Мутантные рецепторы и их использование в системе экспрессии индуцибельного гена на основе ядерного рецептора

Иллюстрации

Показать все

Изобретение относится к области биотехнологии или генной инженерии. Описана система модулирования экспрессии рекомбинантного гена, вектор экспрессии и клетка-хозяин. Изобретение расширяет арсенал методов модулирования экспрессии гена. 3 н. и 9 з.п. ф-лы, 14 табл., 10 пр.

Реферат

Данная заявка претендует на приоритет временной заявки США №60/567294, поданной 30 апреля 2004 г., и временной заявки США №60/609424, поданной 13 сентября 2004 г.

Область изобретения

Изобретение относится к области биотехнологии или генной инженерии. Конкретнее, данное изобретение относится к области генной экспрессии. Более конкретно, данное изобретение относится к новым ядерным рецепторам, содержащим мутацию замещения, и их использованию в системе экспрессии индуцибельного гена на основе ядерного рецептора и способам модулирования экспрессии гена в клетке-хозяине с использованием данной системы экспрессии индуцибельного гена.

Известный уровень техники

В данной заявке цитируются различные публикации, описание которых целиком включается сюда в качестве ссылок. Однако цитирование тут любого источника не должно толковаться как допущение, что такой источник представляет собой "известный уровень техники" по отношению к данной заявке.

В области генной инженерии, точный контроль генной экспрессии является ценным инструментом для изучения, манипулирования и контроля развития и других физиологических процессов. Генная экспрессия представляет собой сложный биологический процесс, включающий ряд специфических белок-белковых взаимодействий. Для запуска генной экспрессии, чтобы при этом продуцировалась РНК, необходимая в качестве первой стадии синтеза белка, активатор транскрипции должен быть помещен в непосредственной близости от промотора, контролирующего генную транскрипцию. Типично, активатор транскрипции сам ассоциирован с белком, имеющим по меньшей мере один ДНК-связывающий домен, связывающийся с сайтами связывания ДНК, присутствующими в промоторных участках генов. Таким образом, для протекания генной экспрессии, белок, содержащий ДНК-связывающий домен и домен трансактивации, расположенный на соответствующем расстоянии от ДНК-связывающего домена, должен занять правильное положение по отношению к промоторному участку гена.

Традиционный трансгенный подход использует специфичный к клеточному типу промотор для осуществления экспрессии требуемого трансгена. Структурный элемент ДНК, содержащий трансген, сначала внедряется в геном хозяина. При запуске с помощью активатора транскрипции происходит экспрессия трансгена в данном типе клеток.

Другим средством регулирования экспрессии чужеродных генов в клетках является использование индуцибельных промоторов. Примеры использования таких индуцибельных промоторов включают промотор PR1-a, прокариотические системы репрессор-оператор, системы иммунодепрессивных иммунофилинов и системы активации транскрипции высших эукариотов, такие как системы рецептора экдистероидного гормона, и описаны ниже.

Промотор PR1-a табака индуцируется в процессе системной приобретенной резистентности после воздействия патогена. Использование PR1-a может быть ограничено, поскольку он часто реагирует на эндогенные материалы и внешние факторы, такие как патогены, облучение УФ-В и загрязняющие агенты. Были описаны системы генной регуляции, основанные на промоторах, индуцируемых тепловым шоком, интерфероне и тяжелых металлах (Wurn et al., 1986, Proc. Natl. Acad. Sci. USA 83: 5414-5418; Arnheiter et al., 1990, Cell 62:51-61; Fihnus et al., 1992, Nucleic Acids Research 20: 27550-27560). Однако эти системы имеют ограничения вследствие их влияния на экспрессию нецелевых генов. Эти системы также являются растекающимися.

Прокариотические системы репрессор-оператор используют бактериальные репрессорные белки и уникальные операторные ДНК-последовательности, с которыми они связываются. Как тетрациклиновая ("Tet"), так и лактозная ("Lac") системы репрессор-оператор из бактерии Escherichia coli использовались для контроля генной экспрессии в растениях и животных, В Tet-системе, тетрациклин связывается с репрессорным белком TetR, приводя к конформационным изменениям, освобождающим репрессорный белок от оператора, который в результате обеспечивает возможность протекания транскрипции. В Lac-системе, lac-оперон активируется в ответ на присутствие лактозы или ее синтетических аналогов, таких как изопропил-b-D-тиогалактозид. К сожалению, использование таких систем ограничено из-за нестабильной химии лигандов, т.е. тетрациклина и лактозы, их токсичности, их естественного присутствия или относительно высоких уровней, необходимых для индукции или репрессии. По аналогичным причинам, полезность таких систем для животных ограничена.

Иммунодепрессивные молекулы, такие как FK506, рапамицин и циклоспорин А, могут связываться с иммунофилинами FKBP12, циклофилином и т.д. С использованием этой информации, была разработана общая стратегия связывания любых двух белков простым введением FK506 в каждый из двух белков или введения FK506 в один из них и циклоспорина А - в другой. Синтетический гомодимер FK506 (FK1012) или соединение, образующееся в результате слияния РК506-циклоспорин (FKCsA), может затем быть использован для индуцирования димеризации этих молекул (Spencer et al., 1993, Science 262: 1019-24; Belshaw et al., 1996 Proc. Natl. Acad. Sci. USA93: 4604-7). Gal4 ДНК-связывающий домен, слитый с FKBP12, и VP16 активаторный домен, слитый с циклофилином, и соединение FKCsA были использованы для того, чтобы продемонстрировать гетеродимеризацию и активацию репортерного гена под контролем промотора, содержащего сайты связывания Gal4. К сожалению, эта система включает иммунодепрессанты, которые могут иметь нежелательные побочные эффекты и тем самым ограничивают ее использование для переключения разных генов млекопитающих.

Использовались также системы активации транскрипции высших эукариотов, такие как системы рецептора стероидного гормона. Рецепторы стероидного гормона являются членами суперсемейства ядерных рецепторов и присутствуют в клетках позвоночных и беспозвоночных. К сожалению, использование стероидных соединений, которые активируют рецепторы для регуляции генной экспрессии, особенно, в растениях и млекопитающих, ограничено вследствие их участия во многих других природных биологических путях в таких организмах. Для того чтобы преодолеть такие трудности, была разработана альтернативная система с использованием рецепторов экдизона насекомых (EcR).

Рост, линька и развитие насекомых регулируются стероидным гормоном экдизоном (гормон линьки) и ювенильными гормонами (Dhadialla, et al., 1998, Annu. Rev. Entomol. 43: 545-569). Молекулярная мишень экдизона у насекомых состоит из по меньшей мере рецептора экдизона (EcR) и белка ultraspiracle (USP). EcR является членом суперсемейства ядерных стероидных рецепторов, которое характеризуется сигнатурной ДНК и лигандсвязывающими доменами, и доменом активации (Koelle et al. 1991, Cell, 67:59-77). Рецепторы EcR восприимчивы к ряду экдистероидных соединений, таких как понастерон А и муристерон А. Недавно были описаны нестероидные соединения с активностью экдистероидных агонистов, включая коммерчески доступные инсектициды тебуфенозид и метоксифенозид, которые продаются во всем мире фирмой Rohm and Haas Company (см. международную патентную заявку № РСТ/ЕР96/00686 и патент США №5530028). Оба аналога имеют исключительные профили безопасности для других организмов.

Рецептор экдизона насекомых (EcR) гетеродимеризуется с белком ultraspiracle (USP), встречающимся у насекомых гомологом RXR (Х-ретиноидного рецептора) млекопитающих, связывает экдистероиды и элементы ответа рецептора экдизона и активирует транскрипцию генов-респондеров экдизона (Riddiford et al., 2000). Комплексы EcR/USP/лиганд играют важную роль в развитии и размножении насекомых. EcR является членом суперсемейства рецепторов стероидного гормона и имеет пять модульных доменов - А/В (трансактивация), С (ДНК связывание, гетеродимеризация), D (шарнирный, гетеродимеризация), Е (лигандсвязывающий, гетеродимеризация и трансактивация) и F (трансактивация) домены. Некоторые из этих доменов, такие как А/В, С и Е, сохраняют свои функции после слияния с другими белками.

Строго регулируемая система экспрессии индуцибельных генов или "генные переключатели" является полезной в различных областях применения, таких как генная терапия, крупномасштабное производство белков в клетках, высокопроизводительные скрининг-анализы на основе клеток, функциональная геномика и регулирование признаков у трансгенных растений и животных.

Первая версия генного переключателя на основе EcR использовала EcR Drosophila melanogaster (DmEcR) и RXR Mus musculus (MmRXR) и показала, что эти рецепторы в присутствии экдистероида понастерона А трансактивируют репортерные гены в клеточных линиях млекопитающих и у трансгенных мышей (Christopherson et al., 1992; No et al., 1996). Позднее, Suhr et al., 1998, показали, что неэкдистероидный экдизоновый агонист тебуфенозид индуцирует высокий уровень трансактивации репортерных генов в клетках млекопитающих посредством EcR Bombyx mori (BmEcR) в отсутствие экзогенного гетеродимерного партнера.

Международные патентные заявки №№ PCT/US97/05330 (WO 97/38117) и PCT/US99/08381 (WO 99/58155) раскрывают способы модулирования экспрессии экзогенного гена, в которых структурный элемент ДНК, включающий экзогенный ген и экдизоновый элемент ответа, активируется вторым структурным элементом ДНК, включающим рецептор экдизона, который, в присутствии своего лиганда и, необязательно, в присутствии рецептора, способного выступать в роли молчащего партнера, связывается с экдизоновым элементом ответа для индуцирования генной экспрессии. Предпочтительный рецептор экдизона изолировали из Drosophila melanogaster. Типично, такие системы требуют присутствия молчащего партнера, предпочтительно, ретиноидного Х-рецептора (RXR), для обеспечения оптимальной активации. В клетках млекопитающих, рецептор экдизона насекомых (EcR) гетеродимеризуется с ретиноидным X-рецептором (RXR) и регулирует экспрессию целевых генов лиганд-зависимым образом. Международная патентная заявка № PCT/US98/14215 (WO 99/02683) раскрывает, что рецептор экдизона, выделенный из тутового шелкопряда Bombyx mori, является функциональным в системах млекопитающих без необходимости в экзогенном партнере димеризации.

Патент США №6265173 В1 раскрывает, что разные члены суперсемейства стероидных/тиреоидных рецепторов могут связываться с рецептором белка ultraspiracle (USP) Drosophila melanogaster или его фрагментами, включающими по меньшей мере домен димеризации USP для использования в системе генной экспрессии. Патент США №5880333 раскрывает EcR Drosophila melanogaster и систему гетеродимера ultraspiracle (USP), используемую в растениях, в которой домен трансактивации и ДНК-связывающий домен расположены на двух разных гибридных белках. К сожалению, эти системы на основе USP являются конститутивными в клетках животных и потому не могут эффективно регулировать экспрессию гена-репортера.

В каждом из этих случаев, домен трансактивации и ДНК-связывающий домен (в виде нативного EcR, как в международной патентной заявке № PCT/US98/14215, или модифицированного EcR, как в международной патентной заявке № PCT/US97/05330) вводили в состав одной молекулы, а другие гетеродимерные партнеры, будь то USP или RXR, были использованы в своем нативном состоянии.

Недостатки описанных выше систем генной регуляции на основе EcR включают значительную фоновую активность в отсутствие лигандов и неприменимость этих систем для использования как в растениях, так и в животных (см. патент США №5880333). Поэтому в известном уровне техники существует потребность в усовершенствовании систем на основе EcR для точного модулирования экспрессии экзогенных генов как в растениях, так и в животных. Такие усовершенствованные системы были бы полезны в таких областях применения, как генная терапия, крупномасштабное производство белков и антител, системы высокопроизводительного скрининг-анализа на основе клеток, функциональная геномика и регулирование признаков у трансгенных животных. Для некоторых областей применения, таких как генная терапия, может быть желательным иметь систему экспрессии индуцибельного гена, которая хорошо взаимодействовала бы с синтетическими неэкдистероидными лигандами и в то же время была нечувствительной к природным экдистероидам. Таким образом, усовершенствованные системы, которые были бы простыми, компактными и зависящими от относительно недорогих лигандов, легко доступными и низкотоксичными для хозяина, были бы полезными для регулирования биологических систем.

Ранее, заявители показали, что система экспрессии индуцибельного гена на основе рецептора экдизона, в которой трансактивирующий и ДНК-связывающий домены разделены друг от друга путем их помещения на два разные белка, приводит к значительно сниженной фоновой активности в отсутствие лиганда и значительно повышенной активности по сравнению с фоновой в присутствии лиганда (находящаяся на рассмотрении заявка PCT/US01/09050, которая целиком включена сюда по ссылке). Эта двухгибридная система представляет собой значительно усовершенствованную систему модулирования индуцибельной генной экспрессии по сравнению с двумя системами, раскрытыми в заявках PCT/US97/05330 и PCT/US98/14215. Двухгибридная система использует способность пары взаимодействующих белков приводить домен активации транскрипции в более благоприятное положение по отношению к ДНК-связывающему домену таким образом, что когда ДНК-связывающий домен связывается с сайтом связывания ДНК гена, домен трансактивации более эффективно активирует промотор (см., например, патент США №5283173). Вкратце говоря, двухгибридная система генной экспрессии включает две кассеты генной экспрессии; первая кодирует ДНК-связывающий домен, слитый с полипептидом ядерного рецептора, и вторая кодирует домен трансактивации, слитый с другим полипептидом ядерного рецептора. В присутствии лиганда, взаимодействие первого полипептида со вторым полипептидом эффективно сцепляет ДНК-связывающий домен с доменом трансактивации. Поскольку домены связывания ДНК и трансактивации находятся в двух разных молекулах, фоновая активность в отсутствие лиганда значительно уменьшается.

Двухгибридная система также обеспечивает улучшенную чувствительность к неэкдистероидным лигандам, например диацилгидразинам, по сравнению с экдистероидными лигандами, например понастероном А ("PonA") или муристероном A ("MurA"). Это означает, что, по сравнению с экдистероидами, неэкдистероидные лиганды обеспечивают более высокую активность при меньших концентрациях. Кроме того, поскольку трансактивация на основе EcR генных переключателей часто является зависимой от клеточной линии, становится легче смоделировать системы переключения для достижения максимальной трансактивационной способности для каждой области применения. Более того, двухгибридная система позволяет избежать некоторых побочных эффектов благодаря сверхэкспрессии RXR, которая часто происходит при использовании немодифицированного RXR в качестве партнера переключения. В предпочтительной двухгибридной системе, нативный ДНК-связывающий и трансактивирующий домены EcR или RXR удалены, в результате чего эти гибридные молекулы имеют меньше возможностей взаимодействия с другими присутствующими в клетке рецепторами стероидных гормонов, приводя к уменьшению побочных эффектов.

EcR являются членами суперсемейства ядерных рецепторов и делятся на подсемейство 1, группа Н (которая называется тут "группа Н ядерных рецепторов"). Члены каждой группы имеют 40-60% аминокислотной идентичности в Е (лигандсвязывающем) домене (Laudet et al., A Unified Nomenclature System for the Nuclear Receptor Subfamily, 1999; Cell 97: 161-163). Кроме рецептора экдизона, другие члены этого подсемейства ядерных рецепторов 1, группа Н, включают: вездесущий рецептор (UR), рецептор-сирота 1 (OR-1), ядерный рецептор стероидного гормона 1 (NER-1), RXR-взаимодействующий белок-15 (RIP-15), х-рецептор печени β (LXRβ), белок, подобный рецептору стероидного гормона (RLD-й), х-рецептор печени (LXR), х-рецептор печени α (LXRα), фарнезоидный х-рецептор (FXR), рецептор-взаимодействующий белок 14 (RJP-14) и рецептор фарнезола (HRR-1).

Для разработки усовершенствованной системы экспрессии индуцибельного гена на основе ядерного рецептора группы Н с модифицированной лигандсвязывающей способностью или лигандспецифичностью, заявители создали субституционный мутант EcRs, который включает замещенные аминокислотные остатки в лигандсвязывающем домене (LBD). Был использован метод гомологического моделирования и стыковки для предсказания критических остатков, оторые медиируют связывание экдистероидов и неэкдистероидов с EcR LBD. Эти субституционные мутантные EcRs оценивали путем проведения лигандсвязывающих и трансактивационных анализов. Как описывается тут, полученные заявителями новые субституционне мутантные ядерные рецепторы и их использование в системе экспрессии индуцибельного гена на основе ядерного рецептора обеспечивают усовершенствованную систему экспрессии индуцибельного гена для прокариотических и эукариотических клеток-хозяев, в которой чувствительность к лигандам и степень трансактивации могут быть выбраны по желанию, в зависимости от области применения.

Детальное описание изобретения

Заявители описали тут конструирование ядерных рецепторов группы Н, которые включают субституционные мутации (которые называются тут "субституционными мутантами") по аминокислотным остаткам, участвующим в связывании лиганда с лигандсвязывающим доменом ядерного рецептора группы Н, которые влияют на чувствительность к лигандам и степень индукции ядерного рецептора группы Н, и продемонстрировали, что эти субституционные мутантные ядерные рецепторы пригодны для использования в способах модулирования генной экспрессии.

Конкретнее, заявители разработали новую систему экспрессии индуцибельного гена на основе ядерного рецептора, включающую лигандсвязывающий домен ядерного рецептора группы Н, содержащий мутацию замещения. Заявители показали, что такие субституционные мутации могут повышать или понижать лигандсвязывающую активность или чувствительность к лигандам, причем лиганд может быть специфичным по отношению к экдистероидам или не-экдистероидам. Таким образом, созданное заявителями изобретение предлагает систему экспрессии индуцибельного гена на основе ядерного рецептора группы Н, пригодную для модулирования экспрессии гена, представляющего интерес в клетке-хозяине. В особенно предпочтительном варианте исполнения, созданное заявителями изобретение предусматривает систему экспрессии индуцибельного гена на основе рецептора экдизона, которая реагирует только на экдистероидные лиганды или не-экдистероидные лиганды. Кроме того, настоящее изобретение также предусматривает систему экспрессии индуцибельного гена на основе рецептора экдизона, чувствительную к усовершенствованному не-экдистероидному лиганду. Таким образом, предложенная заявителями новая система экспрессии индуцибельного гена и ее использование в способах модулирования генной экспрессии в клетке-хозяине преодолевают ограничения имеющихся в настоящее время индуцибельных систем экспрессии и дают квалифицированному специалисту эффективные средства для контроля генной экспрессии.

Настоящее изобретение пригодно для использования в таких областях, как генная терапия, крупномасштабное производство белков и антител, системы высокопроизводительного скрининг-анализа на основе клеток, скрининг-анализ ортогональных лигандов, функциональная геномика, протеомика, метаболомика и регулирование признаков у трансгенных организмов, где является желательным контроль уровней генной экспрессии. Преимуществом изобретения заявителей является то, что оно обеспечивает средства регулирования генной экспрессии и приведения уровней экспрессии в соответствии с требованиями пользователя.

Определения

В данном описании используется ряд терминов и аббревиатур. Приведем следующие определения, которые должны помочь пониманию объема и практики настоящего изобретения.

В конкретном варианте исполнения, термин "около" или "приблизительно" означает в пределах 20%, предпочтительно, в пределах 10%, более предпочтительно, в пределах 5%, и еще более предпочтительно, в пределах 1% от указанного значения или интервала значений.

Термин "по существу не содержит" означает, что композиция, включающая "А" (где "А" обозначает отдельный белок, молекула ДНК, вектор, рекомбинантная клетка-хозяин и т.д.), по существу не содержит "В" (где "В" включает один или больше загрязняющих белков, молекул ДНК, векторов и т.д.), когда по меньшей мере около 75% мас. белков, ДНК, векторов (в зависимости от категории компонентов, к которым принадлежат А и В) в композиции составляет "А". Предпочтительно, "А" включает по меньшей мере около 90% мас. А+В компонентов в композиции, наиболее предпочтительно, по меньшей мере около 99% мас. Также предпочтительно, чтобы композиция, по существу не содержащая загрязнений, содержала только компоненты одного молекулярного веса, обладающие активностью или характеристиками компонентов, представляющих интерес.

Термин "изолированный" в целях настоящего изобретения обозначает биологический материал (нуклеиновую кислоту или белок), извлеченный из его исходной среды (среды, в которой он находится в природных условиях). Например, полинуклеотид, присутствующий в природном состоянии в растении или животном, не является изолированным, однако тот же полинуклеотид, отделенный от граничащих с ним нуклеиновых кислот, в которых он находится в природных условиях, считается "изолированным". Термин "очищенный" не требует, чтобы материал находился в форме, обладающей абсолютной чистотой, исключающей присутствие других соединений. Это скорее относительное определение.

Полинуклеотид находится в "очищенном" состоянии после очистки исходного материала или природного материала по меньшей мере на один порядок величины, предпочтительно, 2 или 3, и предпочтительнее, 4 или 5 порядков величины.

"Нуклеиновая кислота" представляет собой полимерное соединение, состоящее из ковалентно связанных субъединиц, называемых нуклеотидами. Нуклеиновая кислота включает полирибонуклеиновую кислоту (РНК) и полидезоксирибонуклеиновую кислоту (ДНК), которые обе могут быть одноцепочечными или двухцепочечными. ДНК включает, без ограничений, кДНК, геномную ДНК, плазмидную ДНК, синтетическую ДНК и полусинтетическую ДНК. ДНК может быть линейной, кольцевой или сверхскрученной.

"Молекула нуклеиновой кислоты" относится к полимерной форме фосфатного сложного эфира рибонуклеозидов (аденозин, гуанозин, уридин или цитидин; "молекулы РНК") или дезоксирибонуклеозидов (дезоксиаденозин, дезоксигуанозин, дезокситимидин или дезоксицитидин; "молекулы ДНК") или любым их фосфоэфирным аналогам, таким как фосфоротиоаты и тиоэфиры, в одноцепочечной форме или в форме двухцепочечной спирали. Возможны двухцепочечные спирали ДНК-ДНК, ДНК-РНК и РНК-РНК. Термин молекула нуклеиновой кислоты, в частности молекула ДНК или РНК, относится только к первичной и вторичной структуре молекулы и не ограничивает ее какими-либо конкретными третичными формами. Таким образом, этот термин включает двухцепочечные ДНК, присутствующие, в том числе, в линейных или кольцевых молекулах ДНК (например, рестрикционные фрагменты), плазмиды и хромосомы. При обсуждении структуры конкретных двухцепочечных молекул ДНК, последовательности могут быть описаны тут в соответствии с обычной конвенцией с указанием только последовательности в направлении от 5'- к 3'-концу вдоль нетранскрибированной цепи ДНК (т.е. цепи, имеющей последовательность, гомологичную мРНК). "Рекомбинантная молекула ДНК" представляет собой молекулу ДНК, подвергнутую молекулярным биологическим манипуляциям.

Термин "фрагмент" следует понимать как обозначающий нуклеотидную последовательность уменьшенной длины по сравнению с эталонной нуклеиновой кислотой, включающей, на общем участке, нуклеотидную последовательность, идентичную эталонной нуклеиновой кислоте. Такой фрагмент нуклеиновой кислоты в соответствии с изобретением может, в соответствующих случаях, входить в состав большего по размеру полинуклеотида, составной частью которого он является. Такие фрагменты включают или, альтернативно, состоят из олигонуклеотидов, имеющих в длину от по меньшей мере 6, 8, 9, 10, 12, 15, 18, 20, 21, 22, 23, 24, 25, 30, 39, 40, 42, 45, 48, 50, 51, 54, 57, 60, 63, 66, 70, 75, 78, 80, 90, 100, 105, 120, 135, 150, 200, 300, 500, 720, 900, 1000 или 1500 последовательных нуклеотидов нуклеиновой кислоты в соответствии с изобретением.

В используемом тут значении, "изолированный фрагмент нуклеиновой кислоты" представляет собой полимер РНК или ДНК, который является одно- или двухцепочечным, необязательно содержащим синтетические, неприродные или измененные нуклеотидные основания. Изолированный фрагмент нуклеиновой кислоты в форме полимера ДНК может состоять из одного или больше сегментов кДНК, геномной ДНК или синтетической ДНК.

"Ген" относится к набору нуклеотидов, кодирующих полипептид, и включает нуклеиновые кислоты кДНК и геномной ДНК. "Ген" также относится к фрагменту нуклеиновой кислоты, который экспрессирует специфический белок или полипептид, включая регуляторные последовательности, предшествующие (5'-некодирующие последовательности) и следующие за (3'-некодирующие последовательности) кодирующей последовательностью. "Нативный ген" относится к гену в том виде, в каком он встречается в природе, со своими собственными регуляторными последовательностями. "Химерный ген" относится к любому гену, не являющемуся нативным геном, включающему регуляторные и/или кодирующие последовательности, которые не встречаются вместе в природе. Соответственно, химерный ген может включать регуляторные последовательности и кодирующие последовательности, полученные из разных источников, или регуляторные последовательности и кодирующие последовательности, полученные из одного источника, но имеющие взаимное расположение, отличное от встречающегося в природе. Химерный ген может включать кодирующие последовательности, полученные из разных источников и/или регуляторные последовательности, полученные из разных источников. "Эндогенный ген" относится к нативному гену в его природном положении в геноме организма. "Чужеродный" ген или "гетерологичный" ген относится к гену, который нормально не присутствует в организме хозяина, но был введен в организм хозяина путем переноса гена. Чужеродные гены могут включать нативные гены, введенные в ненативный организм, или химерные гены. "Трансген" представляет собой ген, который был введен в геном посредством процедуры трансформации.

"Гетерологичная" ДНК относится к ДНК, которая в природных условиях не присутствует в клетке или в хромосомной области клетки. Предпочтительно, гетерологичная ДНК включает ген, чужеродный по отношению к клетке.

Термин "геном" включает хромосомную, а также митохондриальную, хлоропластовую и вирусную ДНК или РНК.

Молекула нуклеиновой кислоты "гибридизуется" с другой молекулой нуклеиновой кислоты, такой как кДНК, геномная ДНК или РНК, если одноцепочечная форма молекулы нуклеиновой кислоты может соединяться с другой молекулой нуклеиновой кислоты в соответствующих условиях температуры и ионной силы раствора (см. Sambrook et al., 1989, infra). Условия гибридизации и промывки хорошо известны и описаны в Sambrook, J., Fritsch, E.F. и Maniatis, T. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), особенно, Глава 11 и Таблица 11,1 данного источника (который целиком включен сюда по ссылке). Условия температуры и ионной силы определяют "суровость" гибридизации.

Суровость условий может быть отрегулирована для отбора от умеренно подобных фрагментов, таких как гомологичные последовательности из отдаленно родственных организмов, до сильно подобных фрагментов, таких как гены, дуплицирующие функциональные ферменты из близко родственных организмов. Для предварительного скрининга гомологичных нуклеиновых кислот, могут быть использованы условия гибридизации низкой суровости, соответствующие, например, Tm 55°, 5×SSC, 0,1% ДСН, 0,25% молока, без формамида; или 30% формамида, 5×SSC, 0,5% ДСН. Условия гибридизации умеренной суровости соответствуют, например, более высокой Tm, 40% формамида, с 5× или 6×SCC. Условия гибридизации высокой суровости соответствуют, например, самым высоким значениям Tm, 50% формамида, 5× или 6×SCC.

Гибридизация требует, чтобы две нуклеиновые кислоты содержали комплементарные последовательности, хотя в зависимости от суровости гибридизации, возможны ошибки спаривания оснований. Термин "комплементарный" используется для описания соотношения между нуклеотидными основаниями, способными гибридизоваться друг с другом. Например, по отношению к ДНК, аденозин является комплементарным тимину, а цитозин является комплементарным гуанину. Соответственно, настоящее изобретение также включает изолированные фрагменты нуклеиновой кислоты, которые являются комплементарными к целой последовательности, раскрытой или используемой тут, а также существенно подобные последовательности нуклеиновой кислоты.

В конкретном варианте исполнения изобретения, полинуклеотиды детектируют с использованием условий гибридизации, включающих стадию гибридизации при Tm 55°С, и описанных выше условиях. В предпочтительном варианте исполнения, Tm равна 60°С; в более предпочтительном варианте исполнения, Tm равна 63°С; в еще более предпочтительном варианте исполнения, Tm равна 65°С.

Постгибридизационная промывка также определяет условия суровости. Один набор предпочтительных условий использует серию промывок, начиная с 6×SSC, 0,5% ДСН при комнатной температуре в течение 15 минут (мин), затем повторяют процедуру, используя 2×SSC, 0,5% ДСН при 45°С в течение 30 минут, и затем повторяют дважды, используя 0,2×SSC, 0,5% ДСН при 50°С в течение 30 минут. Более предпочтительный набор суворых условий использует более высокие температуры с идентичными указанным выше промывными жидкостями, за исключением того, что температура последних двух 30-минутных промывок в 0,2×SSC, 0,5% ДСН, повышена до 60°С. Другой предпочтительный набор очень суворых условий использует две последние промывки в 0,1×SSC, 0,1% ДСН при 65°С. Гибридизация требует, чтобы две нуклеиновые кислоты включали комплементарные последовательности, хотя в зависимости от суровости гибридизации, возможны ошибки спаривания оснований.

Соответствующая суворость гибридизации нуклеиновых кислот зависит от длины нуклеиновых кислот и степени комплементарности, причем эти факторы хорошо известны специалистам. Чем больше степень подобия или гомология между двумя нуклеотидными последовательностями, тем больше значение Tm для гибридных нуклеиновых кислот, содержащих эти последовательности. Относительная стабильность (соответствующая более высокой Tm) гибридизации нуклеиновых кислот уменьшается в следующем порядке: РНК:РНК, ДНК:РНК, ДНК:ДНК. Для гибридов, имеющих более 100 нуклеотидов в длину, были выведены уравнения для расчета Tm (см. Sambrook et al., supra, 9,50-0,51). Для гибридизации с более короткими нуклеиновыми кислотами, т.е. олигонуклеотидами, положение ошибок спаривания становится более важным, и длина олигонуклеотида определяет его специфичность (см. Sambrook et al., supra, 11,7-11,8).

В конкретном варианте исполнения изобретения, полинуклеотиды детектируют путем использования условий гибридизации, включающих стадию гибридизации в менее чем 500 мМ соли и по меньшей мере 37°С и стадию промывки в 2×SSPE при по меньшей мере 63°С. В предпочтительном варианте исполнения, условия гибридизации включают менее чем 200 мМ соли и по меньшей мере 37°С для стадии гибридизации. В более предпочтительном варианте исполнения, условия гибридизации включают 2×SSPE и 63°С для обоих стадий гибридизации и промывки.

В одном варианте исполнения, длина гибридизуемой нуклеиновой кислоты составляет по меньшей мере около 10 нуклеотидов. Предпочтительно, минимальная длина гибридизуемой нуклеиновой кислоты составляет по меньшей мере около 15 нуклеотидов; более предпочтительно, по меньшей мере около 20 нуклеотидов; и наиболее предпочтительно, длина составляет по меньшей мере 30 нуклеотидов. Кроме того, квалифицированному специалисту понятно, что температура и концентрация соли промывного раствора могут быть отрегулированы в зависимости от необходимости с учетом таких факторов, как длина зонда.

Термин "зонд" относится к одноцепочечной молекуле нуклеиновой кислоты, которая может спариваться с комплементарной одноцепочечной нуклеиновой кислотой-мишенью с образованием двухцепочечной молекулы.

В используемом тут значении, термин "олигонуклеотид" относится к нуклеиновой кислоте, состоящей в общем из по меньшей мере 18 нуклеотидов, которая способна гибридизироваться с молекулой геномной ДНК, молекулой кДНК, плазмидной ДНК или молекулой мРНК. Олигонуклеотиды могут быть помечены, например, 32Р-нуклеотидами или нуклеотидами, ковалентно конъюгированными с меткой, такой как биотин. Меченый олигонуклеотид может быть использован в качестве зонда для детектирования присутствия нуклеиновой кислоты. Олигонуклеотиды (один или оба из которых могут быть мечеными) могут быть использованы в качестве праймеров ПЦР, для клонирования полной нуклеиновой кислоты или ее фрагмента или для детектирования присутствия нуклеиновой кислоты. Олигонуклеотид также может быть использован для образования тройной спирали с молекулой ДНК. Обычно, олигонуклеотиды получают синтетически, предпочтительно, с помощью синтезатора нуклеиновых кислот. Соответственно, олигонуклеотиды могут быть получены с неприродными аналогами фосфоэфирных связей, такими как тиоэфирные связи и т.д.

"Праймер" является олигонуклеотидом, который гибридизуется с последовательностью нуклеиновой кислоты-мишени с образованием участка двухцепочечной нуклеиновой кислоты, который может служить сайтом инициации для синтеза ДНК в пригодных условиях. Такие праймеры могут быть использованы в полимеразной цепной реакции.

"Полимеразная цепная реакция" сокращенно обозначается ПЦР и обозначает in vitro метод ферментативной амплификации специфических последовательностей нуклеиновой кислоты. ПЦР включает повторяющуюся серию температурных циклов, каждый из которых включает три стадии: денатурирование матричной нуклеиновой кислоты для разделения цепей молекулы-мишени, отжиг одноцепочечного олигонуклеотидного праймера ПЦР с матричной нуклеиновой кислотой и удлинение отожженного праймера (праймеров) ДНК полимеразой. ПЦР обеспечивает средства детектирования присутствия целевой молекулы и, в количественных или полуколичественных условиях, определения относительного количества данной молекулы-мишени в исходном пуле нуклеиновых кислот.

"Полимеразная цепная реакция с обратной транскриптазой" сокращенно обозначается ОТ-ПЦР и обозначает in vitro метод ферментативного синтеза целевой молекулы или молекул кДНК из молекулы или молекул РНК, с последующей ферментативной амплификацией специфической последовательности или последовательностей нуклеиновой кислоты в целевой молекуле или молекулах кДНК, как описано выше. ОТ-ПЦР также обеспечивает средства детектирования присутствия целевой молекулы и, в количественных или полуколичественных условиях, определения относительного количества данной целевой молекулы в исходном пуле нуклеиновых кислот.

"Кодирующая последовательность" ДНК представляет собой двухцепочечную последовательность ДНК, которую подвергают транскрипции и трансляции в полипептид в клетке in vitro или in vivo под контролем соответствующих регуляторных последовательностей. "Пригодные регуляторные последовательности" относятся к нуклеотидным последовательностям, предшествующим (5' некодирующие последовательности), расположенным внутри или следующим (3' некодирующие последовательности) за кодирующей последовательностью, которые влияют на транскрипцию, процессинг или стабильность РНК или трансляцию ассоциированной кодирующей последовательности. Регуляторные последовательности могут включать промоторы, лидерные последовательности трансляции, интроны, последовательности узнавания полиаденилирования, сайт процессинга РНК, сайт связывания эффектора и структуру стебель-петля. Границы кодирующей последовательности определяются старт-кодоном на 5' (амино) конце и кодоном терминации трансляции на 3' (карбоксильном) конце. Кодирующая последовательность может включать, без ограничений, прокариотические последовательности, кДНК из мРНК, геномные ДНК-последовательности и даже синтетические ДНК-последовательности. Если кодиру