пики находятся в так называемом «спектральном окне» поглощения живых образцов, поэтому красные белки возбуждаются светом относительно низкой интенсивности, который хорошо проникает в толстые слои ткани, и позволяют детектировать флуоресценцию низкой интенсивности.
[21] В то время как потребность в сенсорах на основе пермутированных красных флуоресцентных белков велика, такие сенсоры появились лишь недавно. Это связано, в первую очередь, с трудностями в получении круговых пермутантов красных флуоресцентных белков. До недавнего времени таких белков было мало и возможность их использования в сенсорах обсуждалась лишь теоретически. Более того, встраивание красных пермутированных белков в другие белковые домены зачастую не приводило к получению функционального сенсора (Li et al., Photochem Photobiol 2008, 84, 111-119; Akerboom et al., Front Mol Neurosci. 2013;6:2). В настоящий момент разнообразие красных биосенсоров на основе пермутированных флуоресцентных белков ограничено единичными вариантами сенсоров для мониторинга изменений концентрации ионов кальция (Zhao et al, Science. 2011; 333(6051): 1888-1891; Akerboom et al., Front Mol Neurosci. 2013;6:2) и невозможно предсказать, сохранит ли красный флуоресцентный белок способность к флуоресценции после встраивания в сенсорный белковый домен OxyR и будут ли конформационные изменения сенсорного домена эффективно передаваться на микроокружение хромофора красного пермутированного белка, вызывая изменение спектральных свойств биосенсора.
[22] 3. Раскрытие изобретения
[23] Настоящее изобретение обеспечивает молекулы нуклеиновых кислот, кодирующие флуоресцентный белок, проявляющий свойства биосенсора для детекции пероксида водорода и обладающий эмиссией в красной области спектра (HyPer-Red).
[24] В некоторых воплощениях, нуклеиновая кислота настоящего изобретения кодирует флуоресцентный химерный белок, состоящий из регуляторного домена белка OxyR E.coli, реагирующего с пероксидом водорода и интегрированного в пептидную цепь OxyR пермутированного красного флуоресцентного белка mApple (cp-mApple). cp-mApple оперативно связан с двумя фрагментами чувствительного к Н2О2 домена OxyR посредством коротких пептидных линкеров 1 и 2 (Рис.1).
[25] В некоторых воплощениях, нуклеиновая кислота настоящего изобретения кодирует флуоресцентный биосенсор HyPer-Red, аминокислотная последовательность которого показана в SEQ ID NO:2.
[26] В некоторых воплощениях, нуклеиновая кислота настоящего изобретения имеет нуклеотидную последовательность, показанную в SEQ ID NO:01.
[27] В некоторых воплощениях, нуклеиновая кислота настоящего изобретения кодирует флуоресцентный белок-биосенсор для детекции пероксида водорода, слитый с сигналом внутриклеточной локализации. Молекулы нуклеиновых кислот, которые отличаются от представленных нуклеотидных последовательностей вследствие вырожденности генетического кода, также входят в рамки настоящего изобретения.
[28] В других воплощениях также обеспечиваются векторы, включающие нуклеиновую кислоту настоящего изобретения. Кроме того, настоящее изобретение обеспечивает кассеты экспрессии, включающие нуклеиновую кислоту настоящего изобретения, и регуляторные элементы, необходимые для экспрессии нуклеиновой кислоты в выбранной клетке-хозяине. Кроме того, также обеспечиваются клетки, стабильные клеточные линии, трансгенные животные и трансгенные растения, включающие нуклеиновые кислоты, векторы или экспрессионные кассеты настоящего изобретения. В других воплощениях обеспечиваются функциональные флуоресцентные биосенсоры настоящего изобретения, которые кодируются нуклеиновыми кислотами указанными выше.
[29] Краткое описание рисунков
[30] Рисунок 1 иллюстрирует принципиальную схему строения биосенсора для детекции пероксида водорода.
[31] Рисунок 2 иллюстрирует динамику изменения сигнала биосенсора HyPerRed после добавления экзогенного пероксида водорода в бактериальной суспензии.
[32] Рисунок 3 показывает графики спектров возбуждения и эмиссии флуоресценции HyPerRed.
[33] Рисунок 4 показывает уровень сигнала HyPerRed в клетках HeLa Kyoto на добавление различных концентраций экзогенного пероксида водорода.
[34] Рисунок 5 показывает график изменения сигнала HyPerRed, HyPerRedC 199S и HyPer в клетках HeLa Kyoto в ответ на добавление EGF к клеточной среде в концентрации 100 нг/мл.
[35] Рисунок 6 показывает изменение флуоресценции HyPerRed, Blue-GECO и локализации EGFR-YFP в индивидуальной клетке HeLa Kyoto в ответ на добавление EGF к клеточной среде в концентрации 100 нг/мл. На верхней панели видно перераспределение белка слияния EGFR-YFP, образование эндосом на плазматической мембране клетки (1-2 мин) и их перераспределение в цитоплазме (8-15 мин). На средней панели видно как короткие выбросы кальция в цитоплазме клеток вызывают резкие скачки интенсивности флуоресценции Blue-GECO (2, 15 мин). На нижней панели видно постепенное увеличение интенсивности HyPerRed в ответ продукцию пероксида водорода. Представлены данные, обработанные в программе Image J, цвета соответствуют уровню флуоресценции клеток в соответствии с приведенными шкалами.
[36] Рисунок 7 показывает график изменения флуоресценции HyPerRed, Blue-GECO и локализации EGFR-YFP в индивидуальной клетке HeLa Kyoto в ответ на добавление EGF к клеточной среде в концентрации 100 нг/мл. Для EGFR-YFP показано отношение интенсивности флуоресценции YFP в цитоплазме клетки к интенсивности флуоресценции YFP на плазматической мембране клетки, для HyPerRed, Blue-GECO - изменение интенсивности флуоресценции указанных сенсоров в цитоплазме клетки.
[37] Осуществление изобретения
[38] Для более полного раскрытия вышеперечисленных характеристик настоящего изобретения ниже предлагается детальное описание изобретения, кратко сформулированного выше, в виде ссылок на воплощения, некоторые из которых проиллюстрированы дополнительными фигурами. При этом следует отметить, что прилагаемые фигуры иллюстрируют лишь типичные воплощения настоящего изобретения и, следовательно, не должны быть восприняты в качестве ограничения объема изобретения, которое может допускать другие в равной степени эффективные воплощения.
[39] Как указано выше, настоящее изобретение направлено на молекулы нуклеиновых кислот, которые кодируют флуоресцентный биосенсор для детекции пероксида водорода, представляющий собой химерный белок, состоящий из регуляторного домена белка OxyR E.coli, реагирующего с пероксидом водорода и интегрированного в пептидную цепь OxyR пермутированного красного флуоресцентного белка mApple (cp-mApple). cp-mApple оперативно связан с двумя фрагментами чувствительного к Н2О2 домена OxyR посредством коротких пептидных линкеров 1 и 2.
[40] Нуклеиновые кислоты настоящего изобретения получены с помощью рекомбинантных технологий. В предпочтительных воплощениях, нуклеиновые кислоты настоящего изобретения кодируют белок, имеющий аминокислотную последовательность, показанную в SEQ ID NO:2. В некоторых воплощениях, нуклеиновые кислоты, кодируют белок, имеющий аминокислотную последовательность, показанную в SEQ ID NO:2, слитый с сигналом определенной внутриклеточной локализации. Также обеспечиваются векторы и кассеты экспрессии, включающие нуклеиновую кислоту настоящего изобретения. Кроме того, обеспечиваются клетки, стабильные клеточные линии, трансгенные животные и трансгенные растения, включающие нуклеиновые кислоты, векторы или экспрессионные кассеты настоящего изобретения.
[41] Указанные нуклеиновые кислоты применяются во многих различных приложениях и методах для мониторинга изменений концентрации пероксида водорода внутри живых клеток и выявления клеток, в которых произошла активация продукции переоксида водорода. Наконец, обеспечиваются выделенные белки, представляющие собой биосенсоры, кодируемые нуклеиновыми кислотами настоящего изобретения.
[42] Определения
[43] Различные термины, относящиеся к биологическим молекулам настоящего изобретения, используются выше и также в описании и в формуле изобретения.
[44] Как здесь используется, термин «флуоресцентный белок» означает белок, относящийся к семейству GFP-подобных белков, который обладает способностью к флуоресценции; например, он может проявлять низкую, среднюю или интенсивную флуоресценцию при облучении светом с подходящей для возбуждения длиной волны. Флуоресцентное свойство флуоресцентного белка представляет собой такое свойство, которое является результатом работы хромофора, образующегося путем автокаталитической циклизации трех или более аминокислотных остатков в полипептидной цепи. Как таковые, флуоресцентные белки настоящего изобретения не включают белки, которые обладают флуоресценцией за счет отдельных флуоресцирующих остатков, таких как триптофан, тирозин и фенилаланин. Термин «флуоресцентный белок» относится так же к флуоресцентным белкам GFP-семейства, подвергнутым круговой пермутации.
[45] Как здесь используется, термин "avGFP" относится к зеленому флуоресцентному белку из медузы Aequorea victoria, включая варианты avGFP, известные из уровня техники, сконструированные для обеспечения большей интенсивности флуоресценции или флуоресценции в других цветовых областях. Последовательность дикого типа avGFP была раскрыта в Prasher et al. (1992, Gene 111: 229-33).
[46] Как здесь используется, термины "флуоресцентный белок, подвергнутый круговой пермутации", «пермутированный флуоресцентный белок» или "кпФБ" относится к белку, полученному из флуоресцентного белка (например из avGFP) с помощью генно-инженерной модификации нуклеиновой кислоты, в результате которой С- и N-концы исходного флуоресцентного белка оказываются оперативно слиты, а новые С- и N- концы формируются вблизи хромофора. Упоминание белок, пермутированного по позициям N1-N2, где N1 и N2 - номера аминокислотных остатков в полипептидной цепи, означает, что N1 - номер аминокислотного остатка в исходном белке, который образовал новый С-конец кпФБ, а N2 - номер аминокислотного остатка в исходном белке, который образовал новый N- конец.
[47] Круговая пермутация, как правило, не влияет на формирование «бочонка» GFP-подобного домена и формирование активного (способного к флуоресценции) хромофора. Круговая пермутация приводит к тому, что возрастает способность кпФБ менять спектральные характеристики при конформационных изменениях белковых доменов или полипептидов, оперативно слитых с его С- и N-концами.
[48] Термин "гуманизированный" относится к изменению нуклеотидной последовательности флуоресцентного белка, сделанной для оптимизации генетического кода кодонов для экспрессии в клетках млекопитающих (Yang et al., 1996, Nucleic Acids Research 24:4592-4593).
[49] Как здесь используется, термин "выделенный" означает молекулу или клетку, которые находятся в среде, отличной от среды, в которой молекула или клетка находятся в естественных условиях.
[50] Как здесь используется, термин "мутант" или "производное" относятся к белку, раскрытому в настоящем изобретении, в котором одна или более аминокислот добавлены и/или замещены и/или удалены (делетированы) и/или вставлены (инсертированы) в N-конец и/или С-конец, и/или в пределах нативных аминокислотных последовательностей белков настоящего изобретения. Как здесь используется, термин "мутант" относится к молекуле нуклеиновой кислоты, которая кодирует мутантный белок. Кроме того, термин "мутант" здесь относится к любому варианту, который короче или длиннее белка или нуклеиновой кислоты.
[51] Как здесь используется, "гомология" - это термин, использующийся для описания взаимосвязи последовательностей нуклеотидов или аминокислот с другими последовательностями нуклеотидов или аминокислот, которая определена степенью идентичности и/или сходства между указанными сравниваемыми последовательностями.
[52] Как здесь используется, аминокислотная или нуклеотидная последовательности "по существу сходны" или "по существу такие же, как референсная последовательность, если аминокислотная или нуклеотидная последовательности имеют по крайней мере 85% идентичности с указанной последовательностью внутри выбранного для сравнения региона. Таким образом, по существу сходные последовательности включают те, которые имеют, например, по крайней мере, 85% идентичности, по крайней мере, 90% идентичности, по крайней мере, 95% идентичности или по крайней мере, 96%, 97%, 98% или 99% идентичности. Две последовательности, которые идентичны одна другой, также по существу сходны.
[53] Процент идентичности последовательностей определяется на основании референсной последовательности. Алгоритмы для анализа последовательности известны в данной области, такие как BLAST, описанный в Altschul et al., J. Mol. Biol., 215, pp.403-10 (1990). Для целей настоящего изобретения сравнение нуклеотидных и аминокислотных последовательностей, производимое с помощью пакета программ Blast, предоставляемого National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/blast) с использованием содержащего разрывы выравнивания со стандартными параметрами, может быть использовано для определения уровня идентичности и сходства между нуклеотидными последовательностями и аминокислотными последовательностями.
[54] Как здесь используется, термин "подобные белки" или "по существу сходные белки" относится к белкам, которые имеют аминокислотные последовательности, идентичные по крайней мере на 85%, как правило идентичные на 90% или более, чаще всего идентичные по крайней мере на 95% или более (например на 96% и более, 97% и более, 98%) и более, 99% и более, 100%). Длина гомологичных аминокислотных последовательностей у «подобных белков» при этом может составлять, по крайней мере, 100 аминокислотных остатков, чаще, по крайней мере, 200 аминокислотных остатков, или 300 аминокислотных остатков.
[55] В некоторых воплощениях, термин "подобные белки" или "по существу сходные белки" относится к белкам, которые имеют аминокислотные последовательности целого белка, идентичные по крайней мере на 85%, как правило идентичные на 90% или более, чаще всего идентичные по крайней мере на 95% или более (например на 96% и более, 97% и более, 98% и более, 99% и более, 100%).
[56] Как здесь используется, термин "функциональный" означает, что нуклеотидная или аминокислотная последовательность может функционировать для указанного испытания или задачи. Термин "функциональный", используемый для описания биосенсора для детекции пероксида водорода настоящего изобретения, означает, что он меняет спектральные характеристики при увеличении концентрации пероксида водорода в среде.
[57] Как здесь используется, термин «среда» по отношению к биосенсору для детекции пероксида водорода означает любую среду, в которой этот биосенсор может функционировать. Для выделенного белка это может быть любой буферный раствор, в котором этот сенсор сохраняет функциональность. Для белка, экспрессированного в клетке, это цитоплазма или внутриклеточный компартмент, в котором биосенсор локализован.
[58] Как здесь используется, "биохимические свойства" относятся к белковому фолдингу (сворачиванию) и скорости созревания, полупериоду окисления, полупериоду восстановления после реакции с пероксидом водорода, времени полужизни, способности к агрегации, способности к олигомеризации, рН и температурной стабильности, и другим подобным свойствам.
[59] Как здесь используется, "флуоресцентные свойства" или "спектральные свойства" относятся к коэффициенту молярной экстинкции при подходящей длине волны, к квантовому выходу флуоресцентции, форме спектра возбуждения флуоресценции или спектра эмиссии, длине волны, соответствующей максимуму возбуждения флуоресценции, и длине волны, соответствующей максимуму испускания, отношению амплитуды возбуждения флуоресценции при двух разных длинах волн, отношению амплитуды испускания при двух разных длинах волн, времени жизни возбужденного состояния, и анизотропии оптических свойств. Измеряемая разница может быть определена как количество любого количественного флуоресцентного свойства, например, интенсивность флуоресцентции при определенной длине волны, или интегральная флуоресценция на всем спектре испускания.
[60] Ссылка на нуклеотидную последовательность, "кодирующую" полипептид, означает, что с нуклеотидной последовательности в ходе трансляции и транскрипции мРНК продуцируется этот полипептид. При этом может быть указана как кодирующая цепь, идентичная мРНК и обычно используемая в списке последовательностей, так и комплементарная цепь, которая используется как матрица при транскрипции. Как очевидно для любого специалиста в данной области техники, термин так же включает любые вырожденные нуклеотидные последовательности, кодирующие одинаковую аминокислотную последовательность. Нуклеотидные последовательности, кодирующие полипептид, включают последовательности, содержащие интроны.
[61] Термин «оперативно связанный», «оперативно слитый» или ему подобный при описании структуры биосенсора или химерных белков на его основе относится к полипептидным последовательностям, которые находятся в физической и функциональной связи одна с другой. В наиболее предпочтительных воплощениях, основные функции полипептидных компонентов химерной молекулы не изменены по сравнению с функциональными свойствами выделенных полипептидных компонентов. Например, OxyR домен, входящий в состав биосенсора настоящего изобретения, сохраняет способность связывать пероксид водорода, а кпБФ - способность к флуоресценции. В случае, когда биосенсор настоящего изобретения сшит с представляющим интерес сигналом внутриклеточной локализации, химерный белок сохраняет способность реагировать на появление пероксида водорода, но локализуется в определенном клеточном компартменте. Как очевидно для любого специалиста в данной области техники, нуклеотидные последовательности, кодирующие химерный белок, включающий "оперативно связанные" компоненты (белки, полипептиды, линкерные последовательности, белковые домены и т.д.), состоят из фрагментов, кодирующих указанные компоненты, где эти фрагменты ковалентно связаны таким образом, что в ходе трансляции и транскрипции нуклеотидной последовательности продуцируется полноразмерный химерный белок. Иными словами, фрагменты соединены таким образом, что в местах их соединения отсутствуют 'сбойки' рамки считывания и стоп-кодоны.
[62] Как здесь используется, термины «перекись водорода» и «пероксид водорода» относятся к молекуле, имеющей формулу Н2О2.
[63] Как здесь используется, термин «сигнал биосенсора» означает детектируемое изменение спектральной характеристики биосенсора в ответ на пероксид водорода.
[64] Как здесь используется, термин «чувствительностью биосенсора к лиганду» означает диапазон концентраций лиганда, которые вызывают детектируемый ответ биосенсора.
[65] Как здесь используется, термин «динамический диапазон» означает отношение максимального уровня сигнала биосенсора (в полностью окисленном состоянии) к уровню исходного сигнала (в полностью восстановленном состоянии).
[66] Молекулы нуклеиновых кислот
[67] Настоящее изобретение обеспечивает молекулы нуклеиновых кислот, кодирующие флуоресцентный биосенсор для детекции пероксида водорода, имеющий аминокислотную последовательность SEQ ID NO:2.
[68] Как здесь используется, молекула нуклеиновой кислоты - это молекула ДНК, такая как геномная ДНК или кДНК молекула, или молекула РНК, такая как молекула мРНК. Как здесь используется, термин "кДНК" относится к нуклеиновым кислотам, которые обладают размещением элементов последовательности, найденным в нативных зрелых видах мРНК, где элементы последовательности - это экзоны и 5' и 3' некодирующие области.
[69] Структура биосенсора схематически изображена на рисунке 1. Методы получения таких слитых белков хорошо известны в данной области. Например, части нуклеиновой кислоты, кодирующие различные элементы, могут быть встроены в полилинкер вектора, таким образом, что эти части окажутся оперативно связаны и между ними не будет стоп-кодонов в рамке считывания и не будет сбоек рамки считывания. Альтернативно, желательная нуклеотидная последовательность может быть собрана из фрагментов с помощью ДНК-лигазы или ПЦР с праймерами, содержащими части, комплементарные концевым последовательностям соединяемых фрагментов.
[70] Молекула нуклеиновой кислоты, кодирующая флуоресцентный биосенсор, может быть синтезирована из подходящих нуклеозидтрифосфатов. Например, доступность информации о последовательности аминокислот или информации о нуклеотидной последовательности дает возможность изготовить выделенные молекулы нуклеиновых кислот настоящего изобретении с помощью олигонуклеотидного синтеза. В случае информации о последовательности аминокислот может быть синтезировано несколько нуклеиновых кислот, отличающихся друг от друга вследствие вырожденности генетического кода. Методы выбора вариантов кодонов для требуемого хозяина хорошо известны в данной области. Синтетические олигонуклеотиды могут быть приготовлены с помощью фосфорамидитного метода, и полученные конструкты могут быть очищены с помощью методов хорошо известных в данной области, таких как высокоэффективная жидкостная хроматография (ВЭЖХ) или других методов, как описано, например, в Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY, и по инструкции, описанной в, например, United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research. Длинные двухцепочечные молекулы ДНК настоящего изобретения могут быть синтезированы за следующие стадии: несколько меньших фрагментов с необходимой комплементарностью, которые содержат подходящие концы, способные к когезии с соседним фрагментом, могут быть. Соседние фрагменты могут быть сшиты с помощью ДНК-лигазы или метода, основанного на ПЦР. Нуклеиновая кислота, кодирующая биосенсор или его фрагмент, может быть выделена любым из многих известных методов.
[71] Кроме того, также обеспечиваются вырожденные варианты нуклеиновых кислот, которые кодируют биосенсор настоящего изобретения. Вырожденные варианты нуклеиновых кислот включают замены кодонов нуклеиновой кислоты на другие кодоны, кодирующие те же самые аминокислоты. В частности вырожденные варианты нуклеиновых кислот создаются, чтобы увеличить экспрессию в клетке-хозяине. В этом воплощении, кодоны нуклеиновой кислоты, которые не являются предпочтительными или являются менее предпочтительными в генах клетки-хозяина, заменены кодонами, которые обильно представлены в кодирующих последовательностях генов в клетке-хозяине, где указанные замененные кодоны кодируют ту же самую аминокислоту.
[72] Особенный интерес представляют гуманизированные версии нуклеиновых кислот настоящего изобретения. Как здесь используется, термин "гуманизированный" относится к заменам, сделанным в последовательности нуклеиновой кислоты для оптимизации кодонов для экспрессии белка в клетках млекопитающих (человека) (Yang et al., Nucleic Acids Research (1996) 24: 4592-4593). См. также Патент США №5795737, который описывает гуманизацию белков, раскрытие которого здесь включено ссылкой.
[73] В некоторых воплощениях, молекула нуклеиновой кислоты настоящего изобретения - это ДНК (или кДНК) молекула, содержащая открытую рамку считывания, которая кодирует биосенсор настоящего изобретения и способна в подходящих условиях (например, физиологические внутриклеточные условия) быть использована для экспрессии белка в клетке-хозяине. Настоящее изобретение также охватывает нуклеиновые кислоты, которые гомологичны, по существу сходны, идентичны или получены из нуклеиновых кислот, кодирующих белки настоящего