Твердый сплав
Изобретение относится к области порошковой металлургии, в частности к твердым сплавам, предназначенным для изготовления износостойких изделий. Твердый сплав содержит, мас.%: молибден 1,5-2,5, кобальт 1,0-2,0, никель 4,0-8,0, хром 0,5-1,0, никелид титана 0,5-1,0, карбид вольфрама 25,0-35,0, карбид титана - остальное. Сплав имеет связку, способную сохранять свои свойства при работе в условиях высоких температур, при этом сплав характеризуется высокой износостойкостью при работе в условиях высоких температур. 2 табл.
Реферат
Изобретение относится к области порошковой металлургии, в частности к твердым сплавам, предназначенным для изготовления износостойких изделий.
Применяемые в настоящее время твердые сплавы состоят из тугоплавкой фазы в виде металлоподобного соединения переходных металлов с неметаллами и металлической фазы, служащей связкой.
В качестве тугоплавкой фазы, как правило, используются карбиды титана (см., например, авторские свидетельства СССР №№609338, 647348, 1753729 и др.) или карбиды вольфрама (см., например, сплавы группы ВК по ГОСТ 3882-90 и др.), а также, в случае двухкарбидных сплавов, их сочетания (см., например, патент РФ №2307013, патент США №5574954, сплавы группы ТК по ГОСТ 3882-90 и др.).
Данные сплавы характеризуются высокими механическими и антикоррозионными свойствами, но имеют низкую износостойкость при работе в условиях высоких (от 600°C до 1200°C) температур, обусловленную недостаточной термостойкостью связки, теряющей при высоких температурах свои свойства, что ведет к быстрой потере сплавом зерен твердой фазы.
Наиболее близким по совокупности существенных признаков является твердый сплав по патенту РФ №2255998, содержащий 12,0-45,0 мас.% никеля; 1,2-5,4 мас.% алюминия; 0,8-3,9 мас.% хрома; 0,1-0,9 мас.% титана; 0,4-2,4 мас.% вольфрама; 0,5-2,4 мас.% молибдена; 40,0-85,0 мас.% карбида переходного металла, выбранного из группы Ti, Cr, Zr, W, Nb.
Данный сплав не обеспечивает необходимую износостойкость при работе в условиях высоких температур.
Задачей предлагаемого изобретения является создание твердого сплава, обладающего связкой, способной сохранять свои свойства при работе в условиях высоких температур, с получением технического результата в виде высокой износостойкости сплава в интервале рабочих температур от 600°C до 1200°C, без потери его основных характеристик.
Поставленная задача решается за счет того, что в известный твердый сплав содержащий никель, молибден, хром и тугоплавкую составляющую в виде карбида переходного металла, выбранного из группы Ti, Cr, Zr, W, Nb, введены кобальт и никелид титана, при этом тугоплавкая составляющая состоит из карбида титана и карбида вольфрама при следующем соотношении компонентов (в мас.%): молибден (1,5-2,5), кобальт (1,0-2,0), никель (4,0-8,0), хром (0,5-1,0), никелид титана (0,5-1,0), карбид вольфрама (25,0-35,0), карбид титана - остальное.
В известных составах твердых сплавов указанная совокупность существенных признаков не выявлена, что позволяет считать данное техническое решение соответствующим критерию «новизна».
Твердые сплавы должны обладать рядом свойств: прежде всего твердостью и износостойкостью при сравнительно высокой прочности, термостойкостью, окалиностойкостью, малым коэффициентом трения, небольшим разупрочнением при повышенной температуре. Большинство известных твердых сплавов состоят из твердой и связующей фазы. В твердой фазе, как правило, присутствуют карбиды вольфрама или титана, а также смесь этих карбидов. В качестве связующей фазы используются кобальт, никель, никель-молибденовый сплав и др.
Структура однокарбидных сплавов (например, WC+Co) состоит из твердого раствора материала связки в карбиде и избыточных свободных зерен карбида, представляя собой скелет стянутых зерен карбида, в зазорах которого расположен (в виде сквозной сетки) твердый раствор на основе материала связки, заполняющий пространственный скелет карбида и образуя, таким образом, два переплетенных каркаса, связывающих зерна карбида в единую систему.
Структура двухкарбидного сплава (например, WC+TiC+Co) несколько иная и состоит из твердого раствора одного из карбидов в другом (например твердого раствора карбида вольфрама в карбиде титана), твердого раствора материала связки в карбидах и избыточных зерен карбидов. Таким образом, возникает несколько переплетенных друг с другом скелетообразных каркасов, связывающих свободные зерна карбидов в единую систему.
Двухкарбидные сплавы по сравнению с однокарбидными имеют лучшие показатели износостойкости, но при достаточно высоких температурах (свыше 900°C) применяемые в них связки теряют вязкость, что приводит к ослаблению каркаса, быстрой потере зерен карбида и, соответственно, резкому снижению показателя износостойкости.
Твердый сплав по предлагаемому изобретению выполнен с использованием карбида титана и карбида вольфрама в соотношениях, обеспечивающих образование достаточного количества свободных зерен, и имеет многокомпонентную связку, позволяющую сформировать структуру из множества переплетенных скелетообразных каркасов, надежно фиксирующую зерна карбидов. В многокомпонентной связке, выполненной на основе никеля, обладающего наибольшей склонностью к проникновению между карбидными зернами, присутствуют также молибден, никель и хром. Их наличие позволяет создавать каркасы, обеспечивающие необходимые физико-химические свойства сплава (коррозионностойкость, прочность), повышает температуру разупрочнения связки, чем увеличивает износостойкость. Введение в связку никелида титана подавляет выпадение свободного углерода и придает сплаву пористость, способствующую созданию сложного и разветвленного каркаса, что, в совокупности с вышеизложенным, обеспечивает достижение заявленного технического результата.
Заявленная совокупность отличительных признаков, выраженная как сочетание количественных и качественных характеристик ингредиентов твердого сплава, в патентной и научно-технической информации не выявлена, что подтверждает соответствие предложенного технического решения критерию «изобретательский уровень».
В таблице 1 приведены рецептуры составов сплава по прототипу, аналогу и предлагаемому изобретению в вариантах исполнения; в таблице 2 - физико-химические характеристики сплава и показатели износостойкости при различных температурах.
Для проверки заявленного технического результата были приготовлены несколько вариантов сплава со средними и граничными значениями из предложенных соотношений ингредиентов (см. таблицу 1).
Шихту для сплава получали, перемешивая в планетарной мельнице порошки исходных компонентов, смешанных в заявленных соотношениях. Из полученной смеси были отпрессованы лабораторные образцы, в дальнейшем спеченные по известной технологии. Сравнительные лабораторные испытания проводились по стандартным методикам и показали, что значения основных физико-химических характеристик предлагаемого сплава выше, чем у характеристик аналога и прототипа (см. таблицу 2).
Испытания на износостойкость проводились по ГОСТ 23208-83 при температурах от 200°C до 1200°C в реальных условиях работы мелкосортного прокатного стана 250, на металлургическом комбинате «Евраз-ЗСМК» в г.Новокузнецке. Испытания показали (см. таблицу 2), что износостойкость изделий из предлагаемого сплава значительно выше, чем у аналога и прототипа.
Существенные признаки, заявленные в формуле изобретения, взаимосвязаны и их изменение вне указанных пределов ведет к ухудшению характеристик твердого сплава.
Содержание молибдена: 1,5-2,0 мас.%
Содержание молибдена менее чем 1,5 мас.% снижает жаропрочность сплава.
При содержании более 2,0 мас.%, ухудшаются прочностные свойства, уменьшается период кристаллической решетки карбида титана.
Содержание кобальта: 1,0-2,0 мас.%
Содержание кобальта менее 1,0 мас.% снижает ударную вязкость, а его увеличение свыше 2,0 мас.% приводит к снижению твердости сплава.
Содержание никеля: 4,0-8,0 мас.%
Содержание менее 4,0 мас.% ухудшает изгибную прочность, а содержание свыше 8,0 мас.% отрицательно сказывается на жаропрочности.
Содержание хрома: 0,5-1,0 мас.%
Содержание менее 0,5 мас.% снижает коррозионностойкость. При содержании более 1,0 мас.% ухудшаются прочностные свойства.
Содержание никелида титана: 0,5-1,0 мас.%
Содержание никелида титана менее 0,5 мас.% недостаточно для гарантированного связывания свободного углерода, при содержании более 1,0 мас.% снижаются прочностные характеристики сплава.
Содержание карбида вольфрама: 25,0-35,0 мас.%
При содержании менее 25 мас.% снижается твердость сплава, при содержании свыше 35 мас.% повышается удельная плотность и увеличивается инерционность.
Содержание карбида титана: остальное
При содержании карбида титана меньше минимального снижается красностойкость сплава, при содержании больше максимального снижается удельная прочность.
Из сплава №2 по предлагаемому изобретению была изготовлена опытная партия роликов для клетей №10-17 мелкосортного прокатного стана 250. Производственные испытания проводились на металлургическом комбинате «Евраз-ЗСМК» в г.Новокузнецке в интервале рабочих температур до 1200°C и показали, что износостойкость и ряд основных физико-химических характеристик предлагаемого сплава значительно выше, чем у существующих.
Таким образом, результаты лабораторных исследований, сравнительных и производственных испытаний подтверждают, что предлагаемый сплав обеспечивает высокие эксплуатационные характеристики при работе в условиях высоких температур и позволяют считать данное техническое решение соответствующим критерию «промышленная применимость».
Таблица 1 | |||||
Наименование компонентов | Состав твердого сплава (в мас.%) | ||||
Прототип | Аналог (ТН-50) | Варианты предлагаемого состава | |||
1 | 2 | 3 | |||
Молибден (Мо) | 2,0 | 10 | 1,5 | 2,0 | 2,5 |
Кобальт (Со) | - | - | 1,0 | 1,5 | 2,0 |
Никель (Ni) | 37,5 | 29 | 4,0 | 6,0 | 8,0 |
Хром (Cr) | 3,3 | - | 0,5 | 0,7 | 1,0 |
Никелид титана (NiTi) | - | - | 0,5 | 0,7 | 1,0 |
Алюминий (Al) | 4,6 | - | - | - | - |
Титан (Ti) | 0,7 | - | - | - | - |
Вольфрам (W) | 1,9 | - | - | - | - |
Карбид вольфрама (WC) | 50,0 | - | 25,0 | 30,0 | 35,0 |
Карбид титана (TiC) | - | 61,0 | ост. | ост. | ост. |
Таблица 2 | |||||
Наименование характеристик | Твердый сплав | ||||
Прототип | Аналог | Предлагаемый | |||
1 | 2 | 3 | |||
Твердость, HRC | 83-91 | 87 | 70 | 78 | 86 |
Красностойкость, °C | 900 | - | 1050 | 1200 | 1100 |
Износостойкость, г/час | |||||
200°C | 3×10-4 | - | 6×10-6 | 5×10-6 | 8×10-6 |
600°C | - | - | 8×10-6 | 9×10-6 | 12×10-6 |
900°C | 6×10-4 | - | - | - | - |
1200°C | - | - | 2×10-5 | 15×10-6 | 3×10-6 |
Изгибная прочность, Мпа | 1280 | 1150 | 1500 | 1800 | 1900 |
Теплопроводность, Вт/(м·°C) | - | - | 9 | 9 | 12 |
Инерционность, кГ/см3 | - | 6,2 | 5,8 | 6,5 | 7,2 |
Твердый сплав, содержащий никель, молибден, хром и карбид переходного металла, отличающийся тем, что он дополнительно содержит кобальт и никелид титана, а в качестве карбида переходного металла он содержит карбиды титана и вольфрама при следующем соотношении компонентов в мас.%:
молибден (Мо) | 1,5-2,5 |
кобальт (Со) | 1,0-2,0 |
никель (Ni) | 4,0-8,0 |
хром (Cr) | 0,5-1,0 |
никелид титана (NiTi) | 0,5-1,0 |
карбид вольфрама (WC) | 25,0-35,0 |
карбид титана (TiC) | остальное |