Формование буровых долот с использованием методов пропитки

Иллюстрации

Показать все

Изобретение относится к порошковой металлургии, в частности к изготовлению буровых долот для бурения земли путем пропитки. Подготавливают рабочую литейную форму, в которой размещен твердый элемент из связующего материала, содержащего металл или металлический сплав. Засыпают в литейную полость рабочей литейной формы слой порошкового матричного материала на основе карбида переходного металла или на основе металла, или металлического сплава, содержащего карбид, и нагревают для обеспечения прохода расплавляемого связующего материала от твердого элемента и последующей пропитки им слоя порошкового матричного материала. Твердый элемент из связующего материала может быть размещен в канале, который сообщается с литейной полостью высотой hmv с возможностью подачи расплавляемого связующего материала из канала ниже отметки 1/2hmv. Нагрев рабочей литейной формы осуществляют с обеспечением прохода для расплавленного связующего материала сквозь часть слоя порошкового матричного материала для пропитки. Средний диаметр прохода существенно больше средней межзерновой пористости порошкового матричного материала. 3 н. и 17 з.п. ф-лы, 9 ил., 1 табл.

Реферат

Ссылки на родственные заявки

Настоящая заявка претендует на приоритет заявки US 12/347424 "Методы инфильтрации для формования буровых долот" (Timothy P. Uno, Marc W. Bird, Curtis A. Proske и Lester Durpe), поданной 31 декабря 2008 г., полностью включенной в настоящее описание посредством ссылки.

Область техники

Настоящее изобретение относится к процессу пропитки (инфильтрации) и, в частности, процессу пропитки для формования долот для бурения земных пород.

Уровень техники

Долота для бурения земных пород часто используются для создания скважин в земной коре в поисках природных ресурсов, например нефти, газа, геотермальных ресурсов и воды. Формирование таких скважин может быть выполнено с использованием буровых долот различных типов, включая, например, долота роторного бурения или буровые долота с фиксированными резцами. Существующие буровые долота с фиксированными резцами могут представлять собой устройства сложной конструкции, включающей расположение определенным образом режущих элементов на внешней поверхности бурового долота, ориентацию и конструкцию лопастей и каналов для бурового раствора, проходящих сквозь долото для подачи бурового раствора от бурового оборудования на поверхности по бурильной трубе, прикрепленной к буровому долоту. Кроме того, буровое долото обычно выполняется из комбинации материалов с тем, чтобы обеспечить необходимые технические характеристики в жестких условиях буровых работ.

Для формирования одного или более компонентов таких буровых долот использовались самые разные процессы, включая процессы спекания, горячего прессования и пропитки. Спекание представляет собой процесс скрепления соседних частиц металлического порошка при нагревании подготовленной смеси, вызывающем химические и (или) физические изменения в материалах, используемых для формования компонентов. В частности, спекание включает введение смеси тугоплавкого соединения и связующего материала в пресс-форму и нагревание до соединения двух материалов за счет диффузионного склеивания или механизмов переноса материала в жидкой фазе. В горячем прессовании могут использоваться более низкие, по сравнению со спеканием, температуры формования и высокие давления для формирования или соединения компонентов для формирования буровых долот. Буровые долота также могут быть сформированы процессом пропитки, в котором порошковый матричный материал пропитывается при высокой температуре расплавленным связующим материалом благодаря эффекту капиллярности и действию сил тяготения. В таких процессах, связующий материал может иметь низкую температуру плавления по сравнению со связующими материалами, используемыми в спекании, и поэтому процесс может проходить при температурах более низких, чем температуры спекания. Однако процесс пропитки может занимать много времени и сопровождаться рядом других проблем, что в итоге приводит к неудовлетворительному формованию бурового долота.

Раскрытие изобретения

В соответствии с первой особенностью, способ формования изделия путем пропитки включает подготовку рабочей литейной формы, включающей твердый связующий элемент из связующего материала и слой порошкового матричного материала внутри литейной полости рабочей литейной формы. Способ также включает нагревание рабочей литейной формы для формирования прохода из расплавленного связующего материала из твердого элемента из связующего материала для пропитывания слоя порошкового матричного материала.

Способ формования изделия путем пропитки включает подготовку рабочей литейной формы, имеющей литейную полость для формования в ней изделия, причем литейная полость имеет высоту (hmv) литейной полости между нижней поверхностью и верхней поверхностью. Рабочая литейная форма также включает канал для текучей среды, сообщающийся с нижней половиной рабочей литейной формы. Способ также включает размещение слоя порошкового матричного материала внутри литейной полости рабочей литейной формы, и нагревание рабочей литейной формы, и пропитывание нижней части слоя порошкового матричного материала расплавленным связующим материалом, вытекающим из канала в литейную полость.

Согласно другой особенности, способ формования изделия путем пропитки включает размещение слоя порошкового матричного материала внутри литейной полости рабочей литейной формы, и нагревание рабочей литейной формы, и формирование прохода из расплавленного связующего материала, проходящего сквозь часть слоя порошкового матричного материала и внутри рабочей литейной формы в литейную полость, для пропитки порошкового матричного материала. Средний диаметр прохода из расплавленного связующего материала существенно больше средней межзерновой пористости порошкового матричного материала.

В соответствии с другой особенностью, способ формования изделия путем пропитки включает подготовку твердого элемента из связующего материала, включающего связующий материал, внутри рабочей литейной формы, и размещение слоя порошкового матричного материала внутри рабочей литейной формы, при этом твердый элемент из связующего материала проходит сквозь часть слоя порошкового матричного материала. Способ также включает размещение слоя порошкового связующего материала поверх порошкового матричного материала и нагревание рабочей литейной формы для формирования расплавленного связующего материала и, благодаря этому, одновременной пропитки верхней области слоя порошкового матричного материала и нижней области слоя порошкового матричного материала при формировании расплавленного связующего материала, причем пропитывание нижней области проводится вдоль прохода из расплавленного связующего материала, определенного твердым элементом из связующего материала.

Согласно четвертой особенности, способ формования изделия путем пропитки включает формирование рабочей литейной формы, имеющей твердые элементы из связующего материала, находящиеся во внутреннем пространстве рабочей литейной формы и выступающие на внутренней поверхности, определяющей литейную полость рабочей литейной формы, в которой твердые элементы из связующего материала содержат связующий материал, и размещение порошкового матричного материала внутри литейной полости. Способ также включает нагревание литейной формы для расплавления твердых элементов из связующего материала для формирования расплавленного связующего материала, который пропитывает нижнюю область порошкового матричного материала.

Краткое описание чертежей

Для лучшего понимания специалистами настоящего раскрытия и его различных признаков и преимуществ приводится его рассмотрение со ссылками на приложенные чертежи, на которых:

на фиг.1 схематически представлена буровая система для бурения земных пород, в соответствии с вариантом осуществления;

на фиг.2 представлен в перспективе вид бурового долота, в соответствии с вариантом осуществления;

на фиг.3 представлена блок-схема, иллюстрирующая способ формования бурового долота, в соответствии с вариантом осуществления;

на фиг.4 представлен вид мастер-модели, включающей твердый элемент из связующего материала, в соответствии с вариантом осуществления;

на фиг.5 представлен вид части рабочей литейной формы, отформованной по мастер-модели, включающей твердый элемент из связующего материала, в соответствии с вариантом осуществления;

на фиг.6 представлен вид поперечного сечения рабочей литейной формы для формования долота, в соответствии с вариантом осуществления;

на фиг.7 представлен вид бурового долота после формования, в соответствии с вариантом осуществления;

на фиг.8 представлен вид бурового долота, отформованного посредством обычного процесса;

на фиг.9 представлен вид бурового долота, отформованного процессом в соответствии с вариантом осуществления.

Аналогичные или идентичные элементы на разных чертежах показаны одними и теми же условными обозначениями.

Описание предпочтительных вариантов осуществления

Приведенное ниже раскрытие относится к долотам для бурения земных пород и, в частности, к способам формования таких буровых долот. Приводится описание способов пропитки, в которых буровое долото формуется с использованием находящегося в литейной форме порошкового матричного материала, который пропитывается связующим материалом для формования законченного бурового долота, выполненного из сплава металл-матрица, содержащего матричный материал и связующий материал.

Термины "долото", "буровое долото" и "матричное буровое долото" могут быть использованы в этой заявке для обозначения "лопастных долот роторного бурения", "лопастных долот", "буровых долот с фиксированными резцами" или любого другого долота для бурения земных пород, в котором использованы принципы настоящего изобретения. Такие буровые долота могут быть использованы для формирования буровых скважин или стволов скважин в подземных породах. Буровые долота с фиксированными резцами, например буровые долота с поликристаллическими алмазами (ПКА), обычно используются в нефтегазовой промышленности для бурения скважин. Пример буровой системы для бурения таких буровых скважин в земных породах приведен на фиг.1. В частности, на фиг.1 показана буровая система, включающая буровую установку 101 на поверхности, на которой работает бригада рабочих, управляющих работой бурильной колонны 103. Бурильная колонна 103 определяет буровую скважину 105, проходящую в землю, и может включать последовательность бурильных труб 100 и 103, соединенных соединительными муфтами 104, обеспечивающих наращивание бурильной колонны 103 для больших глубин в скважине 105. Бурильная колонна может включать дополнительные компоненты, например бурильные клапаны, квадратные штанги, задвижки ведущей трубы, переводники квадрата ведущей трубы, противовыбросовые превенторы, клапаны сброса давления и другие компоненты, известные в уровне техники.

Более того, бурильная колонна может быть соединена с забойным блоком 107, включающим буровое долото 109, используемое для проходки земных пород и увеличения глубины скважины 105. Забойный блок 107 также может включать утяжеленные бурильные трубы, стабилизаторы бурильной колонны, скважинные двигатели, зонды для измерений в процессе бурения, зонды для каротажа в процессе бурения, ударные ясы, ускорители, шатунный инструмент для направленного бурения, концевой стыковочный инструмент, гасители колебаний, отклоняющие переводники, короткие переводники, разбуриватели, вентили и другие компоненты. На поверхности также имеется резервуар 111 для бурового раствора, в котором находится запас жидкости для подачи по трубам 113 в бурильную колонну 103 и, в частности, к буровому долоту 109 для содействия процессу бурения.

На фиг.2 представлен перспективный вид бурового долота с фиксированными резцами, в соответствии с вариантом осуществления. Как показано на фиг.2, буровое долото 200 с фиксированными резцами может включать корпус 213 долота, который может быть присоединен к хвостовику 214 посредством сварки. Хвостовик 214 может включать резьбовую часть 215 для соединения бурового долота 200 с другими компонентами забойного блока. Корпус 213 бурового долота также может включать шлиц 221 для разъединителя, проходящий поперек по окружности корпуса 213 бурового долота, для облегчения соединения и разъединения бурового долота 200 с другими компонентами.

Буровое долото 200 включает буровую коронку 222, присоединенную к корпусу 213 бурового долота. Должно быть понятно, что коронка 222 может быть изготовлена совместно с корпусом 213 бурового долота, образуя с ним единую монолитную деталь. Коронка 222 может включать калибрующие накладки 224, расположенные по сторонам выступов лопастей 217, которые проходят в радиальном направлении от коронки 222. Каждая из лопастей 217 отходит от коронки 222 и включает несколько режущих элементов 219, прикрепленных к лопастям 217 для обеспечения скалывания, скобления и резания земной породы при вращении бурового долота 200 в процессе бурения. Режущие элементы 219 могут быть вставками из карбида вольфрама, поликристаллическими алмазами (ПКА), фрезерованными стальными зубьями или любым подходящим твердым материалом. Покрытия или твердосплавные покрытия могут быть нанесены на режущие элементы 219 или иные части корпуса 213 долота или коронку 222 для снижения износа и увеличения срока службы бурового долота 200.

Коронка 222 также может включать каналы или канавки 227 для выноса бурового шлама или каналы, сформированные между лопастями 217, способствующие протеканию потока бурового раствора и удалению осколков и обломков породы из буровой скважины. Видно, что канавки 227 для выноса бурового шлама могут также включать отверстия 223 для каналов, проходящих внутри коронки 222 и корпуса 213 долота для переноса бурового раствора сквозь буровое долото 200. Отверстия 223 могут быть расположены на наружных поверхностях коронки 222 под различными углами для обеспечения протекания потока бурового раствора и эффективного удаления обломков из области резания в процессе бурения.

На фиг.3 показана блок-схема, иллюстрирующая способ формования долота, в соответствии с вариантом осуществления. В частности, способ начинается на шаге 301 подготовкой мастер-модели. Мастер-модель может иметь форму законченного бурового долота с тем, чтобы могла быть использована для формирования по ней рабочей литьевой формы. На фиг.4 показана мастер-модель в соответствии с вариантом осуществления. Мастер-модель 400 включает корпус 410 мастер-модели, имеющий форму коронки бурового долота, включая лопасти, канавки для выноса бурового шлама, отверстия и углубления внутри лопастей для установки в них режущих элементов.

Корпус 401 мастер-модели может быть выполнен из органического материала (природного или синтетического), неорганического материала или их комбинации. Например, некоторые подходящие мастер-модели выполнены из полимерного материала, например резины. Как показано далее на фиг.3, после подготовки мастер-модели на шаге 301, процесс может быть продолжен установкой на его поверхности твердых элементов 403 из связующего материала. На фиг.4 твердый элемент 403 из связующего материала показан помещенным на поверхности корпуса 401 мастер-модели. Твердый элемент 403 может соединяться с поверхностью корпуса 401 мастер-модели для его надлежащего расположения во время отливания рабочей литейной формы из мастер-модели. Подходящие способы для соединения твердого элемента 403 из связующего материала с корпусом 401 могут включать использование адгезивов, например клея. В альтернативном варианте, твердый элемент 403 из связующего материала может быть соединен с корпусом 401 мастер-модели механически, например пайкой, сваркой или даже крепежными элементами. В соответствии с вариантом осуществления, в литейной форме 400 может использоваться кольцо-шаблон 405, устанавливаемое вокруг корпуса 401 мастер-модели и образующее поверхность, к которой твердый элемент 403 из связующего материала может быть присоединен для правильного размещения твердого элемента 403 из связующего материала относительно корпуса 401 мастер-модели.

К корпусу 401 мастер-модели может быть прикреплено несколько твердых элементов из связующего материала на различных поверхностях. В частности, твердые элементы из связующего материала могут быть расположены так, чтобы они находились на одинаковых расстояниях друг от друга. Более того, каждый твердый элемент из связующего материала может быть расположен так, чтобы соприкасаться с мастер-моделью в аналогичных местах. Например, как показано, твердый элемент 403 из связующего материала может быть помещен внутри области мастер-модели 400, определяющей канавку для выноса бурового шлама между двумя лопастями в окончательно отформованном буровом долоте. В соответствии с одним частным вариантом осуществления, несколько твердых элементов из связующего материала помещены внутри каждой из канавок для выноса бурового шлама мастер-модели 400.

Как показано далее на фиг.4, твердый элемент 403 из связующего материала может представлять собой сплошной монолитный элемент. То есть в некоторых вариантах осуществления твердый элемент 403 из связующего материала может представлять собой жесткий поликристаллический компонент, обладающий достаточной механической прочностью для проведения с ним операций по установке внутри мастер-модели 403. В альтернативных вариантах осуществления, твердый элемент 403 из связующего материала может включать одно или несколько отверстий. Например, твердый элемент 403 из связующего материала может иметь отверстие, проходящее сквозь корпус элемента. В некоторых случаях, твердый элемент 403 из связующего материала может представлять собой трубку с отверстием, проходящим сквозь корпус, образованный внутренним диаметром.

Твердый элемент 403 из связующего материала может иметь форму, приспособленную к корпусу 401 мастер-модели. В частности, элемент может иметь форму, дополняющую контуры части рабочей литейной формы. Например, твердый элемент 403 из связующего материала может включать удлиненный элемент 407 корпуса, который может быть искривлен для согласования с контурами канавки для выноса бурового шлама. Кроме того, из удлиненного элемента 407 корпуса может отходить под углом рычаг 409. В некоторых случаях, рычаг 409 может проходить от удлиненного элемента 407 корпуса в целом под прямым углом так, чтобы он мог касаться поверхности корпуса 401 мастер-модели в нужном месте, например задней поверхности лопасти со стороны, противоположной поверхности с гнездами для установки в них режущих элементов.

В соответствии с конкретным вариантом осуществления, твердый элемент 403 из связующего материала предварительно формуется из связующих материалов. Например, твердый элемент 403 из связующего материала может быть отлит или отформован из связующих материалов так, чтобы при установке твердого элемента 403 из связующего материала в рабочую литейную форму, твердый элемент 403 из связующего материала расплавляли, формируя расплавленный связующий материал, пропитывающий порошковый матричный материал внутри рабочей литейной формы.

Связующий материал может представлять собой неорганический материал, подходящий для пропитывания некоторых порошковых матричных материалов. Например, связующий материал может включать металл или металлический сплав, например медь, никель, цинк, олово, марганец, титан, цирконий, гафний, ванадий, ниобий, тантал, хром, свинец, молибден, вольфрам, кобальт, железо, бор, кремний, фосфор и их комбинации.

В некоторых вариантах осуществления, связующий материал представляет собой сплав меди, содержащий по меньшей мере примерно 40 масс.% меди от общего веса состава связующего материала. В некоторых других вариантах осуществления, количество меди в медном сплаве может быть больше, например, по меньшей мере примерно 45 масс.%, по меньшей мере примерно 50 масс.%, по меньшей мере примерно 60 масс.% или даже по меньшей мере примерно 70 масс.%. Некоторые варианты осуществления, использующие связующий материал на основе сплава меди, включают примерно от 45 до 90 масс.% меди и, в частности, примерно от 45 до 80 масс.% меди.

Кроме того, подобные сплавы меди могут включать присадки, добавляемые в небольшом количестве, и управляющие некоторыми параметрами процесса, например температурой плавления связующего материала и текучестью. Подходящие металлы присадок могут включать, например, цинк, олово, марганец, никель, бор, железо, фосфор, свинец, кремний или их комбинации.

В некоторых вариантах осуществления, связующий материал на основе сплава меди содержит немного никеля. Никель может содержаться в количестве по меньшей мере примерно 5 масс.% от общего веса состава связующего материала. В некоторых случаях, количество никеля может быть больше, например, по меньшей мере примерно 8 масс.%, по меньшей мере примерно 9 масс.% или даже по меньшей мере примерно 10 масс.%. Связующие материалы на основе сплава меди могут использовать никель в интервале от примерно 5 до 20 масс.% и, в частности, в интервале примерно от 8 до 18 масс.%.

Состав на основе сплава меди также может содержать марганец, который может присутствовать в количествах по меньшей мере примерно 3 масс.% от общего веса состава связующего материала. В соответствии с некоторыми вариантами осуществления, количество марганца может составлять по меньшей мере примерно 4 масс.%, например, по меньшей мере примерно 5 масс.% и, в частности, в интервале примерно от 4 до 10 масс.%. Некоторые составы могут включать примерно от 5 до 8 масс.% марганца. При этом в других вариантах осуществления, может использоваться большее количество, например, связующий материал на основе сплава меди содержит примерно от 15 до 30 масс.% и, в частности, примерно от 20 до 25 масс.% марганца. В некоторые составы на основе сплава меди может добавляться цинк, который может содержаться в количестве по меньшей мере примерно 3 масс.% от общего веса состава связующего материала. В некоторых случаях, количество цинка может быть больше, например, по меньшей мере примерно 4 масс.%, по меньшей мере примерно 5 масс.% или по меньшей мере примерно 6 масс.% и, в частности, в интервале примерно от 5 до 10 масс.%.

Другой подходящей присадкой, используемой в связующем материале на основе сплава меди, является олово. Количество олова обычно составляет по меньшей мере примерно 3 масс.% от общего веса состава связующего материала. Например, некоторые составы могут использовать по меньшей мере примерно 4 масс.%, или по меньшей мере примерно 5 масс.% или даже по меньшей мере примерно 6 масс.% олова. При этом связующие материалы на основе сплавов меди, используемые в настоящем раскрытии, обычно содержат олово в интервале примерно от 3 до 10 масс.% и, в частности, в интервале примерно от 5 до 7 масс.%. Связующий материал может иметь температуру плавления связующего материала, подходящую для пропитывания порошкового матричного материала в рабочей литейной форме. Сама по себе, температура плавления связующего материала обычно составляет по меньшей мере примерно 1000°C. В некоторых процессах, температура плавления связующего материала может быть больше, например, по меньшей мере примерно 1025°C, по меньшей мере примерно 1050°C, по меньшей мере примерно 1100°C, или даже по меньшей мере примерно 1150°C. В некоторых вариантах осуществления используется связующий материал, имеющий температуру плавления связующего материала в интервале примерно от 1000 до 1200°C.

В соответствии с некоторыми альтернативными вариантами осуществления, твердый элемент 403 из связующего материала может представлять собой композиционный материал, включающий некоторое количество второго материала. Например, твердый элемент из связующего материала может представлять собой композиционный материал, включающий описанный здесь связующий материал в комбинации со вторым материалом, например органическим материалом. Органический материал может быть использован так, что в процессе нагревания органический материал может улетучиться или может быть удален, оставляя только связующий материал. Некоторые подходящие органические материалы могут включать природные органические материалы, например воск. Другие органические материалы могут включать полимеры, например полистирол.

Как показано на фиг.3, после установки твердых элементов из связующего материала на поверхность мастер-модели на шаге 303, процесс продолжается на шаге 305 формованием рабочей литейной формы из мастер-модели, в которой твердые элементы из связующего материала проходят сквозь внутреннее пространство рабочей литейной формы. Формование рабочей литейной формы может быть завершено процессом литья, когда неорганический тугоплавкий материал заливается вокруг мастер-модели для формования рабочей литейной формы. Полученная, в результате, рабочая литейная форма имеет литейную полость в форме бурового долота, определяемую поверхностями мастер-модели. Сама по себе, в некоторых вариантах осуществления, литейная полость имеет объем по меньшей мере примерно 80 куб. дюйма, например, порядка по меньшей мере примерно 150 куб. дюйма, по меньшей мере примерно 200 куб. дюйма, по меньшей мере примерно 600 куб. дюйма, или даже по меньшей мере примерно 1500 куб. дюйма. В некоторых вариантах осуществления используется рабочая литейная форма, имеющая объем литейной полости в интервале примерно от 200 до 700 куб. дюйма.

Некоторые подходящие материалы для формования рабочей литейной формы могут включать неорганические тугоплавкие материалы, например керамики. В соответствии с одним вариантом осуществления, рабочая литейная форма выполняется из материала, например оксида, фосфата, карбида, борида или их комбинации. В некоторых случаях, рабочая литейная форма может включать карбид. В одном варианте осуществления, рабочая литейная форма может быть сделана так, что состоит, по существу, из углерода, например, литейная форма может быть графитовой.

Внутренняя поверхность рабочей литейной формы, определяющая литейную полость, может включать покрытие. Покрытия могут быть сформированы на внутренних поверхностях с тем, чтобы при использовании некоторые материалы, например порошковые матричные материалы или расплавленный связующий материал, не прилипали или не разъедали внутреннюю поверхность литейной формы, вызывая коррозию и образование частиц в ходе процесса. Материалы покрытия могут включать неорганические материалы, например керамику. В соответствии с одним вариантом осуществления, покрытие может включать материал, содержащий углерод (например, графит), или может представлять собой оксид, борид, карбид или нитрид. Например, такой материал покрытия включает соединение, содержащее бор, например нитрид бора. Должно быть понятно, что некоторые части внутренних поверхностей могут не покрываться.

На фиг.5 приведено изображение части рабочей литейной формы, в соответствии с вариантом осуществления. Показанная часть рабочей литейной формы 500 представляет собой нижнюю часть, как будет понятно из последующих чертежей, и включает литейную полость 509, определяемую внутренними поверхностями корпуса 505 литейной формы. Литейная полость 509 определяет форму бурового долота, которое должно быть отформовано в ней. Следует отметить, что корпус 505 рабочей литейной формы может иметь несколько твердых элементов 510, 511, 512, 513 и 514 (510-514) из связующего материала, проходящих внутри части рабочей литейной формы 500. В частности, твердые элементы 510-514 связующего материала определяют каналы (полости) внутри части рабочей литейной формы 500, которые заполнены твердыми элементами 510-514 из связующего материала.

Кроме того, каналы, определяемые твердыми элементами 510-514 связующего материала, могут иметь связь по текучей среде с полостью 509 литейной формы. Как показано, твердый элемент 510 из связующего материала может определять входное отверстие 506 на поверхности корпуса 505 рабочей литейной формы и выходное отверстие 507 на другой поверхности корпуса 505 рабочей литейной формы, и тем самым, путь элемента из связующего материала, проходящий между входным отверстием 506 и выходным отверстием 507 внутри корпуса 505 рабочей литейной формы. Соответственно, часть рабочей литейной формы 500, сформированная из мастер-модели 400, включает твердые элементы 510-514 из связующего материала, определяющие каналы, заполненные твердыми элементами из связующего материала во внутренней части корпуса 505 рабочей литейной формы.

Следует отметить, что в одном альтернативном варианте осуществления, формирование проходов внутри корпуса 509 рабочей литейной формы может включать использование элементов из органического материала. Например, в некоторых вариантах осуществления могут использоваться органические элементы, содержащие органический материал, прикрепленный к определенным областям мастер-модели. Корпус 501 рабочей литейной формы может быть отформован по мастер-модели так, что корпус 510 рабочей литейной формы будет включать органический материал, имеющий определенную температуру улетучивания, при этом при тепловой обработке органический материал улетучивается, оставляя проход в корпусе 501 рабочей литейной формы. Такие проходы могут представлять собой углубления, полости, гнезда и др., в зависимости от формы и расположения органического материала в мастер-модели. При необходимости, в проходы затем может быть помещен твердый элемент из связующего материала, либо даже прикреплен к проходам.

Выше было описано формирование рабочей литейной формы по мастер-модели. В других вариантах осуществления, однако, рабочая литейная форма может быть сформирована непосредственно из сплошного материала, либо заготовки, без предшествующего создания мастер-модели. В таких процессах, заготовка может быть подвергнута фрезерованию с тем, чтобы превратить заготовку в рабочую литейную форму, имеющую литейную полость, определяемую внутренними поверхностями, подходящими для формования в ней бурового долота. Заготовка может быть выполнена из, например, углерод-содержащего материала, например, легко механически обрабатываемого графита.

В таких способах формирования, процесс введения твердого элемента 403 из связующего материала, или нескольких твердых элементов из связующего материала, внутрь рабочей литейной формы отличается от такого же процесса при использовании мастер-модели. В частности, процесс может включать механическое вырезание прохода в заготовке, пригодного для удержания в нем твердого элемента из связующего материала. Такой проход может быть сформирован так, чтобы он проходил сквозь внутреннюю часть литейной формы, определяя канал (см. каналы 691 и 692 на фиг.6), в которой большая часть площади поверхности канала изолирована внутри корпуса рабочей литейной формы.

В качестве альтернативы, в некоторых вариантах осуществления проход может быть сформирован в виде углубления или выступа на внутренней поверхности полости литейной формы. Обычно, когда проход представляет собой углубление, он проходит вдоль и пересекает внутреннюю поверхность, определяющую полость литейной формы, по всей длине углубления. В таких вариантах осуществления, после формирования прохода в виде углубления и перед дальнейшими процедурами, в проход может быть помещен, или прикреплен внутри него, твердый элемент из связующего материала. Понятно, что внутри рабочей литейной формы могут быть сформированы проходы другого типа или комбинации проходов, например, каналы, гнезда, углубления и др.

После формования части рабочей литейной формы 500 могут быть собраны другие компоненты рабочей литейной формы, как показано на фиг.6. В частности, на фиг.6 показан вид сечения полностью собранной рабочей литейной формы, в соответствии с вариантом осуществления. Рабочая литейная форма 600 включает нижнюю часть рабочей литейной формы 500, показанную ранее на фиг.5. Кроме того, рабочая литейная форма 600 может также включать среднюю часть 603, соединенную с нижней частью 500, например, посредством резьбового соединения 604. Далее, рабочая литейная форма 600 может включать верхнюю часть 605, присоединенную к средней части 603 посредством соединения такого же типа, либо защелкивающимся соединением, либо просто установкой верхней части 605 на среднюю часть 603.

На блок-схеме процесса, представленной на фиг.3, показано, что после формования рабочей литейной формы на шаге 305 и, в некоторых случаях, после соединения друг с другом средней части 603 и нижней части 500 рабочей литейной формы 600, процесс может продолжаться на шаге 307 размещением слоя порошкового матричного материала 650 внутри литейной полости 509 рабочей литейной формы 600. Как показано на фиг.6, слой порошкового матричного материала 650 может быть уложен внутри нижней части 500 рабочей литейной формы 600. Понятно также, что в некоторых случаях средняя часть 603 рабочей литейной формы 600 может быть присоединена к нижней части 500 перед размещением слоя порошкового матричного материала 650, если требуется размещение определенного количества порошкового матричного материала внутри рабочей литейной формы 600.

Порошковый матричный материал может быть составлен из материала для формования законченного изделия, обладающего определенными механическими свойствами (твердость, прочность и др.), пригодного для использования в буровом долоте. Более того, порошковый матричный материал 650 пригоден для пропитывания связующим материалом. В соответствии с вариантом осуществления, по меньшей мере часть порошкового матричного материала 650 может включать керамический материал, например карбид. Карбидный материал может включать металл, например, как материал карбида переходного металла. Особенно подходят карбидные материалы, включающие карбид вольфрама, например литой карбид вольфрама.

Литые карбиды могут быть в общих чертах представлены, как имеющие две фазы, что, например, применительно к литому карбиду вольфрама дает монокарбид вольфрама и карбид дивольфрама. Характеристики литых карбидов, например твердость, смачиваемость и взаимодействие с расплавленными связующими материалами, часто отличаются от цементированного карбида или карбидного материала в виде сферических частиц. Следует отметить, что порошки литого карбида могут быть в целом свободны от сплавов или иных загрязнителей, обусловленных связующими материалами, используемыми для формирования цементированных карбидов, благодаря чему может быть сокращено выщелачивание значительных количеств сплавов или иных потенциальных загрязнителей, которые прерывают процесс пропитывания.

Надо отметить, что материал литого карбида вольфрама может быть достаточно чистым материалом, содержащим вольфрам в размере по меньшей мере примерно 90 масс.%, например, по меньшей мере примерно 92 масс.%, и, в частности, в интервале примерно от 92 до 96 масс.%. Остальное, в основном, приходится на углерод, содержание которого находится в интервале примерно от 3 до 5 масс.%. В составе также могут присутствовать и другие примеси, например железо, ванадий, титан, тантал, ниобий и другие переходные металлы. Подобные загрязняющие материалы обычно присутствуют в количестве не более примерно 0,5 масс.%.

В соответствии с одним вариантом осуществления, порошковый матричный материал 650 может состоять в основном из карбида вольфрама, таким образом, этот порошковый матричный материал основан на карбиде вольфрама. Некоторые составы могут содержать по меньшей мере примерно 60 масс.%, например, по меньшей мере примерно 70 масс.%, по меньшей мере примерно 80 масс.% или даже по меньшей мере примерно 90 масс.% карбида вольфрама от общего веса порошкового матричного материала. В конкретных вариантах осуществления, в которых в порошковом материале 650 матрицы большую часть составляет карбид вольфрама, его содержание может быть примерно от 60 до 98 масс.%, например, примерно от 70 до 95 масс.%.

В вариантах осуществления, в которых порошковый матричный материал 650 состоит в основном из литого материала карбида вольфрама, средний диаметр частиц порошкового материала составляет менее примерно 500 мкм, например, не более примерно 400 мкм, не более примерно 300 мкм, не более примерно 200 мкм или даже не более примерно 150 мкм. В частных случаях, средний размер частиц литого карбида вольфрама порошкового матричного материала 650 находится в пределах примерно от 1 до 150 мкм.

Порошковый матричный материал литого карбида вольфрама может иметь распределение средних размеров частиц, способствующее его уплотнению внутри рабочей литейной формы 600. Это распределение может быть получено использованием сит различных типов или диапазонов для различных процентных содержаний порошкового матричного материала 650. Например, в частных вариантах осуществления, примерно от 35 до 50 масс.% общего веса порошка матричного материала литого карбида вольфрама может иметь средний размер частицы более 140 мкм, в частности, в интервале примерно от 145 до 210 мкм (примерно, сито -70/+100 по стандарту США). Кроме того, примерно от 15 до 30 масс.% общего веса порошка матричного материала литого карбида вольфрама может иметь средний размер частицы в интервале примерно от 100 до 145 мкм (примерно, сито -100/+140 по стандарту США). В некоторых порошковых матричных материалах мог