Дополнительная система отопления транспортного средства

Иллюстрации

Показать все

Изобретение относится к области тепловых генераторов, а именно к вспомогательным системам отопления. Устройство нагрева включает жидкостной теплогенератор, имеющий гидродинамическую камеру для избирательного нагрева жидкости. Гидродинамическая камера имеет впускное отверстие для подачи жидкости в гидродинамическую камеру и выпускное отверстие для удаления нагретой жидкости из гидродинамической камеры. Входное отверстие соединено с первым контрольным клапаном, а выпускное отверстие соединено со вторым контрольным клапаном. Первый контрольный клапан приспособлен для получения подвода от второго контрольного клапана. Первый контрольный клапан может перекрывать путь жидкости между первым контрольным клапаном и вводным отверстием в ответ на подвод, полученный от второго контрольного клапана. Достигается дополнительный нагрев охлаждающей жидкости для улучшения тепловой эффективности системы отопления пассажирского салона. 3 н. и 25 з.п. ф-лы, 35 ил.

Реферат

СВЯЗАННЫЕ ЗАЯВКИ

Данная заявка пользуется преимуществом заявки №11/620,682 от 7 января 2007 года на получение патента США, ссылкой включенной в данную заявку и составляющей с ней единое целое.

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Данное изобретение в целом относится к области тепловых генераторов, а в частности к вспомогательным жидкостным системам отопления для дополнительного обогрева пассажирских салонов самоходных транспортных средств.

ИСХОДНЫЕ ПРЕДПОСЫЛКИ

Традиционные самоходные транспортные средства типично включают систему отопления для подачи теплого воздуха в пассажирский салон транспортного средства. Система отопления включает систему регулирования, позволяющую оператору транспортного средства регулировать количество и/или температуру воздуха, подаваемого в пассажирский салон таким образом, чтобы достичь желаемой температуры воздуха в его пределах. В качестве источника тепла для подогрева воздуха, подаваемого в пассажирский салон, обычно используется охлаждающая жидкость из системы охлаждения двигателя транспортного средства.

Система отопления обычно включает теплообменник, имеющий жидкостное соединение с системой охлаждения двигателя транспортного средства. Горячая охлаждающая жидкость из системы охлаждения двигателя проходит через теплообменник, где отдает тепло подаваемому через систему отопления потоку холодного воздуха. Тепловая энергия, переданная от горячей охлаждающей жидкости подаваемому холодному воздуху, приводит к повышению его температуры. Нагретый воздух выпускается в пассажирский салон для подогрева внутреннего пространства транспортного средства до желаемой температуры.

Система охлаждения двигателя транспортного средства обеспечивает удобный источник тепла для отопления пассажирского салона транспортного средства. Один недостаток использования жидкости, охлаждающей двигатель, в качестве источника тепла состоит, однако, в том, что обычно имеется значительное запаздывание между первым запуском двигателя и началом подачи системой отопления воздуха предпочитаемой температуры. Это особенно верно, когда транспортное средство применяется в условиях очень холодной окружающей среды или не используется в течение некоторого времени. Причиной запаздывания является то, что в момент первого запуска двигателя охлаждающая жидкость имеет, по существу, ту же температуру, что и воздух, подаваемый через систему отопления в пассажирский салон. По мере того как двигатель продолжает работать, порция тепла, порожденная в качестве побочного продукта сжигания в цилиндрах двигателя смеси топлива и воздуха, передается охлаждающей жидкости, тем самым вызывая повышение ее температуры. Поскольку температура воздуха, выпускаемого из системы отопления, является функцией температуры охлаждающей жидкости, проходящей через теплообменник, система отопления будет производить пропорционально меньше тепла, пока охлаждающая жидкость нагревается, чем тогда, когда охлаждающая жидкость имеет предпочтительную рабочую температуру. Следовательно, может существовать длительный период времени между тем моментом, когда двигатель впервые запущен, и тем, когда система отопления начинает производить воздух приемлемого температурного уровня. Время, необходимое для этого, будет варьироваться в зависимости от различных факторов, включая начальную температуру охлаждающей жидкости и начальную температуру нагреваемого воздуха. Является предпочтительным, чтобы температура охлаждающей жидкости достигала рабочей температуры как можно быстрее.

Другим потенциальным ограничением использования жидкости, охлаждающей двигатель, в качестве источника тепла для системы отопления транспортного средства является то, что при некоторых условиях и режимах работы двигатель может не отдавать достаточно тепла охлаждающей жидкости для того, чтобы поток воздуха из системы отопления транспортного средства достиг желаемой температуры. Это может происходить, например, при эксплуатации транспортного средства с очень эффективным двигателем в условиях малой нагрузки или в условиях, когда температура окружающей среды необычно низка. Оба этих условия ограничивают количество тепла, которое необходимо передавать охлаждающей жидкости от двигателя для поддержания его желаемой рабочей температуры. Это приводит к уменьшению тепловой энергии, которая имеется в распоряжении для нагревания потока воздуха, проходящего через систему отопления транспортного средства.

В соответствии с этим, желательно разработать дополнительную систему отопления, способную время от времени обеспечивать добавочное нагревание охлаждающей жидкости двигателя таким образом, чтобы улучшить тепловую эффективность системы отопления пассажирского салона транспортного средства.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Настоящее изобретение становится более понятным из детального описания и сопровождающих чертежей:

Фиг.1 является схематическим изображением традиционной системы охлаждения двигателя и системы отопления пассажирского салона.

Фиг.2 является схематическим изображением дополнительной системы отопления транспортного средства в соответствии с настоящим изобретением, интегрированной с системой охлаждения двигателя и системой отопления, изображенной на фиг.1.

Фиг.3 является схематическим изображением дополнительной системы отопления, включающей золотниковый клапан для регулирования распределения охлаждающей жидкости в системе.

Фиг.4 представляет вид спереди дополнительной системы отопления, использующей золотниковый клапан.

Фиг.5 представляет вид в плане сверху узла распределения жидкости дополнительной системы отопления.

Фиг.6 представляет вид в плане сзади узла распределения жидкости дополнительной системы отопления.

Фиг.7 представляет вид в плане сверху дополнительной системы отопления без узла распределения жидкости.

Фиг.8 представляет вид узла распределения жидкости в сечении вдоль линии 8-8 фиг.6, показывающий золотниковый клапан, установленный в положение обхода.

Фиг.9 представляет частичный поперечный разрез узла распределения жидкости, показанного на фиг.8, с подробным представлением золотникового клапана.

Фиг.10 представляет вид узла распределения жидкости в сечении вдоль линии 8-8 фиг.6, показывающий золотниковый клапан, установленный в специальное положение.

Фиг.11 представляет частичный поперечный разрез узла распределения жидкости, показанного на фиг.10, с подробным представлением золотникового клапана.

Фиг.12 представляет вид узла распределения жидкости в сечении вдоль линии 8-8 фиг.6, показывающий золотниковый клапан в специальном положении с корректировкой.

Фиг.13 представляет частичный поперечный разрез узла распределения жидкости, показанного на фиг.12, с подробным представлением золотникового клапана.

Фиг.14 является боковой вертикальной проекцией золотникового клапана, размещенного в дополнительной системе отопления, показанного в полностью сжатом положении.

Фиг.15 представляет поперечный разрез золотникового клапана на фиг.14, сделанный вдоль сечения 15-15.

Фиг.16 представляет боковую вертикальную проекцию золотникового клапана узла распределения жидкости, показанного в полностью вытянутом положении.

Фиг.17 представляет поперечное сечение 17-17 клапана на фиг.16.

Фиг.18 представляет вид узла распределения жидкости в поперечном сечении 18-18 фиг.5.

Фиг.19 представляет вид узла распределения жидкости в поперечном сечении 19-19 фиг.5.

Фиг.20 представляет собой схематическое изображение дополнительной системы отопления, включающей узел распределения жидкости с двойным контрольным клапаном для регулирования распределения охлаждающей жидкости в системе.

Фиг.21 представляет вид спереди дополнительной системы отопления, включающей узел распределения жидкости с двойным контрольным клапаном.

Фиг.22 представляет вид сзади дополнительной системы отопления, включающей узел распределения жидкости с двойным контрольным клапаном.

Фиг.23 представляет вид сзади разложенного на детали изображения узла распределения жидкости с двойным контрольным клапаном.

Фиг.24 представляет вид спереди частично разложенного на детали изображения узла распределения жидкости с двойным контрольным клапаном.

Фиг.25 представляет вид сверху в вертикальной проекции дополнительной системы отопления без узла распределения жидкости с двойным контрольным клапаном.

Фиг.26 представляет вид сверху в вертикальной проекции узла распределения жидкости с двойным контрольным клапаном отдельно от дополнительной системы отопления.

Фиг.27 представляет вид узла распределения жидкости с двойным контрольным клапаном в разрезе по сечению 27-27.

Фиг.28 представляет вид узла распределения жидкости с двойным контрольным клапаном в разрезе по сечению 28-28, показывающий контрольный клапан в специальном положении.

Фиг.29 представляет вид узла распределения жидкости с двойным контрольным клапаном в разрезе по сечению 28-28, показывающий контрольный клапан в положении обхода.

Фиг.30 представляет вид узла распределения жидкости с двойным контрольным клапаном в разрезе по сечению 30-30, показывающий контрольный клапан в специальном положении.

Фиг.31 представляет вид узла распределения жидкости с двойным контрольным клапаном в разрезе по сечению 30-30, показывающий контрольный клапан в положении обхода.

Фиг.32 представляет вид разреза предохранительного клапана дополнительной системы отопления.

Фиг.33 представляет вид разреза предохранительного клапана согласно фиг.31, включающего далее калиброванный проход.

Фиг.34 представляет схематическое изображение дополнительной системы отопления, использующей золотниковый клапан и имеющей ввод, соединенный с водяной помпой транспортного средства.

Фиг.35 представляет схематическое изображение дополнительной системы отопления, использующей узел распределения жидкости с двойным контрольным клапаном и имеющей ввод, соединенный с водяной помпой транспортного средства.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ РЕАЛИЗАЦИЙ

Последующее описание предпочтительных реализаций изобретения является по существу только иллюстративным и никоим образом не имеет целью ограничить изобретение, его применимость или использование.

Как показано на фиг.1, традиционная система 40 охлаждения транспортного средства для регулирования рабочей температуры двигателя 42 может включать водяную помпу 44, которая прокачивает охлаждающую жидкость 46 через двигатель 42. Охлаждающая жидкость 46 поглощает тепло, производимое двигателем 42 в качестве побочного продукта сжигания смеси топлива и воздуха в цилиндрах 48 двигателя 42 для производства механической работы, потребной для движения транспортного средства. Двигатель 42 включает вспомогательный привод 50 для обеспечения энергией различных вспомогательных устройств транспортного средства, таких как генератор, компрессор кондиционера и водяная помпа 44. Вспомогательный привод 50 соединен с коленчатым валом 52 двигателя 42. Водяная помпа 44 соединяется со вспомогательным приводом 50 посредством приводного ремня 54, который входит в контакт со шкивом 56 водяной помпы 54. Тепло от двигателя 42 передается охлаждающей жидкости 46 по мере ее циркуляции через каналы, проделанные в рубашке блока цилиндров 58 двигателя. Охлаждающая жидкость 46 выпускается из двигателя 42 через выпускной канал 60 двигателя и, в зависимости от ее температуры, направляется или к водяной помпе 44 через канал подвода 62 водяной помпы, или к радиатору 64 через канал подвода радиатора 66.

Термостат 65 регулирует распределение охлаждающей жидкости 46 между каналом подвода 62 водяной помпы и каналом подвода радиатора 66. Термостат 65 может включать термически активируемый клапан 68, который автоматически устанавливает площадь протока термостата в зависимости от изменения температуры охлаждающей жидкости 46, выходящей из двигателя 42 через выпускной канал 60. Термостат 65 может быть откалиброван так, чтобы начинать открываться при желаемой температуре охлаждающей жидкости. Термостат 65 может закрываться при температуре охлаждающей жидкости ниже откалиброванного значения температуры с тем, чтобы предотвратить проход охлаждающей жидкости 46 к радиатору 64 через канал подвода 66. При температуре, равной или чуть выше откалиброванной, термостат 65 начнет открываться и пропускать часть охлаждающей жидкости 46 через канал 66 подвода радиатора 64. Термостат 65 может полностью открыться в случае, если температура охлаждающей жидкости существенно выше, чем откалиброванное значение температуры, что максимизирует объем жидкости, протекающей через радиатор 64, в особых условиях применения транспортного средства.

Охлаждающая жидкость 46, протекающая через канал 66 подвода радиатора, входит в радиатор 64 через впускное отверстие 70. Охлаждающая жидкость 46 проходит через радиатор 64, где часть ее теплоты может передаваться потоку 72 окружающего воздуха, протекающего через радиатор снаружи. Охлаждающая жидкость 46 выходит из радиатора 64 через выпускное отверстие 74, имея более низкую температуру, чем при входе в него. По выходе из радиатора 64 охлаждающая жидкость 46 направляется через выпускной канал 76 радиатора к водяной помпе 44.

Система охлаждения двигателя может включать расширительный резервуар 78, имеющий жидкостное соединение с водяной помпой 44 через канал 77 подвода расширительного резервуара. Расширительный резервуар 78 обеспечивает емкость для перехвата охлаждающей жидкости 46, сбрасываемой из системы охлаждения 40, что может происходить, например, когда охлаждающая жидкость расширяется, нагреваясь после холодного пуска двигателя. Наоборот, часть охлаждающей жидкости 46 может быть взята обратно из расширительного резервуара 78 и возвращена в систему охлаждения 40 через канал подвода расширительного резервуара 77, когда, например, температура охлаждающей жидкости уменьшается после выключения двигателя 42.

Традиционные самоходные транспортные средства в типичных случаях включают систему отопления 80, которая обеспечивает снабжение теплым воздухом 82 для обогрева пассажирского салона 84 транспортного средства. Система отопления 80 включает теплообменник 86 кабины, имеющий жидкостное соединение с системой охлаждения 40 через входной канал 88 обогревателя и выходной канал 90 обогревателя. Входной канал 88 обогревателя может иметь жидкостное соединение с системой охлаждения 40 у термостата 65 или в другом подходящем месте. Часть охлаждающей жидкости 46, выходящая из рубашки блока цилиндров двигателя 42 через выпускное отверстие 60, проходит через входной канал 88 обогревателя к теплообменнику 86. Охлаждающая жидкость 46 может отдавать часть своей теплоты потоку воздуха 82, текущему через теплообменник 86 салона. Поток воздуха 82 может состоять из воздуха, забираемого снаружи транспортного средства, или из пассажирского салона 84, или из смеси того и другого. Поток воздуха 82 выходит из теплообменника, имея температуру, более высокую по сравнению с той, которую он имел при входе. Поток воздуха 82 может быть выпущен в пассажирский салон 84 для обогрева внутреннего пространства транспортного средства. Поток воздуха 82 может также быть направлен над внутренней поверхностью стекол транспортного средства для удаления изморози или конденсата, которые могут на них образовываться. Система отопления 80 может также включать различные управляющие устройства для регулирования температуры и объема воздушного потока 82, подаваемого в пассажирский салон 84.

Как показано на фиг.2, дополнительная система отопления (ДСО) 92 может быть включена путем жидкостного соединения между системой охлаждения 40 и системой отопления 80. ДСО 92 регулирует распределение охлаждающей жидкости 46 между системой охлаждения 40 и системой отопления 80, также обеспечивая, если это необходимо, дополнительный нагрев охлаждающей жидкости 46, подаваемой в теплообменник 86 салона.

ДСО 92 может иметь жидкостное присоединение к системе охлаждения 40 через входной канал 88 обогревателя и выходной канал 90 обогревателя. Входной и выходной каналы 88, 90 обогревателя имеют жидкостное соединение с ДСО 92 через отверстия 94 и 96 соответственно. Охлаждающая жидкость 46 может переноситься из системы охлаждения 40 в ДСО 92 через входной канал 88 обогревателя и возвращаться через выходной канал 90 обогревателя.

ДСО 92 может иметь жидкостное присоединение с салонным теплообменником 86 через входной канал 88а салонного теплообменника, соединенный с отверстием 98 ДСО, и через канал выпуска 90а салонного теплообменника, присоединенного к отверстию 100. Охлаждающая жидкость 46, циркулирующая в пределах ДСО 92, может выходить из системы через отверстие 98 и идти через входной канал обогревателя 88а к салонному теплообменнику 86, где часть теплоты охлаждающей жидкости 46 может передаваться потоку воздуха 82. По выходе из салонного теплообменника 86 охлаждающая жидкость 46 может быть направлена назад в ДСО 92 через выходной канал выпуска обогревателя 90а.

Как показано на фиг.2, ДСО включает жидкостной теплогенератор (ЖТГ) 102 для нагрева охлаждающей жидкости 46, подаваемой теплообменнику салона 86. Один из примеров такого ЖТГ описан в патенте США №5,683,031, озаглавленном "Жидкостной теплогенератор" и выданном Санжеру 4 ноября 1997 г. Патент №5,683,031 включен сюда по ссылке. ДСО 92 может также включать регулирующий клапан 104 для регулирования распределения охлаждающей жидкости 46 в ДСО 92 и контроллер 106 для управления функционированием ЖТГ 102 и регулирующего клапана 104.

ЖТГ 102 включает статор 108 и совмещенный соосно ротор 110, расположенный смежно статору 108. Статор 108 жестко прикреплен к корпусу 112 ДСО. Ротор 110 может быть смонтирован на ведущем валу 114 для согласованного вращения вокруг оси 116. Статор 108 и ротор 110 разграничивают кольцевые проточки 118 и 120 соответственно, которые вместе определяют гидродинамическую камеру 122. Нагрев охлаждающей жидкости 46 происходит внутри гидродинамической камеры 122.

Гидродинамическая камера 122 может иметь жидкостное соединение с системой охлаждения 40 через входной канал 88 обогревателя. Охлаждающая жидкость 46 из системы охлаждения 40 перемещается через канал 124 подвода охладителя, соединенный с входным каналом 88 нагревателя отверстием 94. Канал подвода 128 гидродинамической камеры имеет жидкостное соединение с каналом подвода 124 через жидкостное сочленение 126. Охлаждающая жидкость 46, проходящая через канал подвода 128 гидродинамической камеры, выпускается в полую выемку 132, образованную в задней части ротора 110. Один или более каналов 134 ротора соединяют выемку 132 с гидродинамической камерой 122. Канал ротора 134 простирается через лопасть 136 ротора 110 и имеет на одном конце жидкостное соединение с выемкой 132, а на противоположном конце - с камерой 122.

Охлаждающая жидкость 46, присутствующая в гидродинамической камере 122, перемещается в пределах камеры вдоль тороидального, большей частью, канала, вбирая тепло, когда перемещается между кольцевыми проточками 118 и 120 статора 108 и ротора 110 соответственно. Нагретая охлаждающая жидкость 46 выходит из гидродинамической камеры 122 через один или более выпускных проходов 138, расположенных вдоль задней стенки 139 статора 80 вблизи его внешней окружности. Проход 138 может иметь жидкостное соединение с периферическим кольцеобразным зазором 140, сформированным в корпусе 112. Кольцеобразный зазор 140 может иметь жидкостное соединение с выпускным каналом 142 ЖТГ. Охлаждающая жидкость 46, выходящая из гидродинамической камеры 122 через проход 138 может перемещаться через выпускной канал 142 к выпускному отверстию 98.

Охлаждающая жидкость 46 выходит из ДСО 92 через отверстие 98 и перемещается вдоль впускного канала 88а теплообменника 86 кабины. Тепло охлаждающей жидкости 46 может передаваться воздушному потоку 82, когда охлаждающая жидкость проходит через теплообменник. Теплый воздушный поток может быть направлен к пассажирскому салону 84 для обогрева внутреннего пространства транспортного средства.

Пройдя через теплообменник 86 кабины, охлаждающая жидкость 46 выходит из теплообменника и возвращается в ДСО 92 через выпускной канал 90а теплообменника кабины, который имеет жидкостное соединение с ДСО 92 через отверстие 100. Охлаждающая жидкость 46 проходит через перепускной канал 144 теплообменника кабины, один конец которого имеет жидкостное соединение с отверстием 100, а противоположный - с регулировочным клапаном 104. Перепускной канал 146 системы охлаждения соединяет регулировочный клапан 104 с системой охлаждения 40 посредством отверстия 96, а рециркуляционный канал 148 ЖТГ соединяет регулировочный клапан 104 с ЖТГ 102. Регулировочный клапан 104, в зависимости от потребностей нагрева системы отопления 80, может направлять всю охлаждающую жидкость 46, или ее часть, к рециркуляционному каналу 148, или к перепускному каналу 146 системы охлаждения. Положение регулировочного клапана 104, в котором он направляет, в основном, всю охлаждающую жидкость, полученную из теплообменника 86 кабины, к ЖТГ 102 через рециркуляционный канал 148, приводит к тому, что система отопления 80 и система охлаждения 40 функционируют, в основном, независимо друг от друга.

Охлаждающая жидкость 46, проходящая через рециркуляционный канал 148, может выпускаться в кольцевую пазуху 150 в корпусе 112. Вторая пазуха 151 соединяет пазуху 150 с гидродинамической камерой 122. Охлаждающая жидкость 46 входит в гидродинамическую камеру 122 предпочтительно со стороны внутренней окружности камеры.

ДСО 92 может включать обходной канал 152, один конец которого соединен с каналом 124 подвода жидкости и каналом 128 подвода гидродинамической камеры жидкостным соединением 126, а противоположный конец соединяется с выпускным каналом 142 ЖТГ жидкостным соединением 154. Охлаждающая жидкость 46, проходящая через обходной канал 152, обходит гидродинамическую камеру 122 и вместо этого направляется прямо к теплообменнику 86 кабины, не получая никакого дополнительного тепла. В обходном канале 152 для предотвращения обратного тока жидкости через обходной канал 152 от жидкостного соединения 154 к жидкостному соединению 126 во время работы ЖТГ 102 может быть предусмотрен обратный клапан 156 или другое подобное устройство. Охлаждающая жидкость 46, входящая в выпускной канал 142 ЖТГ из обходного канала 152, перемещается к отверстию 98, через которое она выходит из ДСО 92.

Регулировочный клапан 104 регулирует распределение охлаждающей жидкости 46 между перепускным каналом 146 системы охлаждения, соединенным с выходным каналом 90 нагревателя через отверстие 96, и рециркуляционным каналом 148 ЖТГ, соединенным с ЖТГ 102. Регулировочный клапан 104 функционирует, чтобы на основе некоторых предустановленных параметров выборочно распределять охлаждающую жидкость 46 между перепускным каналом 146 системы охлаждения и рециркуляционным каналом 148 ЖТГ. Это может включать как направление всей охлаждающей жидкости, полученной из перепускного канала 144 теплообменника, либо в перепускной канал 146 системы охлаждения, либо в рециркуляционный канал 148 ЖТГ, так и распределение жидкости порциями между двумя каналами. Регулировочный клапан 104 является предпочтительно регулируемым бесступенчато.

Энергия для вращения ротора 110 может получаться от двигателя 42. Окончание 158 ведущего вала 114 продолжается из корпуса 112 ДСО 92. К окончанию 158 жестко прикрепляется привод 160, который может включать шкив 162, на который надевается вспомогательный приводной ремень 27 двигателя. Вспомогательный приводной ремень 27 входит в зацепление с вспомогательным приводом 50, прикрепленным к коленчатому валу 52 двигателя 42. Приводной ремень 27 может также поставлять энергию, потребную для функционирования водяной помпы 44 и других вспомогательных устройств двигателя, таких как генератор переменного тока и компрессор кондиционера. Вспомогательный приводной ремень 27 передает вращающий момент, порождаемый двигателем 42, коленчатому валу 114, который соединен с ротором 110. Также рассматривается ситуация, когда коленчатый вал 114 может альтернативно приводиться во вращение другими подходящими средствами, такими как электрический мотор.

Привод 160 может включать муфту 164, которая может быть, в качестве примера, не рассматриваемого как ограничение, электромагнитной муфтой. Муфта 164 может избирательно входить в зацепление в ответ на особые требования по нагреву от системы отопления 80. Муфта 164 может отключать ротор 110 от двигателя 42 в случаях, когда никакого дополнительного нагревания охлаждающей жидкости 46 не требуется, что желательно в целях минимизации энергии, отбираемой у двигателя 42, для улучшения эффективности двигателя и способствования максимизации количества энергии, доступного для других целей, таких как движение транспортного средства.

Гидродинамическая камера 122 теплогенератора 102 может вентилироваться в атмосферу через вентиляционный канал 166. Один конец вентиляционного канала 166 может быть соединен с кольцевой пазухой 168 в корпусе 112, а противоположный конец - с выходным вентиляционным отверстием 170, расположенным на внешней поверхности корпуса 112. Вентиляционный канал 172 расширительного резервуара может соединять вентиляционный канал 166 с расширительным резервуаром 78. Является предпочтительным, чтобы охлаждающая жидкость 46 заполняла расширительный резервуар 78 только частично с тем, чтобы обеспечить наличие в нем воздушного зазора 174. Вентиляционный канал 172 расширительного резервуара предпочтительно прикрепляется к расширительному резервуару 78 в месте, смежном с воздушным зазором 174, в целях предотвращения прямой жидкостной связи вентиляционного канала 172 с охлаждающей жидкостью 46, присутствующей в расширительном резервуаре 72. Статор 108 может включать один или более лопастных вентиляционных каналов 176, соединяющих пазуху 168 с гидродинамической камерой 122. Лопастной вентиляционный канал 176 проходит через центр лопасти 177 статора, продолжаясь от задней стенки 139 статора 108.

Контроллер 106 может быть адаптирован для упорядочивания функционирования ЖТГ 102 и регулировочного клапана 104. Контроллер 106 может быть, для примера, не накладывающего ограничений, программируемым микропроцессором. Контроллер 106 функционально соединен с регулировочным клапаном 104 посредством соединителя 178. Контроллер 106 может посылать управляющий сигнал регулировочному клапану 104 для управления регулировочным клапаном 104 и упорядочения распределения охлаждающей жидкости между перепускным каналом 146 системы охлаждения и рециркуляционным каналом 48 ЖТГ.

Контроллер 106 может быть адаптирован для регулирования функционирования муфты 164, которая функционально соединена с блоком регулировки 106 посредством соединителя 179. Контроллер 106 может посылать управляющий сигнал муфте 164, заставляя ее или входить в зацепление, или выходить из него в зависимости от требований по нагреву системы отопления 80. Введение муфты 164 в зацепление дает возможность передачи вращающего момента от двигателя 42 на вал 114 через приводной ремень 27, тем самым заставляя вращаться ротор 110 вокруг оси 116 и нагревать охлаждающую жидкость 46, находящуюся в гидродинамической камере 122. Выведение муфты 164 из зацепления отсоединяет вал 114 и ротор 110 от двигателя 42. При расцепленной муфте 164 ЖТГ 102 не производит тепла, поскольку ротор 110 не приводится во вращение ремнем 27.

Контроллер 106 может быть адаптирован для контроля различных функциональных параметров дополнительной системы отопления 92, включая, для примера и без ограничений, скорость вращения ротора 110, температуру охлаждающей жидкости 46, входящей в ЖТГ 102 через рециркуляционный канал 148 ЖТГ, и уровень давления охлаждающей жидкости, выходящей из ЖТГ 102 через канал выпуска 142 ЖТГ. Скорость вращения ротора 110 может контролироваться посредством датчика скорости 180, который может включать любой из множества известных устройств измерения скорости, например и без ограничений, электромагнитный датчик. Электромагнитный датчик может включать магнитный материал, соответствующим образом прикрепленный к задней стенке 182 ротора 110. Чувствительный элемент 184, приспособленный для обнаружения магнитного поля магнитного материала, прикрепленного к ротору 110, может быть соответствующим образом прикреплен к корпусу 112. Соединитель 186 функционально соединяет датчик скорости 180 с контроллером 106. Также предполагается, что электромагнитный датчик 180 может быть соответствующим образом смонтирован в различных других местах расположения, например и без ограничений на приводе 106.

Температура охлаждающей жидкости 46, входящей в ЖТГ 102 через рециркуляционный канал 148 ЖТГ, может контролироваться посредством температурного зонда 188, который может включать любое из множества известных устройств, чувствительных к температуре, например и без ограничений термопару или резистивный термочувствительный элемент. Температурный зонд 188 может соответствующим образом располагаться в рециркуляционном канале 148 ЖТГ или в другом подходящем месте расположения, которое обеспечивало бы температурному зонду 188 возможность выявлять температуру охлаждающей жидкости 46, проходящей через канал. Обычный соединитель 190 функционально соединяет температурный зонд 188 с контроллером 106. Температурный зонд 188 может быть адаптирован для генерирования сигнала, указывающего температуру охлаждающей жидкости, присутствующей в канале.

Давление охлаждающей жидкости 46, выходящей из ЖТГ 102 через канал выпуска 142 ЖТГ, может контролироваться посредством зонда давления 192, который может включать любое из множества известных устройств измерения давления. Зонд давления 192 предпочтительно располагается в канале выпуска 142 ЖТГ вблизи выпускного прохода 138 или в другом подходящем месте расположения, которое позволяло бы зонду давления 192 выявлять давление охлаждающей жидкости 46, выходящей из гидродинамической камеры 122. Зонд давления 192 может быть адаптирован для порождения сигнала, указывающего давление охлаждающей жидкости, проходящей через выпускной канал 142. Соединитель 194 функционально соединяет зонд давления 192 с контроллером 106.

Как показано на фиг.4-7, различные компоненты ДСО 92 для размещения на транспортном средстве могут быть удобно смонтированы в корпусе в качестве унифицированного агрегата. Модуль 198 распределения жидкости прикрепляется к корпусу 112 с применением одного или нескольких крепежных средств 196. Крепежные средства 196 могут входить в зацепление с резьбовой скважиной 199 в корпусе 112. Альтернативно предполагается, что модуль 198 распределения жидкости может располагаться удаленно от корпуса 112, что может потребовать дополнительных каналов подвода жидкости для соединения модуля с ЖТГ 102.

Модуль 198 распределения жидкости включает коллектор 200 для распределения охлаждающей жидкости 46 между ДСО 92, системой 40 охлаждения двигателя и теплообменником кабины 86. К коллектору 200 присоединен регулировочный клапан 104, который функционирует, регулируя распределение охлаждающей жидкости, полученной из перепускного канала 144 теплообменника кабины, между перепускным каналом 146 системы охлаждения и рециркуляционным каналом 148 ЖТГ. Модуль 198 распределения жидкости может включать один или более внешних соединителей для жидкостного присоединения ДСО 92 к системе 40 охлаждения двигателя и системе 80 отопления. С помощью ДСО 92 может быть модернизирован существующий автомобиль или она может быть установлена в качестве оригинального оборудования на вновь изготавливаемый автомобиль путем присоединения входного 88 и выходного 90 каналов нагревателя к отверстиям 94 и 96 соответственно ДСО 92. Подобным же образом теплообменник 86 кабины может быть присоединен к ДСО 92 путем присоединения входного 88а и выпускного 90а каналов теплообменника кабины к отверстиям 98 и 100 соответственно.

Как это показано на фиг.8-13, коллектор 200 включает полую выемку 202, имеющую, в общем случае, цилиндрическую форму и проходящую, частично, через коллектор. Выемка 202 имеет открытое окончание 204, доступное снаружи коллектора 200, и с противоположной стороны частично закрытое окончание 205. Внутренний диаметр выемки 202 является, в основном, постоянным в первой половине длины выемки, начинающейся от ее открытого окончания 204. Приблизительно посередине длины выемки 202 внутренний диаметр уменьшается до второго меньшего значения, образуя между окончаниями выемки 202 промежуточное плечо 202.

В области, прилегающей к частично закрытому окончанию 205 выемки 202, к ней присоединен перепускной канал 144 теплообменника кабины. Перепускной канал 144 теплообменника кабины может присоединяться к отверстию 100. Отверстие 100 имеет продолговатую цилиндрическую форму, адаптированную для принятия окончания выпускного канала 90а теплообменника. Также к частично закрытому окончанию 205 выемки 202 присоединен перепускной канал 146 системы охлаждения. Перепускной канал 146 системы охлаждения заканчивается в отверстии 96. Отверстие 96 имеет продолговатую цилиндрическую форму, адаптированную для принятия окончания канала 90а выпуска нагревателя. Рециркуляционный канал 148 ЖТГ присоединяется, как правило, в средней части выемки 202.

Модуль 198 распределения жидкости включает монтировочный стакан 210 регулировочного клапана, в общем случае, чашеобразной формы, имеющий открытое первое окончание 212 и частично закрытое второе окончание 214, расположенный в выемке 202 коллектора 200. Внешняя поверхность монтировочного стакана 210 имеет ступень, чтобы соответствовать профилю выемки 202. В кольцевой выемке 220, сформированной между внутренней поверхностью выемки 202 и внешней поверхностью монтировочного стакана 210 размещается кольцевое уплотнение 218.

Наружу от окончания 212 монтировочного стакана 210 простирается радиальный выступ 220. Когда монтировочный стакан полностью вставлен в выемку 202, выступ 220 примыкает к внешней поверхности 221 коллектора 200. Апертура 222, образованная в окончании 214 монтировочного стакана 210, соединяет жидкость во внутреннем пространстве 224 монтировочного стакана 210 с жидкостью в перепускном канале 146 системы охлаждения. Один или более проходов 226 простираются через стенку 228 монтировочного стакана, смежную с окончанием 214. Проходы 226 соединяют жидкость в перепускном канале 144 теплообменника с жидкостью во внутреннем пространстве 224 монтировочного стакана 210. Второй проход 229 для соединения жидкости во внутреннем пространстве 224 монтировочного стакана 210 с жидкостью в перепускном канале 148 ЖТГ пронизывает (пересекает) боковую стенку 228 монтировочного стакана 210 между первым и вторым его окончаниями. Утопленный желобок 230 простирается вкруговую вдоль внутреннего ствола 234 стенки 228 монтировочного стакана и, в общем случае, центрован относительно его оси таким образом, чтобы совпадать с проходом 229.

Также, согласно фиг.14-16, регулировочный клапан 104 включает золотник 232 цилиндрической формы, расположенный в стволе 234 монтировочного стакана 210 таким образом, что может скользить вдоль него. Золотник 232 включает полый шунтирующий плунжер 236 цилиндрической формы. Внешний выступ 238 простирается радиально от одного окончания шунтирующего плунжера 236. Внешняя окружность 240 выступа скользит по стволу 234 монтировочного стакана 210. Один или более проходов 242, простирающихся сквозь боковую стенку 244 шунтирующего плунжера 236, расположены смежно выступу 238. Проходы дают возможность охлаждающей жидкости проходить между внутренним и внешним пространствами шунтирующего плунжера 236.

Внутренний выступ 248 простирается радиально внутрь от внутренней поверхности 246 боковой стенки 244. Выступ 248 смещен внутрь окончания 250 шунтирующего плунжера 236 напротив выступа 238. Уплотнение 252 вала может быть расположено внутри окончания 250 шунтирующего плунжера 236 и примыкает к внутреннему выступу 248.

Золотник 232 может также включать корректирующий плунжер 254 цилиндрической формы, сегмент 256 окончания которого частично располагается в шунтирующем плунжере 236. Выступ 260 простирается радиально наружу от окончания 258 корректирующего плунжера 254 напротив внешнего выступа 238 шунтирующего плунжера 236. Выступ 260 может включать периферический паз 262, простирающийся вдоль внешней окружности 264 выступа. В пазе 262 располагается уплотнительный материал 266. Уплотнение 266 контактиру