Способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта

Иллюстрации

Показать все

Изобретение относится к горному делу и может быть использовано при подземной разработке газоносных угольных пластов в условиях проявления опасных геодинамических явлений. Предложен способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающий бурение в пласт дегазационной скважины, формирование каналов проницаемости вокруг скважины, удаление воды и извлечение метана. В процессе дегазации пласта осуществляют периодическое закрытие и открытие устья скважины. При этом закрытие осуществляют на время до 1…3 суток, а длительность открытия ограничивают временем до достижения минимального дебита метана в предыдущем периоде. Кроме того, в дегазационные скважины с нулевым дебитом перед первым периодом закрытия нагнетают воздух под абсолютным давлением более 6 бар - для создания стартовых каналов проницаемости. Техническим результатом является повышение дебита метана из скважины в 10-15 раз, сокращение длительности подготовки особо опасного пласта к отработке за счет интенсификации процесса дегазации и снижение газоносности в 2-3 раза и релаксации аномальных напряжений горного давления. 1 з.п. ф-лы, 3 ил.

Реферат

Изобретение относится к горному делу и может быть использовано при подземной разработке газоносных угольных пластов в условиях вероятности проявления опасных геодинамических явлений.

Известен способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающий бурение в пласт дегазационной скважины, формирование каналов проницаемости вокруг скважины методом гидравлического воздействия, удаление воды ниже подошвы пласта и извлечение метана [1].

В известном способе в угольном пласте под давлением воды осуществляют гидравлический разрыв пласта, в результате чего вокруг скважины формируются трещины и каналы газовой проницаемости, по которым после осушения пласта происходит массоперенос угольного метана в скважину. Понижение газоносности пласта обеспечивает в дальнейшем более безопасные условия при очистных работах и при высоких нагрузках на очистной забой.

Недостатком известного способа являются низкие дебиты метана из скважин и постепенное уменьшение дебитов в течение времени из-за наличия воды в поровом пространстве пласта, постепенного закрытия трещин и каналов газовой проницаемости под действием горного давления, что не позволяет осуществлять эффективную дегазацию пласта в течение короткого времени. По этой причине длительность заблаговременной дегазации составляет 5-6 лет, что снижает инвестиционную привлекательность технологии. Кроме того, гидравлическая дезинтеграция и повышенная трещиноватость породного массива приводит к понижению прочности угольного пласта и вмещающих пород, что требует дополнительных технических мероприятий по поддержанию устойчивости очистных выработок.

Прототипом изобретения является способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающий бурение в пласт дегазационной скважины, формирование каналов проницаемости вокруг скважины, удаление воды из пласта и извлечение метана [2].

Недостатком прототипа является то, что в течение времени происходит неуклонное понижение дебита метана из скважины, а также высокая длительность дегазации, требуемая для подготовки разрабатываемого пласта к безопасной отработке. В этом случае для повышения дебита метана, как правило, требуются дополнительные силовые воздействия на пласт с использованием внешних источников энергии.

Задачей изобретения является повышение интенсивности дегазации угольного пласта, снижение величины экстремальных напряжений горного давления в породном массиве и предотвращение опасных геодинамических явлений при подземной разработке угольных пластов с высокими нагрузками на очистной забой.

Это достигается тем, что в способе предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающем бурение в пласт дегазационной скважины, формирование каналов проницаемости вокруг скважины, удаление воды из пласта и извлечение метана, в процессе дегазации пласта осуществляют периодическое закрытие и открытие устья скважины, при этом закрытие осуществляют на время 1…3 суток, а длительность открытия ограничивают временем до достижения минимального дебита метана в предыдущем периоде.

Кроме того, в дегазационные скважины с низким дебитом перед периодом закрытия нагнетают воздух под абсолютным давлением более 6 бар.

На фиг.1 показана первая технологическая схема реализации способа предотвращения геодинамических явлений при подземной разработке угольных пластов, реализующая заблаговременную подготовку пласта к разработке. В угольный пласт 1 пробурена с земной поверхности вертикальная дегазационная скважина 2, на дне которой ниже подошвы пласта 1 располагают погружной насос 3. На контакте угольного пласта 1 и скважины 2 создают полость 4. В процессе откачки воды из скважины 2 в пространстве ниже подошвы пласта 1 формируется депрессионная кривая 5. В процессе дегазации пласта 1 угольный метан перемещается в радиальном направлении 6 к скважине 2. Из скважины 2 насосом 3 откачивают воду 7 и после осушения пласта извлекают газообразный метан 8. На устье скважины 2 предусмотрена запорная арматура 9 для открытия и закрытия скважины 2, расходомер для измерения дебита метана и манометр для измерения давления газа (не показаны). В угольный пласт 1 пробурена горизонтальная дегазационная скважина

На фиг.2 показана вторая технологическая схема реализации способа предотвращения геодинамических явлений при подземной разработке газоносных угольных пластов, обеспечивающая подготовку выемочного столба к высокопроизводительным очистным работам. В угольный пласт 1 пробурена из подземной выработки горизонтальная (или восходящая, не показано) дегазационная скважина 2. Устье скважины 2 оборудовано устьевой герметичной трубой 3. На контакте угольного пласта 1 и скважины 2 создают стартовые каналы проницаемости 4, например, в процессе бурения скважины 2 посредством бурового инструмента и под действием естественного горного давления. Избыточная вода истекает из пласта через скважину 2 под собственным весом, а также перемещается из пласта вниз к шахтной системе водопонижения (не показано). В процессе дегазации пласта 1 угольный метан перемещается из пласта 1 к скважине 2. Скважина 2 подключена к шахтному трубопроводу 5, по которому угольный метан в режиме отсоса удаляют из шахты. В скважине 2 на устьевой герметичной трубе 3 установлена запорная арматура в виде вентиля 6 для открытия и закрытия скважины 2, расходомера 7 для измерения дебита метана и манометра 8 для измерения давления газа. Для увеличения стартовых каналов проницаемости 4, в скважинах с нулевым или низким дебитом метана используют энергию сжатого воздуха из шахтного трубопровода 9, проложенного в подземной выработке.

На фиг.3 показан режим реализации способа. После удаления воды из пласта в полость скважины с атмосферным давлением P0 начинает поступать метан. Дебит метана G1 из устья дегазационной скважины с течением времени понижается (фиг.2а). В момент времени t1 устье скважины закрывают и открывают в момент времени t2. В течение времени (t2-t1) давление в скважине возрастает от атмосферного P0 до величины P1 (фиг.2б). После открытия скважины из нее под избыточным давлением истекает метан с дебитом G3, превышающем дебит G1 в предыдущем периоде. Повышенный дебит метана поддерживается до момента времени t3. При стабилизации дебита метана скважину снова перекрывают и режим повторяют. Таким образом, на всех последующих режимах реализуются кривые дебита G5, …, Gn, Gn+2, при этом минимум каждого последующего дебита превышает минимум дебита в предыдущем режиме.

Способ предотвращения геодинамических явлений при подземной разработке угольных пластов осуществляют следующим образом.

По первой технологической схеме (фиг.1) в газоносный угольный пласт 1 бурят дегазационную скважину 2 ниже подошвы пласта. Ствол скважины 2 выше кровли пласта 1 обсаживают металлической трубой и цементируют. Участок ствола скважины 2 непосредственно в пласте 1 расширяют, например, с помощью напорной гидравлической струи (не показано). Ствол скважины 2 ниже подошвы пласта укрепляют перфорированной трубой (не показано) и на дне устанавливают погружной насос 3. Устье скважины 2 оборудуют запорной арматурой 9, содержащей вентиль для закрытия и открытия скважины, манометр для измерения давления и расходомер газа (не показано). После обустройства скважины 2 включают насос 3 и откачивают воду. После осушения пласта 1 примерно через 3 месяца в скважину 2 начинает поступать угольный метан с дебитом G1, величина которого постепенно понижается и стабилизируется во времени, что обусловлено частичным закрытием каналов газовой проницаемости в угольном пласте под действием горного давления и уменьшением пластового давления газа в зоне питания пласта. В момент времени t1 скважину 2 закрывают на время (1…3) суток. При этом давление в скважине возрастает от начального атмосферного давления Р0=1 бар до величины P1 более 6 бар. После этого устье скважины 2 открывают и измеряют в течение времени расходомером дебит метана. В момент времени t3, при очередной стабилизации дебита метана G2, скважину 2 закрывают. Как правило, длительность периода свободного истечения метана из скважины не превышает 30 суток.

По второй технологической схеме (фиг.2) в газоносный угольный пласт 1 бурят горизонтальную дегазационную скважину 2. Устье скважины 2 обсаживают трубой 3, коаксиальное пространство между трубой 3 и пластом 1 герметизируют. Вокруг скважины 2 в пласте 1 создают стартовые каналы проницаемости 4, которые естественно формируются как в процессе бурения скважины 2, так и под действием концентрации напряжений горного давления. Устьевую трубу 3 скважины 2 оборудуют арматурой, включающей запорный вентиль 6, расходомер 7 и манометр 8. В скважину 2 из пласта 1 поступает угольный метан с дебитом G1, величина которого с течением времени понижается и стабилизируется. В момент времени t1 устьевую трубу 3 скважины 2 закрывают вентилем 6 на время (1…3) суток. При этом давление в скважине 2, измеряемое манометром 8, возрастает от начального атмосферного давления порядка P0=1 бар до величины P1 более 6 бар. После этого устье скважины 2 открывают и измеряют в течение времени расходомером 7 дебит метана. В момент времени t3, при очередной стабилизации дебита метана G2, как правило, через 30 суток, скважину 2 закрывают. С течением времени после многократного периодического закрытия и открытия устья скважины 2 происходит увеличение зоны 10 повышенной проницаемости угольного пласта 1 с эффектом релаксации экстремальных напряжений горного давления.

В низкопроницаемых угольных пластах в первой (фиг.1) и второй (фиг.2) технологических схемах возможна ситуация, когда начальный дебит метана из дегазационной скважин 2 практически равен нулю. В данном случае в угольном пласте 1 вокруг скважин 2 формируют дополнительные стартовые каналы газовой проницаемости. В дегазационные скважины 2 с низким дебитом метана перед периодом закрытия нагнетают воздух под абсолютным давлением более 6 бар, величина которого достаточна для формирования и расширения стартовых трещин вокруг скважины. На фиг.2 показан вариант использования энергии сжатого воздуха с давлением (6…10) бар и более из шахтного трубопровода 9. В скважину 2 нагнетают воздух, устье закрывают вентилем 6 на время (1…3) суток, после чего скважину 2 открывают для свободного истечения метано-воздушной смеси. При этом в течение последующего времени порядка 30 суток из скважины истекает метан с повышенным дебитом. В результате этой технологической операции вокруг скважины формируются стартовые каналы проницаемости, которые в дальнейшем непрерывно расширяются в радиальном направлении, обеспечивая больший объем дегазации.

Периодическое открытие и закрытие устья дегазационных скважин приводит к повышению дебитов метана, что способствует более интенсивной дегазации и предотвращает опасные геодинамических явления при подземной разработке угольных пластов.

Физической основой процесса нарастания дебитов метана является эффект сорбционной деформации угля: при десорбции метана происходит усадка угля, а при сорбции - "набухание" (расширение) угля. Исходя из физики процесса деформирования угля следует, что при перепадах абсолютного давления газа от 1 до 6 бар возникают усадочные напряжения, достигающие величин предельной прочности угля при сдвиговых деформациях, что приводит к появлению и развитию микро- и макротрещин в угольном пласте. Таким образом, в процессе дегазации пласта процесс десорбции метана через механизм усадки и "набухания" приводит к увеличению каналов газопроницаемости и увеличению дебита. Постепенное уменьшение во времени проницаемости угля под действием сжимающего горного давления компенсируется в периодах открытия и закрытия скважин. Характерно, что наиболее интенсивно сорбционные деформации происходят именно в углях, склонных к выбросам [Большинский М.И., Лисиков Б.А., Каплюхин А.А. Газодинамические явления в шахтах. Монография. - Севастополь: "Вебер", 2003, с.131]. Сорбционное расширение выбросоопасного угля приводит к появлению дополнительных механических напряжений, которые в комбинации с аномальными напряжениями горного давления обеспечивают рост микротрещин в угольном пласте. При этом наряду с повышением проницаемости угля происходит еще один важный процесс - это релаксации высоких напряжений горного давления. Многократное периодическое открытие и закрытие устья скважины увеличивает дебит метана, повышает проницаемость угольного пласта, снижает газоносность и уменьшает экстремальные напряжения горного давления, что в целом приводит к благоприятным условиям при высокопроизводительной отработке угольных пластов в зонах проявления опасных геодинамических явлений.

Пример реализации способа №1. На шахте им. С.М. Кирова ОАО «СУЭК Кузбасс», сверхкатегорной по метану, разрабатывают по технологии длинными столбами угольный пласт «Поленовский» мощностью 1,7 м, газоносностью 14-16 м3/т. С глубины более 250 м пласт относится к угрожаемым по горным ударам. Для предотвращения геодинамических явлений проводят заблаговременную дегазацию пласта, чтобы ликвидировать угрозу вспышек метана и уменьшить в пласте экстремальные напряжения горного давления. С земной поверхности в угольный пласт бурят вертикальные скважины диаметром 229 мм, обсаживают их металлическими трубами внешним диаметром 180 мм, цементируют коаксиальное пространство между трубой и скважиной. Скважину на контакте с угольным пластом расширяют мощной гидравлической струей под давлением 400-500 бар до диаметра 1-1,5 м. Скважина пробурена на глубину 5 м ниже подошвы пласта. На дне скважины устанавливают погружной водяной насос и регулярно откачивают воду. Через месяц после начала откачки воды в скважину поступает метан с дебитом 0,1 м3/мин. Для интенсификации дегазации пласта устье скважины закрывают на 2 суток, в течение которых абсолютное давление метана в скважине повышается до величины 7 бар. После этого скважину открывают и из скважины под собственным давлением истекает метан с начальным дебитом 1,5 м3/мин. Через 20 суток дебит метана понижается до 0,2 м3/мин и его величина во времени стабилизируется. Далее закрывают устье скважины также на время 2 суток, а затем открывают. Следующий период закрытия скважины реализуется при установившемся дебите 0,3 м3/мин. Далее процессы открытия и закрытия скважины повторяют. В течение года эксплуатации дегазационной скважины установившийся дебит метана составляет 2,2 м3/мин, а через два года - 3,1 м3/мин. Таким образом, практически через три года эксплуатации дегазационной скважины в радиусе 50 м газоносность пласта понижается до величины 6 м3/т, что позволяет в последующем производить очистные работы с высокой производительностью 10-15 тыс. т/сут в безопасных геодинамических условиях. В случае низкого дебита метана в скважине инициируют стартовые трещины путем подачи воздуха под давлением более 6 бар. В дальнейшем режим закрытия и открытия устья дегазационных скважин выдерживают аналогично первому варианту, достигая в конечном итоге такие же удовлетворительные условия дегазации.

Пример реализации способа №2. На шахте им. С.М. Кирова ОАО «СУЭК Кузбасс», при отработке угольного пласта «Поленовский» проводят текущую дегазацию, при которой в пласт бурят скважины из оконтуривающих выработок. Длина дегазационных скважин 120 м, диаметр 76 мм. Начальный дебит метана из скважины составляет 5 л/мин. Закрытие скважины на двое суток приводит к повышению абсолютного давления метана в полости скважины до величины (6…7) бар. После первого открытия скважины из нее истекает метан с максимальным дебитом 15 л/мин, а через 20 суток дебит метана понижается до величины 8 л/мин и стабилизируется. Следующее закрытие скважины приводит к увеличению дебита до 25 л/мин, а стабилизация достигается при 10 л/мин. Реализация способа в течение года в режиме периодического закрытия и открытия устья скважины приводит к устойчивому повышению дебита метана в пределах (40…45) л/мин, что позволяет расширить радиус дегазации пласта вокруг скважины до 8 м при удельном съеме метана 6 м3/т. При реализации способа происходит геодинамическая разгрузка опасного участка пласта от экстремального горного давления, что позволяет в последующем производить очистные работы с высокой производительностью 10-15 тыс. т/сут в безопасных геодинамических условиях.

Источники информации

1. Сластунов С.В. Заблаговременная дегазация и добыча метана из угольных месторождений. - М.: Изд-во МГГУ, 1996,с.56-60.

2. Патент РФ №2278978, кл. E21F 7/00, E21F 5/00 от 29.07.1997 (прототип).

1. Способ предотвращения геодинамических явлений при подземной разработке газоносного угольного пласта, включающий бурение в пласт дегазационной скважины, формирование каналов проницаемости вокруг скважины, удаление воды из пласта и извлечение метана, отличающийся тем, что в процессе дегазации пласта осуществляют периодическое закрытие и открытие устья скважины, при этом закрытие осуществляют на время 1…3 суток, а длительность открытия ограничивают временем до достижения минимального дебита метана в предыдущем периоде.

2. Способ по п.1, отличающийся тем, что в дегазационные скважины с низким дебитом перед периодом закрытия нагнетают воздух под абсолютным давлением более 6 бар.