Эффективное назначение адресов в системах кодированного освещения

Иллюстрации

Показать все

Изобретение относится к области светотехники. Кодированный свет был предложен, чтобы обеспечить возможность усовершенствованного управления источниками света и передачи информации с использованием источников света. Предложены способы, устройства и системы для эффективного назначения адресов в системе кодированного освещения, при этом обеспечивая возможность уникальной идентификации.Назначение адресов осуществляется в двух фазах, где на начальной фазе используются глобально уникальные адреса, в то время как на второй фазе используются только локально уникальные адреса. Таким образом, раскрыты способы, устройства и системы, конфигурированные для эффективного распределения набора адресов по набору источников света на этой второй фазе. Технический результат - упрощение системы управления светильниками и повышение эффективности ее работы, чтобы максимизировать эффективность оценивания вклада в освещение и позиционирования. 4 н. и 8 з.п. ф-лы, 6 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к управлению системой освещения. Более конкретно оно относится к способам и устройствам для управления системой освещения, включающей в себя множество источников света, каждый из которых может излучать кодированный свет.

УРОВЕНЬ ТЕХНИКИ

Кодированный свет (CL) был предложен, чтобы обеспечить возможность усовершенствованного управления источниками света. Кодированный свет основан на встраивании данных, в том числе невидимых идентификаторов в световой выход источников света. Кодированный свет может, таким образом, определяться как встраивание данных и идентификаторов в световой выход источника видимого света, причем встроенные данные и/или идентификатор предпочтительно не влияют на основную функцию освещения (то есть освещение) источника света. Следовательно, любая модуляция излучаемого света, относящаяся к данным и/или идентификатору, должна быть невидимой для людей. Это обеспечивает возможность таких применений, как интерактивное оформление сцены, ввод в эксплуатацию или повторный ввод в эксплуатацию сетевых систем освещения. Кодированный свет может использоваться в коммуникационных приложениях, где один или более источников света в системе кодированного освещения конфигурируются, чтобы излучать кодированный свет и таким образом сообщать информацию приемнику. Также источники света системы кодированного освещения могут иметь возможность двусторонней связи с использованием кодированного света. Таким образом, кодированный свет может быть ассоциирован с термином «связь на основе видимого света».

В системе CL может быть желательно идентифицировать и управлять источниками света в данной окружающей среде или вблизи пользователя или оператора. Для типичной офисной среды такая система кодированного освещения может включать в себя порядка от 5 до 10 источников света. Для будущих систем создания окружающей среды (среди прочего, для розничной продажи), основанных на светодиодах (LED), число источников света могло быть по меньшей мере на один порядок выше, то есть от 20 до 200 источников света.

Для идентификации и управления каждым источником света источник света должен быть различимым от всех других источников света в сети управления, не только локально. В офисной окружающей среде, в качестве примера, эта сеть управления может покрывать целое здание и могла бы включать в себя 1000 источников света. Адресное пространство CL, назначенное для этой окружающей среды, должно тогда содержать по меньшей мере 1000 адресов, таким образом, соответствуя 10 двоичным цифрам (битам).

В некоторых системных архитектурах, кроме этого, могло бы потребоваться передавать кодированный свет, содержащий специфический формат адреса, который мог бы быть даже намного более длинным. Например, в первой фазе ввода в эксплуатацию от источников света могло бы потребоваться передавать адреса Интернет-протокола (IP) или управления доступом к среде передачи (MAC) локального контроллера освещения, в том числе основываясь на световом интерфейсе с цифровой адресацией (DALI), с последующим присвоенным адресом управления источников света, в том числе адресом DALI. Это могло бы привести к адресам длиной 70 битов. Альтернативно, заводской уникальный идентификатор мог бы быть встроен в источник света/схему запуска.

Размер необходимого адресного пространства приводит к тому, что предпочтительные методы модуляции CL, такие как множественный доступ с кодовым разделением (CDMA) и множественный доступ с частотным разделением (FDMA), не могут быть применены эффективно. Это вызвано тем фактом, что они, как правило, ограничены, из-за проблем практической реализации, намного меньшим числом уникальных кодов или частот для CDMA и FDMA соответственно.

WO 2007/095740 раскрывает источник света, конфигурированный для отправки сигнала маяка, представляющий его уникальный идентификатор, по команде, постоянно или в предопределенном интервале. Сигнал маяка интегрирован в свет, излучаемый источником света, причем интеграция сигнала маяка выполнена таким образом, что видимое мерцание результирующего света не воспринимается. Удаленный блок детектирования сконфигурирован для приема света и извлечения из него сигнала маяка. Таким образом, удаленный блок детектирования способен беспроводным способом определять уникальный идентификатор источника света.

Для усовершенствованного пользовательского взаимодействия с системой освещения желательно идентифицировать и оценивать силу локальных источников света. Возможность этого обеспечивается посредством CL. Однако когда глобально или в масштабе сети управления применяются уникальные и, следовательно, длинные адреса или коды, эффективные методы модуляции CL не могут быть применены в их наилучшей степени. Это приводит к длительному времени отклика системы, которое может оказаться неприемлемым для некоторых приложений. Кроме того, субоптимальное назначение адресов или кодов между источниками света могло бы привести к снижению эффективности в оценке вклада в освещение.

Кроме того, число адресов, требуемых для идентификации источника света глобально, может быть на два порядка больше, чем необходимо, чтобы управлять источниками света в локальной близости или в помещении.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Целью настоящего изобретения является преодолеть проблемы, обсужденные выше, и обеспечить улучшенные средства для управления системой освещения.

В общем, вышеупомянутые цели достигаются удаленным контроллером системой освещения и способом для назначения идентификационной информации, согласно приложенным независимым пунктам формулы изобретения.

Согласно первому аспекту вышеупомянутые цели достигаются удаленным контроллером, содержащим приемник для приема кодированного света от источника света в системе кодированного освещения, причем кодированный свет содержит начальный идентификатор источника света для источника света; блок обработки для назначения модифицированного идентификатора источника света источнику света на основе принятого кодированного света; и передатчик для передачи модифицированного идентификатора источника света к источнику света. Модифицированный идентификатор источника света отличается от начального идентификатора источника света.

За счет предоставления удаленного контроллера, способного принимать информацию, относящуюся к начальному идентификатору, и назначать модифицированный идентификатор, может быть реализована улучшенная система освещения и способ управления системой. Раскрытый удаленный контроллер может обеспечить возможность эффективного назначения идентификаторов в системе освещения. Эффективное назначение идентификаторов может обеспечить возможность более быстрого времени отклика в системе освещения. Этот более быстрый отклик создал бы более естественное взаимодействие с системой освещения для пользователя. Кроме того, удаленный контроллер обеспечить возможность применения меньшего набора адресов в системе освещения. Адреса могут быть повторно использованы различными светильниками. Таким образом, может быть создана более эффективная система, требующая меньшей степени сложности в светильниках и удаленных контроллерах. Кроме того, эффективное назначение адресов может привести к более точной оценке вкладов в освещение отдельных источников света и к надежному детектированию идентификаторов светильников удаленным контроллером. Кроме того, при использовании такого удаленного контроллера необходимость в технике множественного доступа или синхронизации, применяемой, когда используется начальный идентификатор, может быть уменьшена или даже исключена, что может уменьшить сложность системы.

Начальный идентификатор источника света может соответствовать глобально уникальному идентификатору адреса источника света, например, ассоциированному с серийным номером или другой управляющей информацией производителя. Таким образом, происхождение источника света может прослеживаться. Тем самым, источник света может быть уникально идентифицируемым.

Модифицированный идентификатор источника света может соответствовать уникальному идентификатору адреса источника света в системе кодированного освещения. Таким образом, модифицированный идентификатор источника света может соответствовать идентификатору адреса локальной зоны источника света.

Кодированный свет, содержащий начальные идентификаторы, может передаваться с использованием начального метода доступа. Блок обработки может быть конфигурирован, чтобы назначить модифицированный метод доступа источнику света на основе принятого кодированного света. Передатчик может быть конфигурирован, чтобы передавать модифицированный метод доступа к источнику света. Начальный метод доступа может отличаться от модифицированного метода доступа.

Кодированный свет, включающий в себя начальные идентификаторы, может быть передан с использованием начального метода модуляции. Блок обработки может быть конфигурирован, чтобы назначать модифицированный метод модуляции источнику света на основе принятого кодированного света. Передатчик может быть конфигурирован, чтобы передавать модифицированный метод модуляции к источнику света. Начальный метод модуляции может отличаться от модифицированного метода модуляции.

Таким образом, метод доступа и/или метод модуляции по меньшей мере одного источника света могут зависеть от идентификатора. При этом метод доступа и/или метод модуляции могут адаптироваться к условиям излучаемого света, в том числе как принимается приемником.

Блок обработки может быть сконфигурирован для формирования модифицированного идентификатора источника света, чтобы он имел длину, отличающуюся от длины начального идентификатора источника света.

Например, модифицированный идентификатор может включать в себя меньшее число битов, чем начальный идентификатор. Короткий модифицированный идентификатор может обеспечить возможность более точного детектирования или приема. Начальные и/или модифицированные идентификаторы соответственно могут также быть ассоциированы с соответствующим кодом коррекции ошибок, причем код коррекции ошибок может адаптироваться к условиям канала.

Удаленный контроллер может быть сконфигурирован, чтобы использовать отличающееся поле обзора для приема кодированного света, включающего в себя модифицированный идентификатор источника света, чем для приема кодированного света, включающего в себя начальный идентификатор источника света.

Таким образом, при использовании, например, узкого поля обзора удаленный контроллер может детектировать и уникально идентифицировать источник света, хотя идентификатор источника света не является локально уникальным. Когда присваиваются новые идентификаторы, широкое поле обзора может быть использовано, чтобы исследовать, ассоциированы ли два или более источников света с одним и тем же идентификатором. Кроме того, удаленный контроллер может, таким образом, реализовать различные угловые разрешения в зависимости от поля обзора. Кроме того, на первой фазе можно избежать применения решения множественного доступа, так как сигнал принимается только от одного источника света. Можно избежать любых служебных данных, связанных с решением множественного доступа. Другой проблемой, которой можно избежать, является назначение кодов CDMA или кодов FDMA, так как все источники света систем освещения не обязательно должны одновременно идентифицироваться удаленным контроллером в течение первой фазы. Множественный доступ может быть желательным во второй фазе, так как тогда может быть желательным управлять системой освещения, включающей в себя множество источников света. Используя множественный доступ, можно одновременно идентифицировать множество источников света. Любые коды, частоты или временные сегменты для множественного доступа могут быть назначены после первой фазы.

Приемник может быть конфигурирован, чтобы принимать кодированный свет по меньшей мере от двух источников света, каждый из которых излучает кодированный свет, содержащий индивидуальные начальные идентификаторы источника света. Блок обработки может быть конфигурирован, чтобы назначать индивидуальные модифицированные идентификаторы источника света по меньшей мере двум источникам света на основе принятого кодированного света от упомянутых по меньшей мере двух источников света. Индивидуальные модифицированные идентификаторы источников света могут быть сформированы путем перераспределения по меньшей мере двух индивидуальных начальных идентификаторов источников света среди по меньшей мере двух источников света.

Таким образом, можно избежать генерации нового набора идентификаторов. Это обеспечивает возможность более короткого времени для назначения модифицированных идентификаторов. Перераспределение может зависеть от местоположения индивидуальных источников света в системе освещения. Перераспределение может предусматривать локальное разделение идентификаторов соседних источников света таким образом, чтобы идентификаторы соседних источников света были максимально отделены.

Блок обработки может быть сконфигурирован для назначения модифицированного идентификатора на основе по меньшей мере одной характеристики принятого кодированного света. Таким образом, второй идентификатор может быть основан на по меньшей мере одном из ряда характеристик излучаемого света по меньшей мере одного источника света, а не только на текущем назначенном идентификаторе по меньшей мере одного источника света. Таким образом, более надежный второй идентификатор, с точки зрения, в том числе, коррекции ошибок и/или способностей детектирования и/или точности в оценке вклада освещения, может быть назначен по меньшей мере одному источнику света.

Удаленный контроллер может являться частью системы освещения.

Согласно второму аспекту вышеуказанные цели достигаются системой освещения, содержащей удаленный контроллер, как раскрыто выше, и источник света, имеющий возможность излучать кодированный свет, включающий в себя идентификатор источника света, причем источник света содержит излучатель для излучения кодированного света, содержащего начальный идентификатор источника света; и приемник для приема, от удаленного контроллера, информации для назначения модифицированного идентификатора источника света источнику света.

Излучатель может быть сконфигурирован, чтобы излучать кодированный свет, используя начальный метод доступа или модуляции; приемник может быть сконфигурирован, чтобы принимать инструкции использовать модифицированный метод доступа или модуляции, и излучатель может быть дополнительно сконфигурирован, чтобы излучать кодированный свет, используя модифицированный метод доступа или модуляции, на основе инструкций.

Источник света может быть частью светильника.

Согласно третьему аспекту настоящего изобретения цели достигаются способом для назначения идентификационной информации источнику света в системе освещения с кодированным светом, содержащим этапы приема кодированного света от источника света в системе кодированного освещения, причем кодированный свет включает в себя начальный идентификатор источника света для источника света; назначения модифицированного идентификатора источника света источнику света на основе принятого кодированного света; и передачу модифицированного идентификатора источника света к источнику света, причем начальный идентификатор источника света отличается от модифицированного идентификатора источника света.

Способ назначения согласно третьему аспекту настоящего изобретения может быть реализован в способе управления системой освещения. Согласно четвертому аспекту настоящего изобретения цели достигаются способом управления системой освещения, содержащей удаленный контроллер и источник света, выполненный с возможностью излучать кодированный свет, включающий в себя идентификатор источника света, причем способ содержит этапы излучения, от источника света, кодированного света, включающего в себя начальный идентификатор источника света; назначения модифицированного идентификатора источнику света согласно вышеописанному способу назначения идентификатора источнику света в системе освещения с кодированным светом и излучения, от источника света, кодированного света, включающего в себя модифицированный идентификатор источника света.

Система освещения может содержать множество источников света. Способ может дополнительно содержать этап излучения, от по меньшей мере одного источника света из множества источников света, кодированного света, включающего в себя модифицированный идентификатор источника света.

Таким образом, поскольку по меньшей мере одному источнику света предоставлен модифицированный идентификатор, он может излучать кодированный свет, включающий в себя модифицированный идентификатор. Таким образом, может быть верифицировано, что идентификатор по меньшей мере одного источника света был корректным образом обновлен.

Начальный идентификатор источника света может использоваться в способе установки, и модифицированный идентификатор источника света может использоваться в режиме использования. Начальный идентификатор может содержать информацию или данные, которые могут использоваться в режиме установки. Эта информация или данные могут быть исключены в режиме использования в случае, если принято решение, что дальнейшее переназначение идентификатора не требуется. Таким образом, сложность идентификатора, применяемого в режиме использования, может быть уменьшена.

Например, модифицированный идентификатор может иметь некоторое количество битов, общих с начальным идентификатором. Таким образом, может быть реализована эффективная процедура для назначения модифицированных идентификаторов.

Указанная цель, таким образом, в том числе достигается системой, которая в течение начальной фазы или режима использует начальный набор адресов, которые могут быть длинными адресами и которые могут быть уникальными повсюду в системе или во всем мире. В течение второй фазы или режима, однако, система использует более эффективные методы идентификации, доступа и/или модуляции, которые требуют только локальной уникальности и позволяют использовать оптические датчики с широким полем обзора.

Эти и другие аспекты изобретения будут очевидны и пояснены со ссылкой на варианты осуществления, описанные далее.

Следует отметить, что изобретение относится ко всем возможным комбинациям признаков, представленных в пунктах формулы изобретения. Таким образом, в принципе, второй, третий и четвертый аспекты могут иметь те же самые преимущества, что и первый аспект.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие аспекты настоящего изобретения описаны ниже более подробно со ссылками на приложенные чертежи, показывающие предпочтительный в настоящее время вариант осуществления изобретения.

Фиг. 1 - система освещения согласно варианту осуществления настоящего изобретения.

Фиг. 2 - источник света в системе по фиг. 1.

Фиг. 3 - удаленный контроллер в системе по фиг. 1.

Фиг. 4-6 - блок-схемы согласно вариантам осуществления настоящего изобретения.

ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Настоящее изобретение описано ниже более полно со ссылками на иллюстрирующие чертежи, на которых показаны конкретные варианты осуществления. Однако изобретение может быть воплощено во многих различных формах и не должно рассматриваться как ограниченное вариантами осуществлениями, сформулированными здесь; скорее, эти варианты осуществления предоставлены для примера, чтобы настоящее раскрытие было полным и завершенным и полностью передавало объем изобретения специалистам в данной области техники. Сходные ссылочные позиции обозначают подобные элементы по всему описанию.

Работа системы освещения далее раскрыта со ссылкой на систему 100 освещения по фиг. 1. Система 100 освещения содержит по меньшей мере один источник света, схематично обозначенный ссылочной позицией 102.

Следует отметить, что термин "источник света" означает устройство, которое используется для того, чтобы обеспечивать свет в помещении для целей освещения объектов в помещении. Примерами таких устройств обеспечения света являются устройства освещения и светильники. Помещением в этом контексте является комната в квартире или офисная комната, спортзал, комната в общественном месте или часть внешней окружающей среды, такая как часть улицы.

Каждый источник 102 света способен излучать кодированный свет, включающий в себя идентификатор источника света, как схематично иллюстрируется стрелкой 104. Каждый источник 102 света может быть связан с набором настроек освещения, в том числе, цветом, цветовой температурой и интенсивностью излучаемого света.

Система 100 также содержит устройство 106, называемое удаленным контроллером, для детектирования и приема кодированного света, включающего в себя идентификатор источника света, испускаемого источником 102 света. Устройство 106 содержит светочувствительный датчик 108 для детектирования света, излучаемого источником(ами) света в системе 100.

Фиг.2 схематично иллюстрирует внутренние компоненты источника 200 света, такого как источник 102 света по Фиг. 1, как раскрыто выше. Источник 200 света, таким образом, сконфигурирован, чтобы излучать кодированный свет, причем кодированный свет включает в себя идентификатор источника света для источника 200 света. Источник света содержит излучатель 202 для излучения кодированного света. Источник 200 света также содержит приемник 212 для приема информации, чтобы назначить модифицированный идентификатор источника света источнику 200 света. Приемник 212 может быть приемником, сконфигурированным для приема кодированного света. Приемник 212 может содержать инфракрасный интерфейс, чтобы принимать инфракрасный свет. Альтернативно, приемник 212 может быть радиоприемником, чтобы принимать беспроводным способом переданную информацию. В качестве другой альтернативы, приемник 212 может содержать соединитель, чтобы принимать информацию, переданную по проводам. Провод может быть кабелем линии питания. Провод может быть компьютерным кабелем. Источник 200 света может также содержать другие компоненты, такие как блок 208 обработки, память 210, кодирующее устройство 206 и модулятор 204, управляемый согласно принципам, которые как таковые известны специалисту. Блок 208 обработки может содержать центральный процессор (CPU). В частности, блок 208 обработки может быть операционно связан с приемником 212. Блок 208 обработки может, таким образом, принимать информацию от приемника 212, имеющую отношение к назначению модифицированного идентификатора источнику 200 света. На основе этой информации блок 208 обработки может запросить кодирующее устройство 206 изменить кодирование кодированного света таким образом, чтобы кодированный свет включал в себя модифицированный идентификатор. Кодирующее устройство 206 может содержать генератор импульсов. Информация, относящаяся к идентификаторам, такая как параметры кода, используемые кодирующим устройством 206, может храниться в памяти 210. Обновленная кодовая последовательность, как генерируется кодирующим устройством 206, может затем использоваться модулятором 204, который сконфигурирован, чтобы модулировать свет. Модулятор 204 может содержать контроллер интенсивности. Кодированный и модулированный свет может затем излучаться излучателем 202. Излучатель может быть светодиодом и т.п. По меньшей мере один источник 200 света может содержаться в светильнике (не показан). Таким образом, такой светильник может содержать по меньшей мере один источник 200 света, причем каждому источнику света могут быть назначены отдельные идентификаторы источника света.

Фиг. 3 схематично иллюстрирует внутренние компоненты удаленного контроллера 300, такого как удаленный контроллер 106 по Фиг. 1, как раскрыто выше. Удаленный контроллер 300 содержит приемник 302 для приема кодированного света от по меньшей мере одного источника света, такого как источник 102, 200 света. Удаленный контроллер 300 дополнительно сконфигурирован, чтобы детектировать начальный идентификатор источника света, содержащийся в принятом кодированном свете и ассоциированный с источником света. Идентификация идентификатора источника света может быть выполнена в блоке 304 обработки. Блок 304 обработки может содержать центральный процессор (CPU). Блок 304 обработки дополнительно сконфигурирован, чтобы назначать модифицированный идентификатор источника света источнику света, ассоциированному с принятым кодированным светом, на основе принятого кодированного света. Блок 304 обработки может конфигурироваться, чтобы оценивать или определять по меньшей мере одну характеристику источника света, излучающего кодированный свет, и/или по меньшей мере одну характеристику света, излучаемого источником света. Удаленный контроллер 300 также содержит передатчик 312 для передачи модифицированного идентификатора источника света к источнику света. Удаленный контроллер 300 может также содержать другие компоненты, такие как память 306, кодирующее устройство 308 и модулятор 310, управляемый согласно принципам, которые как таковые известны специалисту. В частности, память 306 может содержать набор идентификаторов или адресов, которые могут быть переданы к источникам света в системе освещения. Память 306 может содержать сохраненные инструкции, имеющие отношение к генерации набора идентификаторов или адресов. Память 306 может содержать сохраненные инструкции, имеющие отношение к идентификации источников света из принятого кодированного света. Передатчик 312 может быть передатчиком света, сконфигурированным, чтобы излучать кодированный свет. Альтернативно передатчик 312 может быть радиопередатчиком, сконфигурированным, чтобы беспроводным способом передавать информацию. Передатчик 312 может быть сконфигурирован для двунаправленной связи. Передатчик 312 может содержать радиоантенну. Альтернативно передатчик может содержать соединитель для проводной связи. Удаленный контроллер 300 может быть сконфигурирован, чтобы обеспечивать слышимое, осязательное или визуальное сообщение обратной связи, когда удаленный контроллер обнаруживает, что источник света излучает кодированный свет, включающий в себя модифицированный идентификатор источника света (в том числе, чтобы сигнализировать уполномоченному лицу, что переключение с начального идентификатора источника света на модифицированный идентификатор источника света осуществлено успешно и что источник света или светильник теперь введен в эксплуатацию и является частью системы).

На Фиг. 6 показана блок-схема способа в системе, такой как система 100 освещения, содержащая удаленный контроллер и источник света. Источникам света назначаются (индивидуальные) начальные идентификаторы, этап 602. Начальные идентификаторы могут быть назначены в процессе изготовления источников света. Начальные идентификаторы могут быть ассоциированы с технологическим кодом, контрольным номером, серийным номером и т.п. источника света. Таким образом, начальные идентификаторы могут быть заводскими настройками. Альтернативно, начальные идентификаторы могут генерироваться случайным образом (источником света). Каждый источник света способен излучать кодированный свет, этап 604, включающий в себя идентификатор источника света.

Согласно вариантам осуществления система кодированного освещения является управляемой в по меньшей мере двух режимах или фазах (термины «режим» и «фаза» в данном контексте будут использоваться взаимозаменяемым образом), где в первой фазе применяются идентификаторы источников света, отличающиеся от применяемых во второй фазе. Начальные идентификаторы используются в первой фазе, тогда как модифицированные идентификаторы используются во второй фазе. Модифицированные идентификаторы могут быть ассоциированы с более эффективным (во времени) приемом, чем начальные идентификаторы. В первой фазе, которая может быть фазой инициирования или режимом установки, источники света, таким образом, управляются так, чтобы излучать кодированный свет, включающий в себя начальные идентификаторы источников света. Начальные идентификаторы источников света могут соответствовать глобально уникальным идентификаторам адресов источников света. Таким образом, начальные идентификаторы источников света могут соответствовать идентификаторам адресов глобальной области для источников света. Во второй фазе, которая может быть операционной фазой или режимом использования, где источники света управляются так, чтобы излучать кодированный свет, включающий в себя модифицированные идентификаторы источников света, причем начальные идентификаторы источников света отличаются от модифицированных идентификаторов источников света. Модифицированные идентификаторы источников света могут соответствовать уникальным идентификаторам источников света в системе. Таким образом, модифицированные идентификаторы источников света могут соответствовать идентификаторам адресов локальной области для источников света. Таким образом, после приема, удаленным контроллером, кодированного света, включающего в себя начальный идентификатор, этап 606, удаленное управление действует, чтобы назначать модифицированные идентификаторы источникам света, ассоциированным со светом, принятым удаленным контроллером, этап 608. Удаленный контроллер, кроме того, действует, чтобы передавать модифицированные идентификаторы каждому отдельному источнику света в системе освещения. Источники света могут тогда излучать кодированный свет, включающий в себя модифицированные идентификаторы источников света, этап 610.

Удаленный контроллер может принимать кодированный свет, включающий в себя модифицированные идентификаторы, этап 612.

Когда модифицированные идентификаторы источников света назначены, система может работать во второй фазе, которая может быть режимом использования, этап 614.

Переназначение или перестановка модифицированных идентификаторов (таких как адреса, коды или частоты) могут выполняться итеративным способом, этапы 616, 618. Эта процедура имеет преимущество, заключающееся в том, что она позволяет осуществлять адаптивное оптимальное назначение идентификаторов. Другими словами, обеспечивается возможность оптимального назначения идентификаторов даже в том случае, если положение удаленного контроллера перемещается во время действия управления системой в режиме использования.

Решения на основе множественного доступа с временным разделением (TDMA) или произвольного доступа (RA) могут использоваться, когда применяются начальные идентификаторы источника света. RA может быть реализован согласно протоколу Aloha. В частности, может быть использован протокол Aloha без квитирования. Длинные идентификаторы или адреса могут привести к большому времени реакции из-за ограниченной ширины полосы канала CL. Такое большое время реакции могло бы быть приемлемым для начального ввода в действие системной установки или системной конфигурации, но не могло бы быть приемлемым для пользовательского взаимодействия в оформлении сцены или в других более перспективных приложениях, как применяется в режиме использования.

Так как источник света и его соответствующий идентификатор могут идентифицировать положение, система кодированного освещения может быть использована для приложений позиционирования. Например, система кодированного освещения может быть использована для обеспечения информации о местонахождении в здании, таким образом, среди прочего, обеспечивая средства для нахождения пути пользователя в здании. Для такого примера может быть желательным использовать удаленный контроллер, имеющий широкое поле обзора, и поэтому могут быть желательными локально уникальные идентификаторы.

Согласно вариантам осуществления длина модифицированных идентификаторов источников света может отличаться от длины начальных идентификаторов источников света. В частности, длина модифицированных идентификаторов источников света может быть короче, чем длина начальных идентификаторов источников света. Это обеспечивает возможность более короткого времени обнаружения и результирующего времени отклика системы. Режим работы во втором режиме может обеспечить возможность применений в области средств управления освещением, таких как оформление сцены, которые были бы невозможным при времени отклика в первом режиме. Второй режим может также включать в себя контуры управления, которые могут потребовать дополнительных последовательных этапов управления и измерения. Эти измерения могут потребовать каждый раз идентифицировать и оценивать вклады всех источников света, следовательно, время для одного измерения должно быть низким.

Как раскрыто выше, время отклика могло бы быть длинным, когда используются начальные идентификаторы источников света, особенно в случаях, когда используется идентификация или адресация посредством кодов, переданных с использованием RA. В таких случаях может быть необходимым избегать конфликтов между идентификаторами от различных источников света. Поэтому удаленный контроллер с узким полем обзора (FOV) может быть применен, когда используются начальные идентификаторы источников света, где пользователь ориентирует приемник на (отдельные источники света) подмножество источников света. Выбранному(ым) источнику(ам) света можно тогда назначить модифицированные идентификаторы, которые короче, чем начальные идентификаторы, и которые могли бы приниматься с использованием различной оптики (с широким FOV). Длительные времена реакции, таким образом, могут быть преодолены при помощи оптических датчиков с ограниченным FOV, где удаленный контроллер сначала наблюдает только один источник света из множества источников света в системе освещения, в то время как остальная часть источников света может быть подавлена за счет применения оптического решения. В таких случаях источник света может непрерывно передавать начальный идентификатор источника света и задержка может быть ограничена. Узкое FOV может быть ассоциировано с первым угловым разрешением, тогда как широкое FOV может быть ассоциировано со вторым угловым разрешением. Первое угловое разрешение может быть выше, чем второе угловое разрешение. Таким образом, удаленный контроллер может использовать отличающееся угловое разрешение, чтобы принимать кодированный свет, включающий в себя начальный идентификатор источника света, по сравнению с приемом кодированного света, включающего в себя модифицированный идентификатор источника света. Кроме того, как раскрыто выше, первая фаза, на которой используются начальные идентификаторы источников света, может рассматриваться как этап конфигурирования, который может потребоваться только при установке или реконфигурации системы освещения. Функционирование, как раскрыто в отношении второй фазы, на которой источники света излучают кодированный свет, включающий в себя модифицированные идентификаторы источников света, может охватывать нормальное функционирование и управление системы освещения.

Согласно вариантам осуществления тот же самый метод модуляции и/или множественного доступа может использоваться для обеих фаз или режимов. Альтернативно, кодированный свет, излучаемый в течение первого режима, может модулироваться иначе, чем кодированный свет, излучаемый в течение второго режима, и/или отличающийся метод множественного доступа мог бы быть применен в течение первого и второго режимов соответственно. Например, RA может использоваться в начальной фазе, результат (такой как оценки интенсивности и/или идентификация источника света) которой может использоваться во второй фазе, чтобы назначать модифицированные идентификаторы источников света, ассоциированные со вторым методом множественного доступа. Второй метод множественного доступа может, в том