Непрерывный способ получения диоксида кремния и продукт диоксида кремния, полученный этим способом

Иллюстрации

Показать все

Изобретение относится к химико-фармацевтической промышленности и представляет собой композицию средств по уходу за зубами, включающую частицы диоксида кремния в количестве от 5 до 50% от массы композиции, где частицы диоксида кремния имеют коэффициент маслоемкости до 100 см3/100 г, коэффициент сферичности (S80) выше 0,9 и величину абразивного износа по Брассу-Эйнленеру менее 8,0 мг потерь/100000 оборотов, где по меньшей мере 80% частиц диоксида кремния имеют форму от закругленной до округлой. 2 н. и 11 з.п. ф-лы, 6 пр., 13 ил., 10 табл.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ

По данной заявке испрашивается приоритет по дате подачи 24 февраля 2010 г. заявки на патент US 12/711321, раскрытие которой посредством ссылки включено во всей своей полноте в настоящий документ.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Осажденный диоксид кремния может быть получен добавлением подкисляющего агента к силикату щелочного металла с осаждением аморфного диоксида кремния. Образовавшийся осадок обычно отфильтровывают из реакционной массы и после этого промывают и сушат. Как правило, высушенный диоксид кремния далее механически измельчают для получения приемлемого размера частиц и гранулометрического распределения. В промышленном масштабе диоксид кремния может быть получен в ходе ступенчатого периодического процесса, включающего упомянутые выше стадии. Оборудование, необходимое для такого процесса, может потребовать значительных капиталовложений, что зачастую приводит к неэффективности процесса, в частности, когда имеет место простой в работе, при котором реагенты не расходуются. Вместе с тем существуют и другие способы получения диоксида кремния, большинство из которых являются сложными для регулирования и масштабирования, а многие, кроме того, требуют проведения масштабных стадий обработки после получения диоксида кремния.

Таким образом, существует потребность в улучшенном способе получения диоксида кремния, в котором были бы устранены упоминавшиеся выше недостатки традиционных способов получения диоксида кремния. Эта и другие потребности удовлетворяются настоящим изобретением.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В данной работе раскрыт непрерывный способ получения продукта диоксида кремния, включающий: (а) непрерывную подачу подкисляющего агента и силиката щелочного металла в петлевую реакционную зону, содержащую поток жидкой среды, где по меньшей мере часть подкисляющего агента и силиката щелочного металла реагирует с образованием продукта диоксида кремния в жидкой среде петлевой реакционной зоны; (b) непрерывную рециркуляцию жидкой среды через петлевую реакционную зону; и (с) непрерывную выгрузку из петлевой реакционной зоны части жидкой среды, содержащей продукт диоксида кремния.

Также раскрыты частицы диоксида кремния, имеющие коэффициент маслоемкости до 100 см3/100 г, где по меньшей мере 80% частиц диоксида кремния имеют форму от закругленной до округлой, и где частицы диоксида кремния имеют коэффициент сферичности (S80) выше 0,9 и величину абразивного износа по Брассу-Эйнленеру менее 8,0 мг потерь/100000 оборотов.

Также раскрыты частицы диоксида кремния, имеющие размер частиц от 3 до 15 мкм, коэффициент маслоемкости выше 100 см3/100 г и степень удаления зубного налета (PCR) при 20% нагрузке диоксида кремния по меньшей мере 85.

Кроме того, раскрыты композиции средств по уходу за зубами, включающие частицы диоксида кремния в количестве от 5 до 50% от массы композиции, где частицы диоксида кремния имеют коэффициент маслоемкости до 10 см3/100 г, коэффициент сферичности (S80) выше 0,9 и величину абразивного износа по Брассу-Эйнленеру менее 8,0 мг потерь/100000 оборотов; где по меньшей мере 80% частиц диоксида кремния имеют форму от закругленной до округлой.

Также раскрыты композиции средств по уходу за зубами, включающие частицы диоксида кремния в количестве от 5 до 50% от массы композиции; где частицы диоксида кремния имеют размер частиц от 3 до 15 мкм, коэффициент маслоемкости выше 100 см3/100 г и степень удаления зубного налета (PCR) при 20% нагрузке диоксида кремния по меньшей мере 85.

Преимущества изобретения будут частично изложены в следующем разделе описания и частично будут очевидны из описания либо могут быть изучены с помощью практического применения аспектов, описанных ниже. Преимущества, описанные ниже, будут реализованы и достигнуты посредством элементов и комбинаций, особым образом отмеченных в прилагаемой формуле изобретения. Следует понимать, что и изложенное выше общее описание, и последующее подробное описание приведены исключительно в иллюстративных и пояснительных целях и не являются ограничительными.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Фиг. 1 представляет собой пример схемы непрерывного петлевого реактора.

Фиг. 2 представляет собой график, показывающий сканограммы Horiba размеров частиц для Примера 2Е в суспензии (кружки), после распылительной сушки (ромбы) и измельченных с помощью молотка (треугольники). Для сравнения приведен Диоксид кремния ZEODENT 103 (квадраты).

Фиг. 3А и 3В представляют собой микроснимки, выполненные с помощью электронного сканирующего микроскопа (SEM), Примера 2D, полученного с помощью раскрываемого способа.

Фиг. 4А и 4В представляют собой снимки SEM Примера 2R, полученного с помощью раскрываемого способа.

Фиг. 5А и 5В представляют собой снимки SEM Примера 2Е, полученного с помощью раскрываемого способа.

Фиг. 6А и 6В представляют собой снимки SEM для ZEODENT 113 и ZEODENT

165.

Фиг. 7 представляет собой снимок SEM Примера 2F, полученного с помощью раскрываемого способа.

Фиг. 8 представляет собой графическое изображение крутости частиц.

Фиг. 9 представляет собой графическое представление вычислений коэффициента крутости.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Прежде чем настоящие соединения, композиции, композиционные материалы, изделия, устройства и/или способы будут раскрыты и описаны, следует понимать, что аспекты, описанные ниже, не ограничиваются определенными соединениями, композициями, композиционными материалами, изделиями, устройствами, способами или применениями, как таковыми, и, разумеется, могут варьироваться. Следует также понимать, что терминология, используемая в данном контексте, предназначена исключительно для описания частных аспектов и не должна быть ограничительной.

В данном описании и формуле изобретения будут сделаны ссылки на ряд терминов, которые имеют следующие значения:

В объеме данного описания, если по контексту не требуется иного, фраза «включают» или такие варианты, как «включает» или «включающий», будет подразумевать включение указанной единицы или стадии, или группы единиц или стадий, но не исключение какой-либо другой единицы или стадии, или группы единиц или стадий.

Следует отметить, что используемые в данном описании и прилагаемой формуле изобретения формы единственного числа "a," "an" и "the" включают множество объектов, если по контексту не требуется иного. Так, например, ссылка на «подкисляющий агент» учитывает смеси двух или более таких агентов и так далее.

"Необязательный" или "необязательно" означает, что в дальнейшем описанное событие или обстоятельство могут происходить либо не происходить, и что описание охватывает примеры, в которых событие или обстоятельство происходит, а также примеры, в которых оно не происходит.

Диапазоны в данном контексте могут быть выражены как «приблизительно» от одного определенного значения и/или до «приблизительно» другого определенного значения. Когда такой диапазон выражен, другой аспект включает от одного определенного значения и/или до другого определенного значения. Аналогично, если величины выражают как приблизительные величины за счет использования антецедента «приблизительно», следует понимать, что частная величина формирует другой аспект. Также следует понимать, что конечные значения каждого из диапазонов являются существенными как в отношении другого конечного значения, так и независимо от другого конечного значения.

Раскрыты соединения, композиции и компоненты, которые могут быть использованы для, могут быть использованы в сочетании с, могут быть использованы при приготовлении либо являются продуктами раскрытых способов и композиций. Эти и другие материалы раскрыты в данном документе, при этом подразумевается, что когда комбинации, подгруппы, взаимодействия, группы и так далее таких материалов раскрыты, хотя конкретная ссылка на каждую из различных отдельных и совокупных комбинаций, а также преобразование этих соединений могут и не быть полностью раскрыты, каждое из них рассматривается в частности и описывается в данной работе. Например, если раскрывают и обсуждают ряд различных подкисляющих агентов и силикатов щелочных металлов, то рассматривают в частности все без исключения комбинации и преобразования подкисляющего агента и силиката металла, если определенным образом не указано иное. Так, если раскрыт класс агентов А, В и С, а также класс агентов D, Е и F, и раскрыта в качестве примера комбинация агентов A-D, то даже если каждый из них не перечислен индивидуально, каждый рассматривается индивидуально и в совокупности. Так, в данном примере каждая из комбинаций А-Е, А-F, B-D, В-Е, B-F, C-D, С-Е и C-F рассматривается в частности и ее следует считать раскрытой из раскрытия А, В и С; D, Е и F; и комбинации примера A-D. Аналогичным образом, любая подгруппа или комбинация этого также рассматривается в частности и раскрывается. Так, например, подгруппа А-Е, B-F и С-Е в частности рассматривается и ее следует считать раскрытой из раскрытия А, В и С; D, Е и F; и комбинации примера А-D. Эта концепция применяется ко всем аспектам данного раскрытия, включая, но не ограничиваясь перечнем, стадии способа получения и использования раскрытых композиций. Так, если имеется ряд дополнительных стадий, которые могут быть выполнены, подразумевается, что каждая из этих дополнительных стадий может быть выполнена с любым конкретным вариантом осуществления или комбинацией вариантов осуществления раскрываемых способов, и что каждая такая комбинация рассматривается в частности и ее следует считать раскрытой.

Способ получения продукта диоксида кремния

Согласно одному из аспектов, способ изобретения представляет собой непрерывный технологический процесс, при котором подкисляющий агент и силикат щелочного металла непрерывно подаются в петлевую реакционную зону, содержащую поток жидкой среды; где по меньшей мере часть подкисляющего агента и силиката щелочного металла реагирует с образованием продукта диоксида кремния в жидкой среде петлевой реакционной зоны. Поскольку подкисляющий агент и силикат щелочного металла непрерывно подаются в петлевую реакционную зону, содержимое петлевой реакционной зоны (то есть, жидкая среда) непрерывно рециркулирует. Продукт диоксида кремния собирают, выгружая часть жидкой среды, содержащей продукт диоксида кремния, которая, согласно одному из аспектов, эквивалентна объему сырьевых материалов, добавляемых в петлевую реакционную зону.

В данном контексте "петлевая реакционная зона" относится к зоне внутри реактора, образующей замкнутый цикл, содержащий рециркулирующую жидкую среду, где подкисляющий агент и силикат щелочного металла реагируют с образованием продукта диоксида кремния. Как будет рассмотрено ниже, согласно одному из аспектов, петлевая реакционная зона определяется стенками непрерывного контура, образованного одной или несколькими трубами петлевого реактора. Вообще говоря, жидкая среда в петлевой реакционной зоне будет варьироваться по составу в зависимости от стадии процесса. Перед добавлением подкисляющего агента и силиката щелочного металла в жидкую среду среда может содержать только воду, либо подходящий водный раствор, или дисперсию (суспензию). Согласно одному из аспектов, перед подачей подкисляющего агента и силиката щелочного металла в реакционную зону, жидкая среда может содержать кристаллы-затравку диоксида кремния, служащие для снижения гелеобразования в петлевой реакционной зоне и способствующие формированию продукта диоксида кремния. В соответствии с частным аспектом, перед добавлением подкисляющего агента и силиката щелочного металла, при необходимости, в петлевую реакционную зону сначала могут быть добавлены и рециркулированы осажденный диоксид кремния, сульфат натрия, силикат натрия и вода, после чего могут быть добавлены подкисляющий агент и силикат щелочного металла. По мере добавления в петлевую реакционную зону подкисляющего агента и силиката щелочного металла в жидкой реакционной среде происходит образование продукта диоксида кремния. Продукт диоксида кремния в большинстве случаев будет осажденным продуктом и, следовательно, будет являться дисперсной фазой в жидкой реакционной среде. Согласно одному из аспектов, перед сбором требуемого продукта диоксида кремния кристаллы-затравка продукта диоксида кремния могут быть удалены из петлевой реакционной зоны.

Температура и давление процесса также могут варьироваться в широком диапазоне в зависимости от типа требуемого продукта диоксида кремния. Согласно одному из аспектов способа, в жидкой среде поддерживают температуру приблизительно от комнатной до 130°С. Аналогичным образом, может использоваться широкий диапазон давлений. Давление может варьироваться от атмосферного давления до повышенных давлений. Например, при использовании в соответствии со способом непрерывного петлевого реактора реактор может быть оборудован клапаном противодавления для регулирования давления внутри реактора в широком диапазоне.

Силикат щелочного металла и подкисляющий агент могут подаваться в реакционную зону с различными скоростями. Скорость добавления силиката щелочного металла обычно должна быть такой, чтобы в реакционной зоне поддерживалась требуемая концентрация силиката, тогда как скорость добавления подкисляющего агента должна быть такой, чтобы в петлевой реакционной зоне поддерживалась требуемая величина рН. Согласно одному из аспектов, силикат щелочного металла подают в петлевую реакционную зону со скоростью по меньшей мере 0,5 л/мин. Максимальная скорость добавления силиката щелочного металла будет варьироваться в широком диапазоне в зависимости от объема петлевой реакционной зоны и масштабности способа получения диоксида кремния. Высокая скорость добавления силиката потребуется, например, в случае очень крупномасштабного процесса, где используются значительные объемы реагентов. Согласно одному из частных примеров, силикат щелочного металла подают со скоростью от 0,5 до 5 л/мин или от 0,5 до 3 л/мин.

Подкисляющий агент обычно подают в петлевую реакционную зону со скоростью, достаточной для поддержания в жидкой среде значения рН в диапазоне от 2,5 до 10,5. Согласно другим аспектам, подкисляющий агент подают в петлевую реакционную зону со скоростью, достаточной для поддержания в жидкой среде значения рН в диапазоне от 7,0 до 10 или от 7,0 до 8,5. Например, в соответствии с частным аспектом, в жидкой среде поддерживают величину рН приблизительно 7,5. Величина рН жидкой среды может контролироваться с помощью любого стандартного рН-электрода. Согласно некоторым примерам, величина рН жидкой среды может оцениваться с помощью непосредственного измерения рН жидкой среды (суспензии). В соответствии с этими примерами величина рН жидкой реакционной среды будет в большинстве случаев варьироваться в диапазоне от 2,5 до 10,5, от 6 до 10 или от 7 до 8,5.

Жидкая среда может рециркулировать с различными скоростями в зависимости от условий в петлевой реакционной зоне, таких как степень перемешивания или сдвига в реакционной зоне, а также в зависимости от масштабности производственного процесса. В большинстве случаев жидкая среда рециркулирует через петлевую реакционную зону со скоростью по меньшей мере 15 л/мин. В соответствии с частным примером жидкая среда может рециркулировать через петлевую реакционную зону со скоростью от 15 до 100 л/мин, от 30 до 80 л/мин или от 70 до 80 л/мин.

Может быть использован целый ряд подкисляющих агентов, включая кислоты и другие агенты, способные реагировать с силикатом щелочного металла с образованием продукта диоксида кремния. Кислота или подкисляющий агент может быть кислотой Льюиса или кислотой Бренстеда, такой как сильная минеральная кислота, например серная кислота, соляная кислота, азотная кислота, фосфорная кислота и другие. Такие кислоты могут добавляться в реакционную зону в виде разбавленных растворов. Как частный пример, в петлевую реакционную зону в качестве подкисляющего агента может подаваться раствор серной кислоты с концентрацией от 6 до 35 масс.% и, более предпочтительно, от 10 до 17 масс.%. В соответствии с другими аспектами, в качестве подкисляющего агента может использоваться газ, такой как СО2. Диоксид углерода образует слабую кислоту (угольную кислоту) и, следовательно, при использовании такой слабой кислоты может быть желательно поддерживать в жидкой среде величину рН выше приблизительно 8,5.

Согласно еще одному аспекту, подкисляющий агент может быть выбран на основе типа требуемого продукта диоксида кремния. Например, в качестве подкисляющего агента может быть использован кислый раствор сульфата алюминия, а образующийся в результате продукт диоксида кремния будет, таким образом, алюмосиликатом щелочного металла. В качестве частного примера сульфат алюминия может быть добавлен в серную кислоту, и полученная смесь может использоваться в качестве подкисляющего агента.

В соответствии со способом изобретения может быть использован любой подходящий силикат щелочного металла, включая силикаты, дисиликаты металлов и тому подобное. Водорастворимые силикаты калия и силикаты натрия являются особенно предпочтительными. Как правило, приемлемые продукты диоксида кремния данного изобретения могут быть получены с использованием силикатов, имеющих различные молярные соотношения щелочной металл:силикат. В случае силиката натрия, например, молярное соотношение NaO2:SiO2 будет, как правило, варьироваться от 1:1 до 1:3,5 и, предпочтительно, приблизительно от 1:2,4 до 1:3,4. Силикат щелочного металла, подаваемый в петлевую реакционную зону, предпочтительно подают в виде водного раствора, аналогичного подкисляющему агенту. Раствор силиката щелочного металла, подаваемый в петлевую реакционную зону, как правило, может содержать приблизительно от 8 до 35% и, более предпочтительно, приблизительно от 8% до 20 масс.% силиката щелочного металла от общей массы раствора силиката щелочного металла, подаваемого в петлевую реакционную зону.

При необходимости, а также для снижения концентрации силиката щелочного металла или подкисляющего агента в начальном растворе перед подачей раствора в петлевую реакционную зону в него может быть добавлена разбавляющая вода и/или разбавляющая вода может быть добавлена отдельно в петлевую реакционную зону и после этого смешана с силикатом щелочного металла и/или подкисляющим агентом и любым другим содержимым жидкой среды.

По мере того как требуемое количество подкисляющего агента и силиката щелочного металла добавляют в петлевую реакционную зону, жидкая среда будет обычно рециркулировать, проходя через зону рециркуляции в среднем, самое меньшее, трижды. Количество раз, которое в среднем жидкая среда рециркулирует через петлевую реакционную зону, упоминается в данном контексте как "среднее количество проходов", которое рассчитывают в соответствии со следующими уравнениями. Время пребывания продукта диоксида кремния в рециркуляционной петле перед выгрузкой определяют делением объема реакционной системы на скорость добавления сырьевого материала (скорость добавления силиката щелочного металла + скорость добавления подкисляющего агента). Количество проходов/минуту может быть далее рассчитано делением скорости рециркуляции на общий объем системы. После этого время пребывания может быть умножено на количество проходов/минуту с получением среднего числа проходов.

В р е м я  пребывания (мин) = объем системы (л) суммарная скорость добавления сырья ​ (л/мин)

К оличество проходов/мин = скорость рециркуляции (л/мин) объем системы (л)

В р е м я  пребывания (мин) = х количество проходов (мин) = с р е д н е е   ч и с л о   п р о х о д о в

Продукт диоксида кремния может быть рециркулирован таким образом, что среднее число проходов составит от 3 до 200 или от 10 до 200. В большинстве случаев, чем больше среднее число проходов, тем более сферичным и округлым получается продукт диоксида кремния. Количество проходов при рециркуляции (среднее число проходов) может, таким образом, быть выбрано на основании типа требуемого продукта диоксида кремния.

Продукт диоксида кремния может быть выгружен из петлевой реакционной зоны через посредство различных механизмов. Согласно одному из аспектов, в способе, как обсуждалось выше, используют непрерывный петлевой реактор, содержащий клапан для извлечения продукта диоксида кремния из петлевой реакционной зоны. Однако предпочтительно, чтобы продукт диоксида кремния вытесняли из петлевой реакционной зоны путем добавления дополнительной жидкости в реакционную зону, так что часть жидкой среды, содержащей продукт диоксида кремния, будет выгружаться из реакционной зоны (то есть, происходит переполнение реакционной зоны). Это может быть выполнено, согласно одному из аспектов, путем непрерывного добавления подкисляющего агента и/или силиката щелочного металла в петлевую реакционную зону по мере того, как часть жидкой среды вольюметрически замещается объемом добавляемого подкисляющего агента и/или силиката щелочного металла.

В соответствии с некоторыми аспектами способа, подкисляющий агент и силикат щелочного металла добавляют непрерывно по мере того как жидкая реакционная среда рециркулирует и по мере того как выгружают продукт диоксида кремния. Таким образом, согласно одному из аспектов, каждая из стадий способа протекает непрерывно и одновременно. Согласно еще одному аспекту, подкисляющий агент и силикат щелочного металла, каждый, подают в петлевую реакционную зону одновременно. Подкисляющий агент и силикат щелочного металла предпочтительно добавляют в петлевую реакцию в различных точках по всей длине петлевой реакционной зоны. Например, силикат щелочного металла может быть добавлен в петлю выше подкисляющего агента, так что когда подкисляющий агент поступает в реакционную зону, силикат щелочного металла уже присутствует там.

Модификации структуры продукта диоксида кремния могут быть достигнуты путем изменения температуры, ионной силы, скорости добавления и потребляемой энергии. Как правило, изменения температуры, скорости рециркуляции и скоростей добавления подкисляющего агента/силиката щелочного металла приводят к наибольшим изменениям физических характеристик продуктов диоксида кремния. Вообще говоря, чем больше жидкой среды рециркулирует, тем больше время пребывания продукта диоксида кремния в рециркуляционной петле (меньше скорости прибавления), и чем выше температура, тем ниже структура (как определено с помощью масляной абсорбции) получающегося в результате продукта диоксида кремния. Было установлено, что изменения величины рН в жидкой среде сводили к минимуму образование отложений диоксида кремния (обрастание) внутри петлевой реакционной зоны в случаях, когда использовали величину рН ниже приблизительно 9,0.

Продукт диоксида кремния может накапливаться после выгрузки из петлевой реакционной зоны в подходящем сборнике и обрабатываться по требованию. Согласно некоторым аспектам, продукт диоксида кремния не требует дополнительной обработки (за исключением промывки для удаления солей и тому подобного) и может перевозиться в виде влажного осадка либо, при необходимости, может быть высушен. Согласно одному из аспектов, например, образующийся в результате продукт диоксида кремния может быть высушен распылением в соответствии со способами, известными в данной области техники. Или же может быть получен влажный осадок продукта диоксида кремния, который может повторно суспендироваться и траспортироваться, и поставляться в форме суспензии либо непосредственно в форме отфильтрованного осадка. В большинстве случаев сушка продукта диоксида кремния, описанного в данной работе, может осуществляться с помощью любого стандартного оборудования, используемого для сушки диоксида кремния, например может применяться сушка распылением, сушка с использованием форсунок (например, сушилки башенного или фонтанного типа), сушка в потоке горячего воздуха, сушка во вращающемся барабане или сушка в печи/сушка в псевдосжиженном слое. Высушенный продукт диоксида кремния обычно должен содержать от 1 до 15 масс.% влажности. Природа реакционного продукта диоксида кремния и способ сушки, как известно, влияют на объемную плотность и пропускную способность жидкости.

Согласно другим аспектам, продукт диоксида кремния может быть подвергнут различным обработкам в зависимости от природы требуемого продукта диоксида кремния. Например, после накопления продукта диоксида кремния величина рН суспензии диоксида кремния может быть отрегулирована, например понижена за счет использования кислоты, такой как серная кислота, с последующей фильтрацией и промывкой. Согласно этому примеру, продукт диоксида кремния может быть промыт до требуемой проводимости, например от 1500 мкСм 2000 мкСм, с последующей сушкой, как обсуждалось выше.

Для дополнительного уменьшения размера высушенного продукта диоксида кремния, если это потребуется, может быть использовано стандартное оборудование для размола и измельчения. Для измельчения могут использоваться молотковая или маятниковая мельница в один или более проходов, а тонкий размол может быть получен с помощью жидкоструйной или воздухоструйной мельницы. Продукты, измельченные до требуемого размера, могут быть отделены от продуктов другого класса крупности с помощью стандартных способов разделения, например с помощью циклонов, классификаторов или вибрационных сит с подходящим размером ячеек и тому подобного.

Существуют также способы уменьшения размера частиц образующегося в результате продукта диоксида кремния перед выделением и/или во время синтеза продукта диоксида кремния, влияющие на размер высушенного продукта или продукта в форме суспензии. Они включают, не ограничиваясь этим, использование измельчающего материала, использование оборудования с высоким сдвигом (например, насоса с высоким сдвигом или роторно-статорных смесителей) или ультразвуковых устройств, которые согласно некоторым аспектам могут быть использованы во время самого процесса получения, например, в рециркуляционной петле. Уменьшение размера частиц, выполняемое для влажного продукта диоксида кремния, может быть осуществлено в любое время перед сушкой.

Продукт диоксида кремния

С помощью раскрытого способа могут быть получены различные типы продукта диоксида кремния в зависимости от исходных материалов и условий процесса. Согласно одному из аспектов, продукты диоксида кремния согласно изобретению имеют коэффициент маслоемкости до 100 см3/100 г. Согласно этому аспекту, по меньшей мере 80% частиц диоксида кремния имеют форму от закругленной до округлой. Эти частицы диоксида кремния также имеют коэффициент сферичности (S80) выше 0,9 и величину абразивного износа по Брассу-Эйнленеру менее 8,0 мг потерь/100000 оборотов.

В данном контексте "закругленные" частицы - это частицы, имеющие слегка закругленные углы с плоскими гранями и небольшими входящими углами, практически отсутствующими. "Округлые" частицы - частицы, имеющие однородный выпуклый зернистый контур без плоских граней, углов или ярко выраженных входящих углов.

Определение формы частиц диоксида кремния изобретения как от закругленной до округлой выполняют в соответствии со следующей методикой. Отбирают репрезентативный образец частиц диоксида кремния и исследуют его с помощью сканирующего электронного микроскопа (SEM). Делают снимки при двух различных уровнях увеличения, которые являются типичными для всего изображения в целом. Первый снимок делают при увеличении приблизительно в 200 раз и используют для оценки однородности образца. Далее оценивают следующий снимок SEM с увеличением приблизительно в 20000 раз. Предпочтительно, чтобы на снимке были изображены самое меньшее приблизительно 20 частиц, при этом следует позаботиться о том, чтобы гарантировать, что снимок отражает образец в целом. Частицы, изображенные снимке, затем оценивают и классифицируют в соответствии с Таблицей 1. По меньшей мере 80% частиц изобретения, имеющих коэффициенты маслоемкости до 100 см3/100 г, могут быть охарактеризованы как имеющие форму от закругленной до округлой.

Таблица 1

Характеристика крутости частиц

Класс Описание
Неокатанные Резко выраженные грани с острыми углами. Четко обозначенные большие входящие углы с многочисленными маленькими входящими углами.
Плохо
округленные Сильно выраженные плоские поверхности с начинающимися окатанными округлениями углов. Небольшие входящие углы сглаживаются, а большие входящие углы сохраняются.
Полуокатанные Слабо выраженные плоские поверхности с хорошо скругленными углами. Имеется несколько небольших и слегка закругленных входящих углов, а большие входящие углы слабо выражены.
Закругленные Плоские поверхности практически отсутствуют, все углы слегка закруглены. Небольшие входящие углы отсутствуют
Округлые Плоские поверхности, углы или различимые входящие углы отсутствуют, контуры однородных выпуклых зерен.

Для того чтобы помочь в описании крутости частиц можно воспользоваться схематическими изображениями стандартных контуров, изображенными на Фиг. 8. Частицы, отображающиеся на увеличенных снимках SEM, сравнивают со стандартной диаграммой контроля круглости частиц, изображенной на Фиг. 8 и классифицируют соответствующим образом. Такой способ обычно используют при изучении процессов седиментации. В качестве частного примера, частицы, изображенные на Фиг. 3-5, полученные с помощью раскрываемого способа, были классифицированы на основании сравнения с Фиг. 8, как от закругленных до округлых по природе, что означает, что по меньшей мере 80% частиц имеют форму от закругленной до округлой. В отличии от них продукты диоксида кремния, изображенные на Фиг. 6, полученные в ходе стандартного периодического процесса, при сравнении с Фиг. 8 были классифицированы как преимущественно неокатанные, плохо окатанные и полуокатанные, поскольку можно было заметить плоские грани и поверхности, зубчатые границы.

Частицы диоксида кремния изобретения, имеющие коэффициенты маслоемкости менее 100 см3/100 г, также могут быть охарактеризованы в соответствии с коэффициентом круглости. В данном контексте "коэффициент круглости" определяют как отношение радиуса кривизны углов и граней к радиусу наибольшей окружности, вписанной в частицу. Коэффициент круглости можно рассчитать по следующему уравнению:

К о э ф ф и ц и е н т   к р у г л о с т и =   ( ∑ r ) / N R

где r - радиус кривизны каждого угла, N - количество углов, a R - радиус наибольшей окружности, вписанной в частицу. Каждый радиус кривизны, r, вычисляют и суммируют. Далее эту величину усредняют путем деления на количество углов. Затем полученную величину делят на радиус наибольшей вписанной окружности, R. Этот процесс можно осуществлять вручную либо с помощью коммерчески доступного программного обеспечения для графического анализа с использованием снимка SEM с увеличением в 20000 раз.

На Фиг. 9 r1…r5 являются радиусами кривизны каждого из углов, a R - радиус наибольшей окружности, вписанной в частицу. Например, зерно правильной сферической формы, имеющее радиус кривизны, равный среднему радиусу максимальной вписанной окружности, имеет коэффициент круглости 1,0. По мере того как число граней и поверхностей в частице увеличивается, числитель в уравнении уменьшается и общая круглость частицы снижается. Круглость подробно обсуждается в работе "Stratigraphy and Sedimentation (Стратиграфия и седиментация)," 2ая редакция, Krumbein и Sloss (1963), включенной в настоящий документ посредством ссылки для изучения круглости.

Согласно одному из аспектов, частицы диоксида кремния изобретения имеют коэффициент маслоемкости до 10 см3/100 г, где по меньшей мере 80% частиц диоксида кремния имеют коэффициент круглости по меньшей мере 0,8 или, более предпочтительно, по меньшей мере 0,9. Такие частицы диоксида кремния также имеют коэффициент сферичности (S80) выше 0,9 и величину абразивного износа по Брассу-Эйнленеру менее 8,0 мг потерь/100000 оборотов. По меньшей мере 80% этих частиц также могут быть классифицированы сравнением с контурами, изображенными на Фиг. 8, как имеющие форму от закругленной до округлой, как отмечалось выше. Способ вычисления коэффициента круглости такой же, как показано выше, то есть оценивают репрезентативный образец, содержащий, предпочтительно, по меньшей мере 20 частиц на снимке SEM при увеличении в 20000 раз.

Частицы диоксида кремния изобретения, имеющие коэффициент маслоемкости до 10 см3/100 г, также имеют коэффициент сферичности (S80) по меньшей мере 0,9. В данном контексте, "S80" определяют и рассчитывают следующим образом. Снимок SEM, увеличенный в 20000 раз, отображающий репрезентативный образец частицы диоксида кремния, импортируют в программное обеспечение для работы с фотоснимками и вычерчивают контур каждой частицы (двухмерно). Частицы, расположенные близко друг к другу, но не присоединенные друг к другу, при оценке следует считать отдельными частицами. Затем контур частиц заполняют цветом, и снимок импортируют в программное обеспечение для описания частиц (например, IMAGE-PRO PLUS, доступное из компании Media Cybernetics, Inc., Bethesda, Maryland), позволяющее определить периметр и площадь частиц. Далее сферичность частиц может быть рассчитана по следующему уравнению.

Сферичность = периметр 2 4 π  х площадь ,

где периметр - периметр, измеренный с помощью программного обеспечения, полученный на основании рисунка контура частиц, а площадь - площадь, измеренная с помощью программного обеспечения внутри очерченного периметра частиц.

Описанный выше расчет выполняют для каждой частицы, которая полностью помещается на снимке SEM. Затем полученные значения сортируют по величине и самые низкие 20% из этих величин отбрасывают. Остающиеся 80% этих величин усредняют и получают S80. Например, было установлено, что коэффициент сферичности (S80) для частиц, изображенных на Фиг. 5, составляет 0,97.

В большинстве случаев не отмечалось, что частицы диоксида кремния с коэффициентами маслоемкости больше 100 см3/100 г имеют столь же высокую степень сферичности и круглость, как и частицы диоксида кремния, рассмотренные выше. Однако такие частицы обладают способностью увеличивать вязкость, а также обеспечивают очень хорошие очищающие свойства, входя в состав композиций средств для ухода за зубами. Пример изображения таких частиц показан на Фиг. 7, представляющей собой снимок образца 2F, который будет обсуждаться в Примере 2 ниже.

Таким образом, согласно еще одному аспекту, частицы диоксида кремния изобретения могут иметь коэффициент маслоемкости выше 100 см3/100 г. Эти частицы могут не обладать такой же круглостью и сферичностью, как частицы, обсуждавшиеся выше, имеющие коэффициенты маслоемкости до 100 см3/100 г. Тем не менее частицы диоксида кремния, име