Капсулы мезоразмера, применимые для доставки сельскохозяйственных химических веществ

Иллюстрации

Показать все

Изобретение относится к сельскому хозяйству. Композиция для доставки сельскохозяйственного активного ингредиента содержит мезокапсулу. Мезокапсула имеет полимерную оболочку и плохо растворимый в воде сельскохозяйственный активный ингредиент. Активный ингредиент по меньшей мере частично включен в полимерную оболочку. Среднеобъемный диаметр мезокапсул находится в интервале от приблизительно 30 нм до приблизительно 500 нм, где термин «приблизительно» означает интервал плюс-минус 10 процентов. Осуществляют получение масляной фазы, где масляная фаза содержит по меньшей мере один сельскохозяйственный активный ингредиент и один или несколько предшественников полимеров, способных взаимодействовать с образованием оболочки. Проводят добавление водной фазы, где водная фаза содержит воду и по меньшей мере один сшиватель. Осуществляют добавление поверхностно-активного вещества по меньшей мере к одной фазе, выбранной из водной фазы и масляной фазы. Проводят смешение масляной и водной фаз в условиях сдвига, достаточных для получения эмульсии мезокапель со среднеобъемным диаметром приблизительно 500 нм или менее. Осуществляют взаимодействие предшественника полимера со сшивателем для получения мезокапсулы. Указанную композицию наносят на растения, семена, ростовую среду, вредителей. 5 н. и 23 з.п. ф-лы, 14 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА, ОТНОСЯЩАЯСЯ К ДАННОМУ ИЗОБРЕТЕНИЮ

Настоящая заявка заявляет приоритет Предварительной Заявки на патент США 61/232044, поданной 7 августа 2009 года, которая введена в данное описание в виде ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Различные аспекты настоящего изобретения относятся к материалам и способам получения капсул мезоразмера, а также их применению для доставки активных ингредиентов, таких как фунгициды, инсектициды, митициды, гербициды, антидоты и модификаторы физиологии растений или структуры растений.

УРОВНЬ ТЕХНИКИ

Активные ингредиенты современных сельскохозяйственных пестицидов, включая фунгициды, инсектициды, митициды, гербициды и антидоты, модификаторы физиологии и структур растений, а также питательные вещества обычно вводят в жидкие или твердые препараты. Указанные препараты разрабатываются таким образом, чтобы они были удобными для применения производителем сельскохозяйственной продукции или конечным пользователем, и таким образом, чтобы биологическая активность биологически активного ингредиента была представлена должным образом. Задачей различных аспектов и вариантов осуществления, раскрытых в данном описании, является дополнительное повышение эффективности и результативности доставки и биологической активности активных ингредиентов, используемых в сельском хозяйстве и в борьбе с вредителями.

ОПРЕДЕЛЕНИЯ

Термин «сельскохозяйственный активный ингредиент (АИ)», когда используется в данном описании, относится к химическому соединению, используемому в сельском хозяйстве, садоводстве и борьбе с вредителями для защиты сельскохозяйственных культур, растений, структур, людей и животных от нежелательных организмов, таких как грибные и бактериальные растительные патогены, сорная растительность, насекомые, клещи, водоросли, нематоды и т.п. В частности, активные ингредиенты, применяемые для указанных целей, включают фунгициды, бактерициды, гербициды, инсектициды, митициды, альгициды, нематоциды и фумиганты. Термин «сельскохозяйственный активный ингредиент» включает также аттрактанты, репелленты и феромоны насекомых, модификаторы физиологии или структуры растений и антидоты гербицидов.

Термин «мезо», когда используется в данном описании, описывает частицы, капсулы или капли со среднеобъемным диаметром в интервале от приблизительно 30 нм до приблизительно 500 нм. Термин «мезокапсула», когда используется в данном описании, относится к капсулам или частицам структуры «ядро-оболочка» со среднеобъемным диаметром в интервале от приблизительно 30 до приблизительно 500 нм.

Термин «приблизительно» означает интервал плюс-минус 10 процентов, например «приблизительно 1» включает значения от 0,9 до 1,1.

Термин «плохо растворимый в воде», когда используется в данном описании, означает активные ингредиенты с растворимостью в воде менее приблизительно 1000 м.д. Предпочтительно, растворимость плохо растворимого в воде активного ингредиента составляет менее 100 м.д., более предпочтительно менее 10 м.д.

Термин «не смешивающийся с водой растворитель», когда используется в данном описании, означает растворитель или смесь растворителей с растворимостью в воде приблизительно 10 г/100 мл или менее.

Термин «по существу без поверхностно-активного вещества», когда используется в данном описании, означает концентрацию поверхностно-активного вещества менее 1 процента по массе относительно масляной фазы и более предпочтительно менее 0,5 процента по массе поверхностно-активного вещества относительно масляной фазы.

Термин «поверхностно-активное вещество», когда используется в данном описании, означает соединение, используемое для получения и/или стабилизации эмульсии. Поверхностно-активные соединения включают неионогенные, анионогенные, катионогенные или сочетания неионогенных и анионогенных или неионогенных и катионогенных поверхностно-активных веществ. Примеры подходящих поверхностно-активных веществ включают лаурилсульфаты щелочных металлов, такие как додецилсульфат натрия, соли жирных кислот и щелочных металлов, такие как олеат натрия и стеарат натрия, алкилбензолсульфонаты щелочных металлов, такие как додецилбензолсульфонат натрия, неионогенные полиоксиэтилены и четвертичные аммониевые поверхностно-активные вещества. Стандартный пример источников, из которых специалист данной области техники может выбрать подходящие поверхностно-активные вещества, включает, но без ограничения, Handbook of Industrial Surfactants, Fourth Edition (2005) published by Synapse Information Resources Inc., and McCutcheon's Emulsifers and Detergents, North American and International Editions (2008) publishing by MC Publishing Company.

Термин «межфазная реакция конденсации», когда используется в данном описании, означает взаимодействие между двумя дополнительными органическими промежуточными продуктами, которое имеет место на границе раздела фаз двух несмешивающихся жидкостей и при котором одна из несмешивающихся жидкостей диспергирована в другой несмешивающейся жидкости. Пример межфазной реакции конденсации представлен в патенте США № 3577515, содержание которого во всей полноте введено в данное описание в виде ссылки. Капсула структуры «ядро-оболочка» представляет собой капсулу, полученную в результате межфазной реакции конденсации, которая имеет место между двумя несмешивающимися фазами и в процессе которой первая несмешивающаяся фаза является дисперсной фазой, вторая несмешивающаяся фаза является дисперсионной средой; при этом дисперсная фаза или ядро инкапсулирована(о) внутри оболочки, образованной в результате взаимодействия двух вспомогательных органических промежуточных продуктов, и капсула структуры «ядро-оболочка» диспергирована в дисперсионной среде.

Термин «сшиватель», когда используется в данном описании, означает вещество, которое инициирует или облегчает взаимодействие предшественников полимеров с образованием частицы структуры «ядро-оболочка». Сшиватель становится частью полимерной структуры частицы «ядро-оболочка». Примеры сшивателей, которые используются согласно настоящему изобретению, включают воду, растворимые в воде диамины, растворимые в воде полиамины, растворимые в воде полиаминокислоты, растворимые в воде диолы, растворимые в воде многоатомные спирты и их смеси.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Один вариант осуществления настоящего изобретения включает композицию для доставки сельскохозяйственного активного ингредиента, включающую мезокапсулу, причем мезокапсула включает полимерную оболочку и плохо растворимый в воде активный ингредиент, где активный ингредиент по меньшей мере частично окружен полимерной оболочкой, и величина среднеобъемного диаметра мезокапсулы находится в интервале от приблизительно 30 нм до приблизительно 500 нм.

Другой вариант осуществления настоящего изобретения включает способ синтеза мезокапсулы, включающий стадии получения масляной фазы, причем масляная фаза включает по меньшей мере один сельскохозяйственный активный ингредиент и один или несколько предшественников полимера, способных взаимодействовать с образованием оболочки, получения водной фазы, причем водная фаза включает воду и по меньшей мере один сшиватель, добавления поверхностно-активного вещества по меньшей мере к одному компоненту водной фазы, смешения масляной и водной фаз в условиях усилия сдвига, достаточного для образования эмульсии, содержащей капли мезоразмера со среднеобъемным диаметром приблизительно 500 нм или менее, и взаимодействия предшественника полимера со сшивателем для образования мезокапсулы.

Другой вариант осуществления настоящего изобретению включает способ синтеза свободной от поверхностно-активного вещества мезокапсулы, включающий стадии получения масляной фазы, причем масляная фаза включает по меньшей мере один сельскохозяйственный активный ингредиент и по меньшей мере один полиизоцианат, получения водной фазы, где водная фаза включает по меньшей мере один компонент и где компонент включает по меньшей мере один функциональный фрагмент, который представляет собой первичный или вторичный амин либо первичную или вторичную аминогруппу, и дополнительно по меньшей мере одну гидрофильную функциональную группу, смешения масляной и водной фаз для образования эмульсии и взаимодействия полиизоцианата со сшивателем для получения мезокапсулы.

КРАТКОЕ ОПИСАНИЕ ФИГУР

ФИГ.1. На фигуре 1 представлены компоненты исходных растворов глицина и лизина, которые были получены и использовались для синтеза типичных капсул мезоразмера согласно настоящему изобретению.

ФИГ.2. На фигуре 2 представлены ингредиенты, которые были объединены для синтеза типичных мезокапсул фенбуконазола согласно настоящему изобретению.

ФИГ.3. На фигуре 3 представлены ингредиенты, которые были объединены для синтеза типичных мезокапсул гербицидов, фунгицидов и инсектицидов согласно настоящему изобретению.

ФИГ.4. На фигуре 4 представлен перечень примеров препаратов, прошедших биологические испытания для определения эффективности в качестве пестицидов; в таблице представлен перечень препаратов и установленное содержание в каждом препарате сельскохозяйственного активного ингредиента (АИ), выраженное в % по массе.

ФИГ.5. На фигуре 5 представлены результаты биологических испытаний различных препаратов, идентифицированных на фигуре 4, на их способность лечить грибную инфекцию, вызванную Septoria tritici на растениях.

ФИГ.6. На фигуре 6 представлены результаты биологических испытаний различных препаратов, идентифицированных на фигуре 4, на их способность предотвращать грибную инфекцию, вызываемую Septoria tritici на растениях.

ФИГ.7. На фигуре 7 представлены результаты биологических испытаний различных препаратов, идентифицированных на фигуре 4, на их способность предотвращать грибную инфекцию, вызываемую Puccinia recondita f.sp. tritici на растениях.

ФИГ.8. На фигуре 8 представлены результаты биологических испытаний различных препаратов атразина, идентифицированных на фигуре 4, на их способность контролировать сорную растительность. Представлены данные контроля сорной растительности.

ФИГ.9. На фигуре 9 представлены результаты биологических испытаний различных препаратов флуроксипир-мептила, идентифицированных на фигуре 4, на их способность контролировать сорную растительность. Представлены данные контроля сорной растительности.

ФИГ.10. На фигуре 10 представлены результаты биологических испытаний различных препаратов индоксакарба, идентифицированных на фигуре 4, на их способность снижать поедание листвы молью капустной.

ФИГ.11. На фигуре 11 представлены результаты биологических испытаний различных препаратов индоксакарба, идентифицированных на фигуре 4, на их способность вызывать гибель моли капустной.

ФИГ.12. На фигуре 12 представлены результаты биологических испытаний различных препаратов индоксакарба, идентифицированных на фигуре 4, на их способность вызывать гибель таракана рыжего при введении инъекцией.

ФИГ.13. На фигуре 13 представлены результаты биологических испытаний различных препаратов индоксакарба, идентифицированных на фигуре 4, на их способность вызывать гибель таракана рыжего при местном введении.

ФИГ.14. На фигуре 14 представлены результаты биологических испытаний различных препаратов индоксакарба, идентифицированных на фигуре 4, на их способность останавливать поедание пищи рыжим тараканом при введении посредством проглатывания приманки.

ОПИСАНИЕ

Для облегчения понимания принципов новой технологии далее будут сделаны ссылки на ее предпочтительные варианты осуществления, и для описания предпочтительных вариантов осуществления принципов новой технологии будет использоваться специфическая терминология. Тем не менее подразумевается, что область новой технологии не ограничивается представленными вариантами, и предполагается, что специалист области техники, к которой относится данное изобретение, понимает, что изменения, модификации и дополнительные области применения принципов новой технологии, которые обычно имеют место, рассматриваются как относящиеся к указанной новой технологии.

Открытие, разработка и получение эффективных и экономичных сельскохозяйственных активных ингредиентов (АИ), таких как фунгициды, инсектициды, гербициды, антидоты, модификаторы физиологии или структуры растений и т.п., являются только частью проблемы, стоящей перед агрохимической промышленностью. Важно также разрабатывать эффективные препараты соединений этих типов для получения возможности их эффективного и экономичного применения. Только соображения стоимости диктуют постоянно растущую потребность в новых препаратах и способах получения и применения АИ. Эта потребность является особенно острой, когда эффективность АИ ограничена или когда с ними трудно работать и эффективно применять так, как это желательно, вследствие ряда проблем, таких как низкая растворимость в водных растворах или плохая биодоступность для растений и насекомых.

Термины «растение» и «сельскохозяйственная культура» будут означать любое коммерчески производимое растение, произведенное традиционным способом разведения растений, вегетативным размножением или с применением методов генной инженерии.

Одним из наиболее эффективных способов повышения эффективности АИ является повышение проникновения АИ в растение через корневую систему или через стебель и поверхности листьев либо в насекомое через пищеварительный тракт или наружный скелет. Зачастую это включает получение препарата АИ в растворимой в воде форме. Однако многие АИ иной эффективности не очень хорошо растворимы в воде. Соответственно, соединение или препарат, которое(й) повышает проникновение плохо растворимых в воде АИ в растения и насекомые и передвижение внутри растений и насекомых, обладают потенциалом улучшения общей эффективности широкого спектра АИ, включая, например, АИ, которые не очень хорошо растворимы в воде.

Некоторые аспекты и варианты осуществления изобретения, раскрытые в описании, повышают биологическую доступность сельскохозяйственных активных ингредиентов инкапсулированием АИ в полимочевинную частицу структуры «ядро-оболочка» очень малого размера, например в мезокапсулу среднеобъемного диаметра приблизительно 500 нм или менее; в некоторых вариантах осуществления изобретения диаметр мезокапсул составляет порядка 300 нм или менее. Некоторые из этих мезокапсул включают поверхность, функционализированную биологически совместимыми гидрофильными функциональными группами, такими как группы карбоновых кислот. Во многих применениях АИ, по меньшей мере частично инкапсулированные в мезокапсулы, более эффективно проникают в растения и насекомые и более эффективно транспортируются внутри растения и через растение, чем АИ, которые не являются инкапсулированными.

Помимо возможности применения для получения препаратов и доставки пестицидных активных ингредиентов многие из мезокапсул и способов получения инкапсулированных препаратов с капсулами мезоразмеров согласно настоящему изобретению могут выгодно применяться в сочетании с другими активными ингредиентами, такими как биоциды, красители (чернила), солнцезащитные компоненты, вкусовые добавки, отдушки, косметические средства, фармацевтические лекарственные средства и т.п. Указанные мезокапсулы и способы их получения согласно настоящему изобретению также могут применяться для доставки полимеров нуклеиновых кислот, таких как двухцепочечная или одноцепочечная ДНК или РНК, и/или молекул белков. Указанные препараты обладают широким спектром применения, включая генную инженерию, диагностические и терапевтические средства, например, для вакцинации и т.п.

Мезокапсулы структуры «ядро-оболочка» могут быть получены рядом способов, включая межфазную полимеризацию на поверхности капли или частицы. Предпочтительный инкапсулирующий полимер представляет собой полимочевину, включая полимочевину, полученную в результате взаимодействия полиизоцианата с полиамином, полиаминокислотой или водой. Другие предпочтительные инкапсулирующие полимеры включают полимеры, полученные в результате реакции конденсации меламина и формальдегида или мочевины и формальдегида, а также аналогичные типы аминопластов. Капсулы с оболочками из полиуретана, полиамида, полиолефина, полисахарида, белка, диоксида кремния, липида, модифицированной целлюлозы, смол, полиакрилата, полифосфата, полистирола и сложных полиэфиров или сочетаний этих материалов также могут применяться для получения мезокапсул структуры «ядро-оболочка».

Подходящие полимеры для применения при получении мезокапсул согласно настоящему изобретению включают аминоосновные форполимеры, такие как карбамин-, меламин-, бензогуанамин- и гликоурилформальдегидные смолы и форполимеры диметилолдигидроксиэтиленмочевинного типа. Эти форполимеры могут применяться в качестве смесей и сшивателей с поливиниловым спиртом, поливиниламинами, акрилатами (кислотная функциональность предпочтительна), аминами, полисахаридами, полимочевинами/уретанами, полиаминокислотами и белками. Другие подходящие полимеры включают сложные полиэфиры, включая разлагаемые биологическим способом сложные полиэфиры, полиамиды, полиакрилаты и полиакриламиды, поливиниловый полимер и сополимеры с полиакрилатами, полиуретанами, простыми полиэфирами, полимочевинами, поликарбонатами, природными полимерами, такими как полиангидриды, полифосфазины, полиоксазолины и защищающие от УФ полиолефины.

В одном варианте осуществления изобретения плохо растворимый в воде сельскохозяйственный активный ингредиент инкапсулирован внутри частицы структуры «ядро-оболочка» очень маленького размера, например приблизительно 500 нм или менее, более предпочтительно 300 нм или менее. АИ, инкапсулированные в такие мезокапсулы, могут проявлять более высокую проницаемость в насекомые и растения, растительную ткань, растительные клетки и даже растительные патогены, чем АИ, которые не ассоциированы с мезокапсулами.

В одном варианте осуществления изобретения мезокапсула включает гидрофильные функциональные группы, встроенные в полимочевинную оболочку и по меньшей мере частично выставленные на поверхности мезокапсулы. Частичный перечень некоторых из функциональных материалов, которые могут использоваться для получения указанных частиц, можно найти в WO 2001/94001, содержание которого во всей полноте включено в данное описание в виде ссылки. Гидрофильные функциональные группы включают карбоксилат, карбоксилатные соли, фосфонат, соли фосфоната, фосфат, соли фосфата, сульфонат, соли сульфоната, четвертичный аммоний, бетаин, оксиэтилен или оксиэтилен-содержащие полимеры. Предпочтительно, гидрофильная группа представляет собой карбоксилат или соль карбоксилата.

В одном варианте осуществления изобретения сельскохозяйственный активный ингредиент представляет собой по меньшей мере одно сельскохозяйственное химическое соединение, выбранное из группы, включающей фунгициды, инсектициды, митициды, гербициды, антидоты и модификаторы физиологии или структуры растений.

В одном варианте осуществления изобретения растворимость сельскохозяйственного активного ингредиента составляет порядка приблизительно 1000 частей на миллион или менее, предпочтительно 100 частей на миллион или менее, более предпочтительно 10 частей на миллион или менее.

В одном варианте осуществления изобретение относится к способу синтеза мезокапсулы, включающему стадии предоставления масляной фазы, причем масляная фаза включает по меньшей мере один активный ингредиент и по меньшей мере один полиизоцианат; добавления водной фазы и добавления эмульгатора; и смешения масляной и водной фаз со сдвиговым усилием, достаточным для получения эмульсии с каплями мезоразмера со среднеобъемным диаметром приблизительно 500 нм или менее, но предпочтительно менее 300 нм; и взаимодействия полиизоцианата по меньшей мере с одним сшивателем или водой для получения мезокапсулы.

Некоторые АИ являются твердыми при комнатной температуре и должны растворяться в растворителе до того, как они могут быть инкапсулированы в полимочевинную мезокапсулу. В одном варианте осуществления изобретения плохо растворимый АИ растворяется в растворителе, который легко растворяет АИ до добавления масляной фазы. Подходящие растворители могут представлять собой один органический растворитель или смесь органических растворителей с низкой растворимостью в воде, то есть с растворимостью приблизительно 10 г/100 мл или менее, которые включают, но без ограничения, нефтяные фракции или углеводороды, такие как минеральное масло, ароматические растворители, ксилол, толуол, парафиновые масла и т.п.; растительные масла, такие как соевое масло, рапсовое масло, оливковое масло, касторовое масло, подсолнечное масло, кокосовое масло, кукурузное масло, льняное масло, пальмовое масло, арахисовое масло, сафлоровое масло, кунжутное масло, тунговое масло и т.п.; сложные эфиры указанных выше растительных масел; сложные эфиры одноатомных, двухатомных, трехатомных или других низших многоатомных спиртов (содержащих 4-6 гидроксильных групп), такие как 2-этилгексилстеарат, этилгексилбензоат, изопропилбензоат, н-бутилолеат, изопропилмиристат, пропиленгликольдиолеат, диоксилсукцинат, дибутиладипат, диоксилфталат, ацетилтрибутилцитрат, триэтилцитрат, триэтилфосфат и т.п.; сложные эфиры моно-, ди- и поликарбоновых кислот, такие как бензилацетат, этилацетат и т.п.; кетоны, такие как циклогексанон, ацетофенон, 2-гептанон, гамма-бутиролактон, изофорон, N-этилпирролидон, N-октилпирролидон и т.п.; алкилдиметиламиды, такие как С8- и С10-алкилдиметиламид, диметилацетамид и т.п.; спирты с низкой растворимостью в воде (т.е. с растворимостью приблизительно 10 г/100 мл или менее), такие как бензиловый спирт, крезолы, терпинеолы, тетрагидрофурфуриловый спирт, 2-изопропилфенол, циклогексанол, н-гексанол и т.п. В некоторых случаях к масляной фазе добавляется ультрагидрофобное соединение, по-видимому для сохранения стабильности эмульсии, которая будет создана позднее в процессе смешения масляной фазы с водной фазой. Это добавка представляет собой высоко растворимый в воде материал, 1) у которого коэффициент диффузии и растворимость в дисперсионной среде имеют пренебрежимо малое значение и 2) который совместим с дисперсной фазой. Примеры ультрагидрофобных соединений включают парафины с длинной цепью, такие как гексадекан, полимеры, такие как полиизобутен, такие как, например, Indopol™ H15 (INESO Oligomers), полистирол, полиметилметакрилат, натуральные масла, такие как растительные масла, и силиконы, такие как силиконовое масло или демитикон. Предпочтительно указанная добавка применяется в количестве не более 10 процентов по массе из расчета на массу дисперсной фазы.

В одном варианте осуществления изобретения предшественник полимера в дисперсной фазе представляет собой полиизоцианат или смесь полиизоцианатов. Полиизоцианат взаимодействует со сшивателем или с водой для получения полимочевинной оболочки. Примеры полиизоцианатов включают, но без ограничения, толуолдиизоцианат (TDI), диизоцианатодифенилметан (MDI), производные MDI, такие как полиметиленполифенилизоцианат, который содержит MDI, примером которого является PAPI 27™ polymeric MDI (The Dow Chemical Company), изофорондиизоцианат, 1,4-диизоцианатобутан, фенилендиизоцианат, гексаметилендиизоцианат, 1,3-бис(изоцианатометил)бензол, 1,8-диизоцианатооктан, 4,4'-метиленбис(фенилизоцианат), 4,4'-метиленбис(циклогексилизоцианат) и их смеси. В другом варианте осуществления изобретения подходящие предшественники полимеров в дисперсной фазе также могут включать, но без ограничения, хлорангидриды дикислот, хлорангидриды поликислот, сульфонилхлориды, хлорформиаты и т.п. и их смеси.

Масляная и водная фазы объединяются в присутствии поверхностно-активного вещества, которое способствует образованию или стабилизации капель мезоразмера мерее 500 нм, но предпочтительно менее 300 нм. Поверхностно-активное вещество может добавляться либо к масляной фазе, либо к водной фазе, либо к масляной и водной фазам. Поверхностно-активные вещества включают неионогенные, анионогенные, катионогенные поверхностно-активные вещества или комбинации неионогенных и анионогенных или неионогенных и катионогенных поверхностно-активных веществ. Примеры подходящих поверхностно-активных веществ включают лаурилсульфаты щелочных металлов, такие как додецилсульфат натрия, соли жирных кислот и щелочных металлов, такие как олеаты и стеараты щелочных металлов, метилалкилбензолсульфонаты щелочных металлов, такие как додецилбензолсульфонат натрия, неионогенные полиоксиэтиленовые поверхностно-активные вещества и четвертичные аммониевые поверхностно-активные вещества. Стандартные справочные источники, из которых специалист данной области техники может выбрать подходящие поверхностно-активные вещества, включают, но без ограничения перечисленными выше классами, Handbook of Industrial Surfactants, Fourth Edition (2005) published by Synapse Information Resources Inc., and McCutcheon's Emulsifiers and Detergents, North American and International Editions (2008) published by MC Publishing Company.

Эмульсия может быть получена различными способами, включая периодический и непрерывный способы, хорошо известные в данной области техники. В предпочтительном способе эмульсия получена с использованием устройства сверхвысокого усилия сдвига, такого как устройство обработки ультразвуком или гомогенизатор высокого давления для получения капель мезоразмера мерее 500 нм, предпочтительно менее 300 нм. Устройства для обработки ультразвуком включают стандартное оборудование для ультразвуковой обработки с ультразвуковым зондом, который вставляется в препарат для образования капель мезоразмера, причем одним из типичных примеров таких устройств является Sonicator 400, доступный от Misonix Sonicators. В гомогенизаторах высокого давления используется очень высокое давление, от 500 до 20000 фунтов на кв. дюйм (3447,4 кПа до 137985,1 кПа) для продавливания жидкости через небольшие отверстия и получения капель мезоразмера. Примеры таких устройств включают, но без ограничения, устройства EmulsiFlex™ (Avestin, Inc.) и Microfluidizer™ (Microfluidics).

В одном варианте осуществления изобретения полиизоцианат или смесь полиизоцианатов взаимодействует с находящимися в дисперсионной среде (т.е. воде) молекулами, содержащими гидроксильные или аминогруппы, такими как растворимые в воде диамины, растворимые в воде полиамины, растворимые в воде полиаминокислоты, растворимые в воде двухатомные спирты, растворимые в воде многоатомные спирты и их смеси, посредством межфазной реакции конденсации с образованием полимерной оболочки. Примеры таких удлинителей цепей или сшивателей в водной дисперсионной среде могут включать, но без ограничения, по меньшей мере одно соединение, выбранное из растворимых в воде диаминов, таких как этилендиамин и т.п.; растворимых в воде полиаминов, таких как диэтилентриамин, триэтилентетрамин, тетраэтиленпентамин, пентаэтиленгексамин и т.п.; растворимых в воде аминокислот, содержащих более одной функциональной группы, способной взаимодействовать с изоцианатом, таких как L-лизин, аргинин, гистидин, серин, треонин, полимеры или олигомеры этих аминокислот и т.п.; растворимых в воде двухатомных спиртов или растворимых в воде многоатомных спиртов, таких как этиленгликоль, пропиленгликоль, полиэтиленоксиддиол, резорцин, растворимых в воде аминоспиртов, таких как 2-аминоэтанол и т.п.; гуанидина, производных гуанидина, полиамидинов и их производных и смеси указанных соединений. В одном варианте осуществления изобретения растворимая в воде фаза включает диамин с карбоксилатной функциональностью (такой как L-лизин), который взаимодействует с образованием полимочевинной оболочки, включающей карбоксилатные функциональные группы на поверхности мезокапсулы. Указанная карбоксилатная функциональность может быть ненейтрализованной или она может быть частично или полностью нейтрализована для получения карбоксилатной соли.

В еще одном варианте осуществления изобретения диамин или полиамины или их эквиваленты, включенные в приведенную выше типичную водную фазу, исключены из реакционной смеси. В таком варианте осуществления изобретения полиизоцианат взаимодействует с водой с получением полимочевинной оболочки.

Для повышения или снижения скорости реакции межфазной конденсации могут корректироваться различные факторы. Эти факторы включают, например, температуру, рН, скорость смешения, продолжительность взаимодействия, осмотическое давление и, разумеется, изменение содержания и типов эмульгаторов, полимерных компонентов, растворителей, добавление катализаторов и т.п. Для дополнительного обсуждения влияния температуры, катализатора, рН и т.п. на реакции указанных типов см., например патент США № 4285750, содержание которого во всей полноте введено в данное описание в виде ссылки. Дополнительная информация по влиянию солей и содержанию солей на реакции указанных типов можно найти в публикации WO 2006/092409, содержание которой во всей полноте введено в данное описание в виде ссылки.

Некоторые варианты осуществления настоящего изобретения могут быть реализованы изменением содержания некоторых реагентов в реакционной смеси, причем реакционная смесь состоит из дисперсной масляной фазы и водной дисперсионной среды, которые используются для получения мезокапсул, включающих по меньшей мере один АИ. В некоторых вариантах осуществления изобретения они включают (в процентах по массе масляной фазы, % масс.) по меньшей мере один АИ в интервале от приблизительно 1,0% масс. до приблизительно 90% масс., более предпочтительно от приблизительно 1,0% масс. до приблизительно 80% масс.; необязательно растворитель, подходящий для растворения АИ, в интервале от приблизительно 1% масс. до приблизительно 90% масс., более предпочтительно от приблизительно 20% масс. до приблизительно 80% масс.; ультрагидрофобная добавка необязательно присутствует в количестве в интервале от приблизительно 0,5% масс. до приблизительно 10% масс., более предпочтительно от примерно 1,0% масс. до приблизительно 5,0% масс.; по меньшей мере один полиизоцианат присутствует в количестве в интервале от приблизительно 1% масс. до приблизительно 30% масс., более предпочтительно от приблизительно 5% масс. до приблизительно 20% масс.; эмульгатор необязательно присутствует в количестве в интервале от 0,1% масс. до приблизительно 20% масс., более предпочтительно от приблизительно 1% масс. до приблизительно 10% масс. масляной фазы, где масляная фаза составляет порядка от приблизительно 1% до приблизительно 60% общей массы эмульсии.

Водная фаза реакционной смеси составляет от приблизительно 40% масс. до приблизительно 99% масс. общей массы эмульсии и содержит от приблизительно 60% масс. до приблизительно 90% масс. воды, от приблизительно 1% масс. до приблизительно 30% масс. одного или нескольких сшивателей и, необязательно, от приблизительно 0,1% масс. до приблизительно 20% масс. одного или нескольких растворимых в воде поверхностно-активных веществ.

Аналогично, некоторые из ингредиентов, используемые в некоторых типичных примерах препаратов являются необязательными. Например, можно синтезировать эффективные мезокапсулы в некоторых вариантах осуществления изобретения без добавления растворителя и/или свергидрофобного соединения. Добавление этих типов необязательных компонентов реакционной смеси особенно полезно, когда АИ представляет собой твердое вещество.

Как описано в данном изобретении, способом, используемым для инкапсулирования плохо растворимых в воде веществ, является получение полимочевинной капсулы структуры «ядро-оболочка» посредством межфазной реакции конденсации полиизоцианата или смеси полиизоцианатов, находящихся в дисперсной масляной фазе, с по меньшей мере одним компонентом, выбранным из воды и растворимого в воде полиамина, находящимся в дисперсионной среде. Для стабилизации микрокапсул от агломерации и для контроля размера микрокапсулы до реакции зачастую в реакционную смесь необходимо добавлять одно или несколько поверхностно-активных веществ или коллоидных стабилизаторов. Поверхностно-активное вещество может применяться, если целью реакции является получение микрокапсул размером менее 500 нм. Однако присутствие поверхностно-активного вещества может быть нежелательным во многих областях конечного применения. Например, при доставке сельскохозяйственных активных ингредиентов в растение поверхностно-активное вещество, содержащееся в полимочевинных мезокапсулах, может наносить вред растению. В других применениях поверхностно-активное вещество может вызывать и нежелательное вспенивание конечного продукта. Поэтому разработка способа эффективного синтеза микро- и мезокапсул, при котором необходимо добавлять меньшее количество поверхностно-активного вещества, чем в способах, обсужденных выше, или вовсе не добавлять его, может быть весьма полезной.

Одним аспектом настоящего изобретения является способ получения микрокапсул или мезокапсул, при котором добавляется соединение, содержащее по меньшей мере один функциональный фрагмент, который представляет собой первичный или вторичный амин или первичную или вторичную аминогруппу и, дополнительно, по меньшей мере одну гидрофильную функциональную группу, где добавление данного компонента позволяет получить эмульсию по существу без поверхностно-активного вещества. В одном варианте осуществления изобретения компонент представляет собой глицин, соль глицина или смесь глицина и соли глицина. Эти способы получения микро- или мезокапсул включают добавление глицина, соли глицина или смеси глицина и соли глицина к водной фазе реакционной смеси перед получением конечной эмульсии и, если необходимо, до инициирования реакции сшивания между компонентами, такими как полиизоцианат, для получения полимочевинной оболочки мезокапсул. Дополнительные молекулы, которые могут применяться в дополнение к глицину или вместо него, включают другие молекулы, которые содержат первичную или вторичную аминогруппу на одном конце молекулы и гидрофильную группу, такую как карбоксилат или триметиламин, на другом конце молекулы. Может быть не обязательной нейтрализация всех заряженных фрагментов для получения продукта, образованного способами согласно изобретению. Частичный перечень некоторых молекул данных типов можно найти в патенте США № 4757105, содержание которого во всей полноте введено в данное описание в виде ссылки.

Без теоретического обоснования или объяснения, возможно, добавление глицина, глициновой соли или глициноподобного вещества до образования конечной эмульсии дает возможность глицину взаимодействовать с небольшой частью ди- или полиизоцианата с получением молекулы, подобной молекулам поверхностно-активного вещества, которая способствует получению и/или стабилизации эмульсии и содействует контролю размера капель конечной эмульсии. Далее, после получения конечной эмульсии в процессе межфазной реакции конденсации молекула, подобная молекуле поверхностно-активного вещества, полученная в результате взаимодействия глицина, подвергается взаимодействию, вводится в полимочевинную оболочку и больше не выступает в качестве свободного поверхностно-активного вещества. Гидрофильная функциональная группа молекулы глицина или молекулы, подобной молекуле глицина, находится на поверхности оболочки, способствуя стабилизации оболочки.

Настоящее изобретение включает способ инкапсулирования АИ, плохо растворимых в воде, в полимочевинную частицу структуры «ядро-оболочка» с использованием сниженных количеств поверхностно-активного или коллоидного стабилизатора или без поверхностно-активного вещества или коллоидного стабилизатора при сохранении стабильности дисперсии и контроля размера частиц. Настоящее изобретение применимо для доставки сельскохозяйственных активных ингредиентов, где избыток поверхностно-активного вещества мог бы обладать фитотоксическими эффектами на растения, и для другой доставки или областей применения контролируемого высвобождения действующего вещества, где при