Способ бесконтактного определения неравномерности температурного поля в полупроводниковых источниках света
Изобретение относится к полупроводниковой электронике, а именно к методам измерения эксплуатационных параметров полупроводниковых источников света, и может быть использовано в их производстве, как для отбраковки потенциально ненадежных источников света, так и для контроля соблюдения режимов выполнения сборочных операций. Для обеспечения конкурентоспособности с люминесцентными источниками света полупроводниковые источники света должны иметь высокую долговечность, не менее 100000 часов. Это достигается за счет совершенствования конструкции и обеспечения оптимального теплового режима кристалла и люминофорного покрытия. Поэтому важной становится задача определения не только средней температуры кристалла, но и неравномерности распределения температуры в конструкции. Для этой цели предлагается способ бесконтактного определения неравномерности температурного поля в полупроводниковых источниках света, заключающийся в измерении температуры в контролируемых точках конструкции источника, причем функции датчиков температуры выполняют сами элементы конструкции источника: p-n-переход кристалла и люминофорное покрытие, а в качестве термочувствительного параметра используюется ширина спектра излучения на уровне 0,5 от их максимального значения. 1 табл., 1 ил.
Реферат
Температура полупроводникового источника белого света (светодиода), содержащего кристалл на основе гетероструктуры GaN - GaInN и люминофор, является важнейшим параметром, определяющим основные эксплутационные характеристики источника, такие как сила света, цветовая температура, цветопередача, долговечность и другие. Для большинства типов источников света устанавливается максимальная рабочая температура кристалла в пределах 50-55°C. Для контроля температуры кристалла разработано множество методов с использованием в качестве термочувствительных параметров: прямое падение напряжения, обратный ток, длины волны максимума спектра излучения, полуширина спектра излучения, инфракрасное излучение и другие [1]. Однако эти методы позволяют определить лишь усредненную по кристаллу температуру. Но для прогнозирования стабильной работы источника света важно знать и неравномерность распределения температурного поля в конструкции источника, так как наличие градиентов температур приводит к возникновению термоупругих механических напряжений, приводящих к образованию дислокации, микротрещин и последующего разрушению кристалла или отслаиванию от поверхности кристалла люминофорного покрытия [2].
Наиболее близким, по технической сущности, к предлагаемому изобретению является способ, согласно которому неравномерность температурного поля оценивается по относительной разности температур в контролируемых точках конструкции с помощью датчиков температуры [3]. Получение информации о профилях температуры поля в различных сечениях и оценка неравномерности распределения температур связаны с большими аппаратурными затратами, с необходимостью использования и размещения миниатюрных датчиков температуры, расположенных в различных точках, и соответствующих измерительных схем, преобразующих значения температур в электрические сигналы, удобные для последующей обработки, передачи и хранения. Нестабильность и технологический разброс параметров термодатчиков и их большие (сравнительно с кристаллом) размеры не позволяют обнаруживать малые разности температур и, следовательно, исследовать тонкую структуру температурного поля в полупроводниковых источниках света.
Целью данного изобретения является упрощение процесса измерения и повышение точности бесконтактного определения неравномерности температурного поля в полупроводниковых источниках света, преимущественно в структуре кристалл-люминофорное покрытие без использования встроенных термодатчиков. Эта цель достигается тем, что в качестве датчиков температуры используются сами элементы конструкции источника: p-n-переход кристалла и частицы люминофора. В качестве термочувствительных параметров используются длина волны максимума спектра собственного излучения кристалла источника света и его ширина Δλ1 на уровне 0,5 от максимального значения в диапазоне длин волн 440-470 им, и длина волны максимума и ширина спектра Δλ2 излучения люминофора в диапазоне длин волн 500-650 нм (чертеж). При этом чувствительность к температуре такого параметра, как полуширина спектра излучения, в два раза выше, чем чувствительность к температуре сдвига длины волны максимума спектра излучения.
Пример измерения неравномерности температур в конструкции полупроводникового источника света.
Измерения проводятся в следующей последовательности.
1. Определяется зависимость полуширины спектра излучения кристалла и люминофора от температуры при импульсном режиме питания полупроводникового источника света (длительность импульсов 0,1-5 мкс: частота следования импульсов 0,5-1 кГц; величина импульсного тока выбирается равной рабочему току при постоянном напряжении). В качестве регистрирующего устройства используется оптоволоконный спектрометр типа USB2000.
2. Источник света переводится в рабочий режим при постоянном токе и с помощью USB2000 регистрируются термочувствительные характеристики спектра излучения.
3. Путем сравнения результатов измерений по пп.1 и 2 находим значения температур кристалла и люминофорного покрытия, а следовательно, и неравномерность распределения температур в системе кристалл-люминофор.
Принцип измерений температуры поясняется чертежом, на котором представлен типичный спектр излучения полупроводникового источника белого света. Четко разделяются спектр излучения кристалла синего цвета и спектр излучения люминофора желто-красного цвета. Для определения температуры кристалла используется изменение полуширины спектра его излучения Δλ1, а для определения температуры люминофорного покрытия используется изменение полуширины спектра Δλ2. Результаты измерений, проведенные на источниках света производства ОАО Научно-исследовательский институт полупроводниковых приборов (г.Томск), представлены в таблице.
№ п/п | Тип полупроводникового источника света (рабочий ток) | Температура кристалла ΔТ°С, относительно температуры окружающей среды | Температура люминофорного покрытия ΔТ°С, относительно температуры окружающей среды | Разность температур кристалла и покрытия ΔТ°С |
1 | КИПД154, с линзой (350 мА) | 75,5 | 56 | 19,5 |
2 | КИПД154, с линзой (200 мА) | 42 | 32 | 10 |
3 | КИПД154А91, без линзы (350 мА) | 85 | 72 | 11 |
4 | КИПД154А91, без линзы (150 мА) | 43 | 49 | -6 |
Из результатов измерений следует, что предложенный метод определения неравномерности температурного поля позволяет определить разность температур кристалла и люминофорного покрытия и установить различия распределения температур в различных конструктивных исполнениях полупроводниковых источниках света.
Источники информации
1. Шуберт Ф.Е. Светодиоды. - М.: Физматлит, 2008. - 496 с.
2. Lee Jiunn-Chyi. Journal of Crystal Growth. - 2008. - T.310, №23. - С.5143-5146.
3. Патент РФ №2051342, G01K 7/00. Способ определения неравномерности температурного поля / Ю.А. Скрипник, А.И. Химичева, В.Т. Кондратов (UA). - №5044044/28; заявл. 07.04.1992; опубл. 27.12.1995.
Способ бесконтактного определения неравномерности температурного поля в полупроводниковых источниках света по относительной разности температур в точках конструкции, заключающийся в измерении и оценке относительной разности температур в контролируемых точках конструкции, отличающийся тем, что с целью упрощения процесса измерения и повышения точности функции датчиков температуры выполняют сами элементы конструкции источника: p-n-переход кристалла и люминофорное покрытие, а в качестве термочувствительного параметра используется ширина спектра излучения на уровне 0,5 от их максимального значения.