Мониторинг гидравлического разрыва пласта
Иллюстрации
Показать всеГруппа изобретений относится к скважинному мониторингу, с использованием распределенной системы акустического зондирования, гидравлического разрыва пласта во время сооружения эксплуатационных скважин, таких как нефтяные и газовые скважины. Обеспечивает повышение эффективности способа и надежности системы мониторинга. Сущность решения: способ содержит этапы, на которых: опрашивают оптическое волокно, размещенное вдоль траектории ствола скважины, для формирования распределенного акустического датчика; собирают данные от многочисленных продольных участков волокна; и обрабатывают указанные данные для получения индикации по меньшей мере одной характеристики гидравлического разрыва пласта, причем, по меньшей мере, одна индикация, по меньшей мере одной характеристики гидравлического разрыва пласта содержит индикацию, по меньшей мере одного из: а) уровней интенсивности, б) частоты и в) разброса частот акустических возмущений по меньшей мере в продольном участке зондирования волокна вблизи места растрескивания, причем указанную индикацию(ии) используют для представления индикации потока проппанта и текучей среды в трещину. 3 н. и 42 з.п. ф-лы, 8 ил.
Реферат
Настоящее изобретение относится к мониторингу гидравлического разрыва пласта во время сооружения эксплуатационных скважин, таких как нефтяные и газовые скважины. Мониторинг стадий, используемых при сооружении таких скважин, и мониторинг таких скважин в ходе эксплуатации часто называют скважинным мониторингом. В частности, настоящее изобретение относится к скважинному мониторингу с использованием распределенной системы акустического зондирования (DAS).
Оптоволоконные датчики стали общеупотребительной технологией для широкого круга вариантов применения, например, в геофизических исследованиях. Оптоволоконные датчики могут принимать разнообразные формы, и общепринятой формой является размещение катушки из волокна вокруг оправки. Точечные датчики, такие как геофоны или гидрофоны, могут быть изготовлены этим путем для регистрации акустических и сейсмических данных в точке, и крупные массивы таких точечных датчиков могут быть мультиплексированы между собой с использованием оптоволоконных соединительных кабелей для формирования обобщенной оптоволоконной системы. Пассивное мультиплексирование может быть достигнуто полностью оптическими средствами, и преимущество состоит в том, что не требуются никакие электрические соединения, что является чрезвычайно благоприятным в жестких условиях окружающей среды, где электрическое оборудование легко повреждается.
Оптоволоконные датчики нашли применение в скважинном мониторинге, и известно создание сети сейсмоприемников (геофонов) в скважине или вокруг нее для регистрации сейсмических сигналов с целью лучшего понимания местных геологических условий и процесса извлечения. Проблема такого подхода состоит в том, что геофоны характеризуются относительно большими размерами, и поэтому размещение их в скважине затруднительно. В дополнение, геофоны склонны иметь ограниченный динамический диапазон.
Патентный документ WO 2005/033465 описывает систему скважинного акустического мониторинга с использованием волокна, имеющего ряд периодических изменений показателя преломления, например брэгговские решетки. Акустические данные извлекаются участками волокна и используются для отслеживания условий в буровой скважине во время эксплуатации.
Гидравлический разрыв пласта является важным процессом во время формирования некоторых нефтяных или газовых скважин, называемых как нетрадиционные скважины, для стимуляции течения нефти или газа из пласта горной породы. Обычно буровую скважину пробуривают до пласта горной породы и облицовывают обсадной колонной. Наружная сторона обсадной колонны может быть заполнена цементом, чтобы предотвратить загрязнение водоносных слоев и т.д., когда начинается течение. В нетрадиционных скважинах может потребоваться гидравлический разрыв пласта горной породы, чтобы стимулировать течение. Обычно этого достигают двухстадийным процессом перфорации с последующим гидравлическим разрывом пласта. Перфорация включает подрыв серии перфорационных зарядов, то есть кумулятивных зарядов, изнутри обсадной колонны для создания перфорационных отверстий сквозь обсадную колонну и цемент, которые простираются в пласт горной породы. Сразу после завершения перфорации обеспечивают растрескивание горной породы нагнетанием текучей среды, такой как вода, вниз по скважине под высоким давлением. Поэтому эта текучая среда вдавливается в перфорационные отверстия и, когда достигается достаточное давление, вызывает разрыв пласта горной породы. К текучей среде обычно добавляют твердый дисперсный материал, такой как песок, для заполнения трещин, которые сформировались, и удержания их в открытом состоянии. Такой твердый дисперсный материал называют проппантом. Скважина может быть перфорирована в серии секций, начиная с участка скважины, наиболее отдаленного от устья скважины. Таким образом, когда секция скважины была перфорирована, она может быть заблокирована запорной пробкой, пока производят перфорацию и гидроразрыв следующей секции.
Процесс гидравлического разрыва пласта является ключевой стадией в сооружении нетрадиционной скважины и представляет собой процесс гидравлического разрыва пласта, который эффективно определяет производительность скважины. Однако контроль и мониторинг процесса гидравлического разрыва пласта являются очень трудными. Количество текучей среды и проппанта и величину расхода потока в основном измеряют как вспомогательные параметры для определения, когда могло произойти достаточное образование трещин, и также для выявления потенциальных проблем в процессе гидравлического разрыва пласта.
Одна возможная проблема, известная как вымывание проппанта, возникает, когда разрушается цемент, охватывающий обсадную колонну, и текучая среда просто втекает в полость. Это обусловливает бесполезный расход расклинивающей текучей среды и препятствует эффективному гидравлическому разрыву пласта. Показателями вымывания проппанта могут быть высокий расход потока или внезапное увеличение величины расхода потока.
Еще одна проблема относится к ситуации, которая может возникать, где большая часть текучей среды и проппанта втекает в пласт горной породы через одно или более перфорационных отверстий, препятствуя эффективному гидравлическому разрыву пласта через другие места перфораций. Обычно процесс гидравлического разрыва пласта выполняют для сегмента ствола скважины, и, как упомянуто выше, несколько перфораций могут быть сделаны вдоль длины этой секции скважины так, что последующий процесс гидравлического разрыва пласта вызывает растрескивание в нескольких иных местах вдоль этой секции скважины. Однако во время процесса гидравлического разрыва пласта возможно, что горная порода в одном или более местах перфораций может растрескиваться более легко, чем при остальных перфорациях. В этом случае одна или более развивающихся трещин может начинаться с поглощением большей части текучей среды и проппанта, снижая давление в остальных местах перфораций. Это может иметь результатом ухудшение растрескивания в других местах перфораций. Увеличение расхода потока текучей среды и проппанта может просто приводить к усиленному растрескиванию у первой перфорации, где трещина может просто разрастаться и не оказывать значительного влияния на то, сколько нефти или газа добывается через эту трещину. Однако ослабленное растрескивание в других местах может снижать количество нефти и газа, получаемых через те места, тем самым оказывая негативное влияние на производительность скважины в целом. Например, предположим, что секцию скважины перфорируют в четырех различных местах для последующего гидравлического разрыва пласта. Если во время процесса гидравлического разрыва пласта три из мест перфорации растрескиваются относительно легко, то большая часть текучей среды и проппанта будет перетекать к этим местам. Это может препятствовать тому, чтобы в четвертом месте гидравлического разрыва пласта даже развивалось давление, достаточное для эффективного растрескивания, с тем результатом, что только три трещины распространяются в пласт горной породы с созданием протока для текучей среды. Тем самым производительность этого участка скважины составляет только 75% от той, какую можно было бы ожидать в идеальном случае.
Если есть подозрение о возможности такой ситуации, в текучую среду может быть добавлен дополнительный твердый материал, обычно сферические гранулы твердого материала с конкретным размером или в диапазоне размеров. Размер сферических гранул является таким, что они могут увлекаться течением в относительно большие трещины, где они будут внедряться с образованием преграды, но являются достаточно большими, чтобы не поступать в относительно мелкие трещины. Этим путем относительно крупные трещины, которые могут потреблять большую часть текучей среды для гидравлического разрыва пласта, частично закупориваются во время процесса гидравлического разрыва пласта, с тем результатом, что течение во все трещины выравнивается.
Традиционно условия течения текучей среды для гидравлического разрыва пласта отслеживают в попытках понять, становятся ли доминирующими одно или более мест гидравлического разрыва пласта и тем самым препятствуют эффективному растрескиванию в одном или более других местах гидравлического разрыва пласта, но сделать это является затруднительным и часто основывается на практическом опыте буровых инженеров.
Так же, как отмеченные выше проблемы, затруднительным является простое отслеживание процесса гидравлического разрыва пласта, чтобы удостовериться в достижении желательного уровня растрескивания. Кроме того, может быть предусмотрена более чем одна нефтяная скважина для извлечения нефти или газа из пласта горной породы. Когда создают новую скважину, трещины не должны распространяться в область пласта горной породы, которая уже питает существующую скважину, так как любое течение в новую скважину из такой области может просто сокращать течение в существующую скважину. Однако определить направление и протяженность трещин очень трудно.
В дополнение к мониторингу величины расхода потока текучей среды, показания датчиков могут быть зарегистрированы во время процесса гидравлического разрыва пласта от датчиков, размещенных в отдельных наблюдательных скважинах и/или на уровне земли. Эти датчики могут включать геофоны или другие сейсмические датчики, размещенные для регистрации сейсмического события во время процесса гидравлического разрыва пласта. Затем эти показания датчиков могут быть проанализированы после процесса гидравлического разрыва пласта, чтобы попытаться определить общее местоположение и протяженность растрескивания, но обеспечивают мало возможностей для регулирования процесса гидравлического разрыва пласта в режиме реального времени.
Цель настоящего изобретения состоит в создании систем и способов мониторинга гидравлического разрыва пласта в буровой скважине.
Согласно первому аспекту изобретения, представлен способ скважинного мониторинга гидравлического разрыва пласта, включающий стадии, в которых: опрашивают оптическое волокно, размещенное вдоль траектории ствола скважины, для создания распределенного акустического датчика, замеряют данные от многочисленных продольных участков волокна; и обрабатывают указанные данные для получения индикации по меньшей мере одной характеристики гидравлического разрыва пласта.
Распределенное акустическое зондирование (DAS) представляет собой форму оптоволоконного зондирования, альтернативную точечным датчикам, в которой оптически опрашивают единичный отрезок продольного волокна, обычно одним или более входными импульсами, для проведения, по , непрерывного зондирования активности колебаний вдоль отрезка. В волокне возбуждают оптические импульсы и регистрируют и анализируют обратное рассеяние излучения внутри волокна. Чаще всего регистрируют обратное рэлеевское рассеяние. В ходе анализа обратного рассеяния излучения внутри волокна можно эффективно подразделить волокно на многочисленные дискретные участки зондирования, которые могут быть (но могут и не быть) смежными. Внутри каждого дискретного участка зондирования механические колебания волокна, например, от акустических источников вызывают изменение количества излучения, которое претерпевает обратное рассеяние от этого участка. Это изменение может быть зарегистрировано и проанализировано и использовано в качестве меры интенсивности возмущений в волокне на этом участке зондирования. Как применяемому в настоящем описании, термину «распределенное акустическое зондирование» будет придано значение датчика, включающего оптическое волокно, в которое посылают оптический сигнал для создания многочисленных дискретных акустических участков зондирования, распределенных в продольном направлении вдоль волокна, и «акустический» предполагается означающим любой тип механического колебания или волны сжатия, в том числе сейсмические волны. Поэтому способ может включать стадии, в которых возбуждают серию оптических импульсов в указанном волокне и регистрируют обратное рэлеевское рассеяние излучения волокном; и обрабатывают зарегистрированное обратное рэлеевское рассеяние излучения для формирования многочисленных дискретных продольных участков зондирования в волокне. Следует отметить, что как используется здесь, термин «оптический» не ограничивается видимой областью спектра, и оптическое излучение включает инфракрасное излучение и ультрафиолетовое излучение.
Единичный отрезок волокна обычно представляет собой одномодальное волокно, и оно предпочтительно не содержит никаких зеркал, отражателей, решеток или (при отсутствии любого внешнего стимула) любых изменений оптических свойств вдоль его длины, то есть отсутствие любого заданного оптического изменения вдоль его длины. Этим обеспечивают то преимущество, что может быть использован немодифицированный, по существу сплошной отрезок стандартного волокна, требующего незначительной или никакой модификации или подготовки для применения. Подходящая DAS-система описана, например, в патентном документе GB2442745, содержание которого здесь включено ссылкой. Такой датчик можно рассматривать как полностью распределенный или внутренний датчик, так как в нем используют собственное рассеяние, происходящее изначально в оптическом волокне, и тем самым распределяют функцию зондирования на все протяжение оптического волокна в целом.
Поскольку волокно не имеет разрывов, длину и размещение участков волокна, соответствующих каждому каналу, определяют опросом волокна. Эти параметры могут быть выбраны согласно физической компоновке волокна и скважины, мониторинг которой проводят с его помощью, и также соответственно типу требуемого мониторинга. Этим путем расстояние вдоль волокна, или глубину в случае главным образом вертикальной скважины, и длину каждого участка волокна, или разрешение канала, можно без труда варьировать с приспособлением к запросчику, изменяя ширину входного импульса и коэффициент заполнения входных импульсов, без каких-нибудь изменений волокна. Распределенное акустическое зондирование может действовать с продольным волокном длиной до 40 км или более, например, с разрешением регистрируемых данных по 10-метровым отрезкам. В типичном скважинном применении обычным является волокно длиной в несколько километров, то есть волокно проходит вдоль всей длины ствола скважины, и разрешение канала продольных участков зондирования в волокне может быть порядка 1 м или нескольких метров. Как упомянуто ниже, пространственное разрешение, то есть длину отдельных участков зондирования в волокне, и распределение каналов можно варьировать во время применения, например, в ответ на зарегистрированные сигналы.
В способе согласно настоящему изобретению сигналы обратной связи из волокна обрабатывают для получения индикации по меньшей мере одной характеристики гидравлического разрыва пласта. В DAS-датчике, таком как описанный в патентном документе GB2442745, обработка по каждому отдельному акустическому каналу может быть проведена в режиме реального времени. Таким образом, способ согласно настоящему изобретению обеспечивает индикацию характеристик гидравлического разрыва пласта в режиме реального времени, то есть без какой-то значительной задержки. Поэтому индикация характеристик гидравлического разрыва пласта, обеспечиваемая данным способом, может быть использована для регулирования процесса гидравлического разрыва пласта. Способ согласно настоящему изобретению исполняют в то время, когда текучую среду и проппант нагнетают вниз в буровую скважину и он дает показания в реальном времени того, что происходит в глубине скважины. Это может позволить оператору скорректировать параметры течения, при необходимости останавливать течение или добавлять дополнительный твердый материал, основываясь на показаниях характеристик гидравлического разрыва, то есть данных от DAS-датчика. В некоторых вариантах исполнения автоматическое управляющее устройство может быть приспособлено для корректирования параметров течения автоматически на основе характеристик гидравлического разрыва пласта.
Квалифицированному специалисту будет понятно, что может иметь место некоторое, обусловленное естественными причинами, небольшое запаздывание приема излучения, претерпевшего обратное рассеяние от соответствующего участка волокна, так как излучение должно вернуться обратно от соответствующего участка волокна, где происходит рассеяние, до детектора на конце волокна. Кроме того, будут некоторые небольшие запаздывания, связанные со срабатыванием детектора, регистрацией данных и обработкой данных, чтобы выдать показания характеристик гидравлического разрыва пласта. Однако DAS-зондирование согласно настоящему изобретению может обеспечивать индикацию акустических возмущений, регистрируемых участками зондирования в волокне, без какого-нибудь значительного запаздывания, то есть в пределах нескольких секунд или одной секунды или в пределах 500 миллисекунд (мс), 100 мс, 10 мс или менее, после реального возмущения. Это может быть достигнуто с использованием имеющихся в продаже на рынке детекторов и управляющих устройств.
Индикация характеристик растрескивания может включать звуковое воспроизведение акустических сигналов от одного или более выбранных участков зондирования волокна, расположенных вблизи мест гидравлического разрыва пласта.
Оптическое волокно предпочтительно размещают внутри ствола скважины, в которой проводят гидравлический разрыв пласта. В одной компоновке оптическое волокно прокладывают вдоль наружной стороны обсадной колонны скважины, хотя в некоторых вариантах исполнения волокно может быть размещено проходящим внутри обсадной колонны. Оптическое волокно может быть прикреплено к обсадной колонне скважины, когда ее вводят в буровую скважину, и, если на наружной стороне обсадной колонны, впоследствии зацементировано на месте в тех участках скважины, которые подвергают цементированию.
Поэтому волокно следует общей траектории ствола скважины и простирается в буровую скважину по меньшей мере вплоть до участка, в котором происходит гидравлический разрыв пласта. Поэтому при гидравлическом разрыве пласта в любой данной секции буровой скважины в волокно может быть послан запрашивающий сигнал для создания одного или, предпочтительно, многочисленных акустических участков зондирования вблизи места гидравлического разрыва пласта, то есть местоположения вдоль ствола скважины, в котором протекает текучая среда для гидравлического разрыва пласта, или же предполагается ее течение, в пласт горной породы для выполнения гидравлического разрыва пласта. Позиция или местоположение представляющих интерес участков зондирования в основном должны быть известны по сведениям о длине вдоль волокна и, следовательно, скважины. Однако, когда проводят перфорацию, способ может включать мониторинг акустических возмущений в волокне, возбуждаемых на стадии перфорации. Акустические возмущения во время перфорации могут быть использованы для определения участков волокна, которые соответствуют местам растрескивания. Например, участки волокна, которые проявляют наибольшую интенсивность акустического возмущения во время перфорации, будут главным образом соответствовать положению, где подрывают перфорационные заряды, и тем самым местам гидравлического разрыва пласта.
Поэтому акустические сигналы от одного или более соответствующих участков волокна, где предполагается проведение гидравлического разрыва пласта, могут быть воспроизведены на подходящем звуковом устройстве. Это даст персоналу возможность прослеживать процесс гидравлического разрыва пласта по звуковой обратной связи о том, что происходит в месте образования трещин. Течение текучей среды и проппанта будет создавать фоновый шумовой сигнал, и образующиеся трещины будут давать кратковременные сигналы с относительно высокой интенсивностью, которые будут звучать для операторов подобно треску. Поэтому оператор, вслушиваясь в сигналы, создаваемые акустическим каналом волокна, соседнего с местом индивидуальной перфорации, будет обеспечен звуковой обратной связью в режиме реального времени об обстоятельствах течения несущей проппант текучей среды и любого достигнутого гидравлического разрыва пласта, происходящего в этом месте растрескивания.
Будет понятно, что условия в глубине буровой скважины могут быть агрессивно жесткими, и в особенности такими во время гидравлического разрыва пласта. Поэтому размещение конкретного датчика в глубине ствола скважины во время гидравлического разрыва пласта до сих пор не практиковали. В способе настоящего изобретения используют оптическое волокно, которое может быть размещено на наружной стороне обсадной колонны скважины для создания скважинного датчика в буровой скважине, в которой проводят гидравлический разрыв пласта.
Индикация также может включать сравнение уровней интенсивности акустических возмущений вблизи каждого из нескольких различных мест гидравлического разрыва пласта. Средняя интенсивность или акустическая энергия в каждом соответствующем участке зондирования волокна может быть использована для индикации, не происходит ли растрескивание в одном месте гидравлического разрыва пласта существенно иначе, нежели в еще одном месте растрескивания, например, не связано ли одно место гидравлического разрыва пласта со значительно более низкой или более высокой акустической энергией, чем еще одно место гидравлического разрыва пласта. Это может быть использовано для индикации, являются ли конкретные место или места гидравлического разрыва пласта более или менее активными, нежели чем другие места растрескивания.
Если акустический канал волокна вблизи места гидравлического разрыва пласта показывает значительно более высокую акустическую энергию, чем в других местах гидравлического разрыва пласта, то это могло бы быть показателем того, что в этой точке в пласт горной породы поступает большая доля несущей проппант текучей среды. Подобно этому, если одно место гидравлического разрыва пласта показывает относительно низкую акустическую интенсивность, это могло бы быть показателем того, что значительное течение несущей проппант текучей среды в пласт горной породы отсутствует. Таким образом, относительные акустические интенсивности могли бы быть использованы для индикации, что одно или более мест гидравлического разрыва пласта потребляют больше несущей проппант текучей среды и/или одно или более мест гидравлического разрыва пласта являются относительно неактивными.
Эта информация может быть использована персоналом, который управляет процессом гидравлического разрыва пласта, для модификации условий течения проппанта. Например, можно варьировать величину расхода потока, или же твердый материал, такой как сферические гранулы конкретного размера, мог бы быть добавлен в поток для частичного блокирования доминирующего места гидравлического разрыва пласта, как обсуждалось выше. Способ согласно настоящему изобретению представляет надежный метод определения, когда одно или более мест гидравлического разрыва пласта потребляют большую часть проппанта, позволяя оператору процесса вносить любые необходимые коррективы. Кроме того, способ обеспечивает обратную связь в режиме реального времени в том плане, являются ли эффективными произведенные оператором изменения, например, в улучшении растрескивания или выравнивании растрескивания среди нескольких мест гидравлического разрыва пласта. Как описано выше, к текучей среде для гидравлического разрыва пласта могут быть добавлены сферические гранулы твердого материала, чтобы частично блокировать доминирующее место гидравлического разрыва пласта. Выбор правильного размера или диапазона размеров материала важен для обеспечения того, что доминирующая трещина частично заблокируется, тогда как это не создаст значительных помех другим трещинами. Выбор размера добавляемого материала и количества вносимого материала может быть в существенной мере основан на догадках. Однако при применении способа согласно настоящему изобретению дополнительный твердый материал может быть добавлен постадийно, с внесением частиц с различными размерами на различных стадиях и с мониторингом влияния на акустическую активность на каждом из мест гидравлического разрыва пласта.
Акустическая информация может быть отображена в режиме реального времени в виде графика акустической энергии, то есть интенсивности, для каждого из отдельных акустических каналов при мониторинге. Это дает оператору визуальную индикацию соответствующей активности для каждого места гидравлического разрыва пласта. Также могут быть применены и другие средства визуального отображения данных.
Способ может включать подразделение данных от продольных участков зондирования волокна на одну или более спектральных полос. Другими словами, данные могут быть профильтрованы так, чтобы включать только акустические возмущения с частотой в пределах частотного диапазона конкретной спектральной полосы. Анализ данных с помощью спектральной полосы может более четко выявлять акустическое различие между разнообразными каналами на местах гидравлического разрыва пласта. Поскольку несущая проппант текучая среда представляет собой высоконапорный поток текучей среды, содержащей дисперсный материал, он по своей природе является шумным процессом и будет создавать множество акустических откликов вследствие течения внутри обсадной колонны. Течение в перфорацию может быть связано с конкретной частотной характеристикой, и тем самым различие между потоками может быть более легко различимым по конкретной спектральной полосе или полосам.
Как упомянуто выше, стадия гидравлического разрыва пласта по своей природе является очень шумным процессом. Таким образом, применение акустического датчика внутри ствола скважины, в которой происходит гидравлический разрыв пласта, для получения значимой информации относительно происходящего гидравлического разрыва пласта является непредсказуемым, и применение распределенного акустического датчика в забое буровой скважины, в которой выполняют гидравлический разрыв пласта, для получения полезной информации о процессе гидравлического разрыва пласта, то есть информации, которая может быть использована для ощутимого модифицирования процесса, представляет еще один аспект изобретения.
В некоторых случаях наиболее интересная спектральная полоса может быть известной заблаговременно. Однако в других случаях на спектральный отклик могут влиять все из динамических характеристик скважины и динамических параметров процесса гидравлического разрыва пласта. Поэтому в некоторых вариантах исполнения способ может включать подразделение акустических возмущений соответствующих участков зондирования волокна на многочисленные спектральные полосы, каждая из которых может быть отображена для операторов. Различные спектральные полосы могли бы быть показаны оператору одновременно или последовательно, или же оператор мог бы выбрать, какую из спектральных полос следовало бы отобразить.
Спектральные полосы могут быть обработаны для автоматического выявления представляющей интерес спектральной полосы. Например, данные для каждой спектральной полосы могут быть обработаны для выявления присутствия значительного локального максимума средней энергии, который мог бы быть показательным для акустического сигнала от проппанта и текучей среды, протекающих в место перфорации. Обработка могла бы быть ограничена на основе знания акустических каналов, которые соответствуют местам перфорации, например, как предварительно задано на основе сведений о волокне, по выбору оператора или как определено измерениями во время подрыва перфорационных зарядов. Другими словами, спектральные полосы могли бы быть проанализированы для определения спектральной полосы, в которой энергия в каналах, соответствующих местам перфорации, является значительно более высокой, чем энергия в других близлежащих каналах. Спектральные полосы также могли бы быть проанализированы для выявления любой спектральной полосы, в которой акустическая энергия на одном или более каналах, соответствующих месту перфорации, является значительно более низкой, чем акустическая энергия на одном или более других местах перфорации. Соответствующие спектральные полосы могли бы быть отображены или высвечены для оператора.
Способ также может включать мониторинг во времени относительной акустической энергии каналов, соответствующих местам перфорации, например, для определения, происходит ли значительное изменение мгновенного среднего значения в любом соответствующем канале и/или варьируют ли относительные энергии в каналах, соответствующих местам перфорации. Если уровни акустической энергии значительно изменяются, например средняя интенсивность конкретного канала, соответствующего месту перфорации, испытывает внезапный скачок, или если относительные интенсивности двух каналов, соответствующих различным местам перфорации, отклоняются от определенного порогового значения, процесс может подавать сигнал тревоги для оператора, например, в виде визуальной и/или звуковой аварийной сигнализации.
В некоторых вариантах исполнения частота и/или интенсивность сигналов от каналов, которые размещены в местах перфорации, могут быть проанализированы для определения характеристик трещины. Как упомянуто выше, механические нарушения, испытываемые акустическими каналами вследствие течения текучей среды для гидравлического разрыва в пласт горной породы через место перфорации, могут включать частотный компонент, который может зависеть от относительного размера перфорации и величины существующей трещины. Таким образом, в результате анализа частоты или частот, при которой(-ых) акустические сигналы обусловливаются главным образом течением текучей среды в трещину, может быть сделан вывод об относительном размере трещины.
Статистические сведения о прежних процессах гидравлического разрыва пласта могут быть собраны и проанализированы, чтобы способствовать оценке характеристик растрескивания. Например, как описано выше, способом согласно настоящему изобретению можно определить, какое влияние оказывает добавление твердого материала с конкретным размером на течение текучей среды для гидравлического разрыва пласта в многочисленные различные трещины. Поэтому способ может включать регистрацию данных по меньшей мере от акустического канала или каналов вблизи мест гидравлического разрыва пласта для последующего анализа. В то время как обратная связь в режиме реального времени полезна для оператора, дополнительный анализ может быть выполнен для улучшения обратной связи, доступной в будущих процессах гидравлического разрыва пласта. Настоящее изобретение также относится к анализу статистических данных для идентификации характеристик трещины.
Например, исследование акустических откликов, чтобы увидеть, как изменялись сигналы, когда добавляли твердый материал с конкретным размером, позволяет определить некоторые общие размеры трещины. Если сферические гранулы с диаметром D1, будучи добавленными к текучей среде, не оказывают значительного влияния на акустический отклик конкретной трещины, тогда как сферические гранулы с меньшим диаметром D2 оказываются нарушающими течение в эту трещину, это может подразумевать, что соответствующая трещина имеет общий размер где-то между D1 и D2 (возможно, скорректированный с учетом сжимаемости материала сферических гранул). Поэтому могут быть проанализированы акустические отклики от трещин в диапазонах определенных размеров. Например, акустический канал, который размещен при трещине, которая соответствует сферическим гранулам с размером D2, но не с размером D1, может проявлять сильный спектральный компонент в первом диапазоне, но может просто показывать фоновый шум во втором спектральном диапазоне. Акустический канал, который размещен в другом месте растрескивания, который не проявляет значительного изменения сигнала, когда добавляют сферические гранулы с размером D1 или D2 (и тем самым могут предполагаться меньшими в некотором измерении), может не показывать значительных компонентов в первом спектральном диапазоне, но может проявлять значительный компонент во втором спектральном диапазоне. Если, скажем, эти данные определены для конкретной горной породы, то они могут быть использованы для нового процесса гидравлического разрыва пласта, проводимого в пласте из такой же горной породы. Например, анализ в режиме реального времени спектрального отклика акустических каналов во время процесса гидравлического разрыва пласта может быть применен для выводов относительно размера трещины. Представленная оператору индикация могла бы включать показания о размере трещин, которые, например, могли бы быть полезными для регулирования параметров течения и, при необходимости, в выборе надлежащего размера твердого материала, добавляемого к текучей среде.
Индикация по меньшей мере одной характеристики трещины может включать показания коротких одиночных сейсмических импульсов, в особенности относительно высокочастотных коротких одиночных сейсмических импульсов, в акустическом сигнале. Представляющие интерес события растрескивания имеют природу, разительно отличающуюся от шума непрерывного течения, обусловленного высоконапорным притоком воды и песка во время процесса гидравлического разрыва пласта. В общем, они характеризуются короткими и внезапными волнами - далее называемыми как короткие одиночные сейсмические волны. Способ может включать обнаружение таких коротких одиночных сейсмических импульсов для охарактеризования гидравлического разрыва пласта. Например, способ может включать применение устройства, обнаруживающего кратковременные вариации за пределами средних переменных уровней (детектор импульсных помех), для отделения этих событий от фона и длиннопериодного шума. В способе также могут быть использованы характеристики известных событий растрескивания для идентификации происходящего образования трещин. Характеристики известных событий растрескивания могут учитывать тип горной породы, подвергаемой гидравлическому разрыву, то есть способ может выискивать акустические «характеристики», связанные с гидравлическим разрывом пласта, который происходит обычным порядком, и эти характеристики могут варьировать согласно типу горной породы пласта.
Способ может включать индикацию числа коротких одиночных сейсмических импульсов, которые были обнаружены, и/или частоты возникновения коротких одиночных сейсмических импульсов. Поскольку короткие одиночные сейсмические импульсы являются показателями растрескивания и процесс предназначен для растрескивания горной породы для создания протоков, большое число коротких одиночных сейсмических импульсов может указывать на то, что процесс гидравлического разрыва пласта протекает успешно. Поэтому число и/или частота коротких одиночных сейсмических импульсов могут быть переданы оператору процесса гидравлического разрыва пласта и могут быть использованы для определения, надо ли корректировать параметры процесса гидравлического разрыва пласта. Здесь может быть принят во внимание тип пласта горной породы, подвергаемого гидравлическому разрыву. Некоторые горные породы могут растрескиваться относительно легко, и тем самым можно ожидать относительно большого числа актов растрескивания с относительно малой интенсивностью, то есть коротких одиночных сейсмических импульсов, с относительно высокой частотой. Другие пласты горной породы могут растрескиваться менее легко, и это может проявляться в сравнительно более редких и менее частых, но более интенсивных актах растрескивания и тем самым коротких