Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях
Изобретение относится к области геофизики и может быть использовано для контроля разработки месторождений углеводородов на морском шельфе. Согласно заявленному способу проводят трехмерную сейсморазведку и строят по ее данным модель резервуара, прогнозируют ориентацию систем субвертикальных трещин и размещение эксплуатационных и нагнетательных скважин. Размещают на дне акватории над месторождением стационарные сейсмокосы, регистрируют сейсмотрассы с упругими колебаниями от искусственных источников и контролируют процесс разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс. При этом сейсмокосы размещают на дне акватории до начала бурения эксплуатационных скважин. В процессе их бурения регистрируются микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, размещение и траекторию бурения эксплуатационных скважин, зон перфорации и гидроразрыва пласта. Технический результат - повышение точности данных мониторинга. 1 з.п. ф-лы.
Реферат
Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на морском шельфе.
Известен способ сейсмического мониторинга процесса разработки месторождения углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс [1].
Известно, что эффективность разработки месторождений нефти и газа, особенно трудноизвлекаемых запасов из низкопроницаемых коллекторов, зависит от точности и детальности трехмерных построений геологической, гидрогеологической и геомеханической моделей среды. При построении последних особенно важное значение играет ориентация субвертикальных трещин, по которым происходит ускоренное перемещение флюидов в процессе жизни месторождений и их разработки. Наиболее достоверные и точные модели среды строятся по данным трехмерной сейсморазведки (3D), результатам геофизических исследований поисково-разведочных скважин и петрофизического анализа керна.
При современной разведке и разработке месторождений нефти и газа на акваториях повсеместно применяется сейсморазведка 3D на этапе до бурения поисково-разведочных скважин или после бурения первой успешной скважины (последнее часто практиковалось в России). В подавляющем большинстве случаев сейсморазведка 3D реализуется путем возбуждения упругих колебаний группами пневматических источников и их регистраци несколькими (до 20) многоканальными приемными сейсмическими устройствами (сейсмокосами), непрерывно перемещающимися в водной толще вместе с судном. Эволюционное развитие сейсморазведки 3D, ориентированное на повышение ее детальности, достоверности и эффективности, достигается расширением частотного диапазона возбуждаемых и регистрируемых колебаний, применением все более длинных сейсмокос, увеличением их разноса (расстояния между крайними сейсмокосами), уменьшением расстояния между приемниками упругих колебаний в сочетании с увеличением количества регистрирующих каналов. Однако даже широкие (до 1500 м) разносы сейсмокос не позволяют осуществлять полноценные миграционные преобразования и изучать анизотропные свойства среды за счет ущербной узкоазимутальной системы наблюдений, реализуемой при применении традиционной односудовой сейсморазведки 3D (Narrow Azimuth). Для уменьшения или практически полного устранения указанного недостатка на акваториях применяются сложные системы наблюдений, расширяющие азимут наблюдений:
1) многократная отработка площади под разными углами профилирования (MAZ - Multi Azimuth);
2) несколько параллельно идущих судов с источниками колебаний и сейсмокосами (WAZ - Wide Azimuth);
3) комбинация двух вышеописанных подходов (RAZ - Rich Azimuth);
4) кольцевое профилирование (FAZ - Full Azimuth).
Главными недостатками перечисленных технологий, используемых в том числе при реализации известного способа, является значительный рост стоимости работ, сложность и дороговизна повторных 3D исследований, необходимых для осуществления сейсмического мониторинга, позволяющего изучить пространственные и временные изменения флюидонасыщения в разрабатываемых залежах (сейсморазведка 4D). Применение на акваториях 3D технологии ОВС (Ocean Bottom Cable), пространственная система наблюдений которой близка к полноазимутальной сейсморазведке 3D, применяемой на суше, позволяет получить наиболее качественные результаты.
Классическая технология 4D подразумевает комплексную обработку старых (желательно до начала разработки месторождения) и новых данных 3D, полученных по одинаковым системам наблюдений с максимально приближенными параметрами возбуждения и регистрации колебаний [1]. В связи с тем что на большинстве разрабатываемых месторождений первая сейсморазведка 3D проводилась с применением традиционной односудовой технологии, во многих случаях принимается решение о повторении аналогичных наблюдений 3D. Таким образом, недропользователи, идя на применение инновационных исследований 4D, являются заложниками традиционных технических средств 3D со всеми их недостатками, отмеченными выше. Такая ситуация неоднократно имела место за рубежом и сложилась в единственном случае проведения сейсморазведки 4D в России в 2010 г. на Астохском участке Пильтун-Астохского месторождения по проекту Сахалин-2 Sakhalin Energy [2]. Улучшить сложившуюся ситуацию можно только решением о раннем применении современных методик 4D, подразумевающих применение донных сейсмокос или автономных станций.
С применением стационарных донных сейсмокос с четырехкомпонентной регистрацией связаны наиболее прогрессивные технологии сейсмического мониторинга процесса разработки месторождений. При этом в ряде случаев сейсмокосы устанавливаются на все время разработки месторождения (PRSM - Permanent Seismic Reservoir Monitoring, LoFS - Life of Field Seismic) и передают регистрируемые колебания, возбуждаемые с периодически (от трех месяцев до двух лет) приходящего судна, по кабелям на ближайшую платформу или по радиоканалу в пункт сбора и обработки данных [1]. Такое оборудование было установлено и успешно применяется за рубежом на ряде месторождений, включая норвежское Valhall в Северном море (с 2003 г. - впервые в мире) и Jubarte (с 2010 г.) на континентальном склоне Бразилии в бассейне Кампос (глубина воды до 1650 м). Однако в большинстве случаев оно устанавливалось после начала разработки месторождения, в частности через 21 год на месторождении Valhall (компания BP) в Северном море, когда значительная часть углеводородов уже извлечена и получаемая при сейсморазведке 4D информация может повлиять только на размещение и бурение новых эксплуатационных (включая водогазонагнетательных) скважин [1]. На разрабатываемом с 1982 г. месторождении Valhall в 2003 г. были установлены 120 км сейсмокос PRSM, после чего до 2012 г. было выполнено 15 повторных съемок, позволивших оптимизировать процесс разработки, поднять уровень добычи в 2004 г. более чем на 20% и продлить жизнь месторождения до 2050 г.
Технической задачей описываемого изобретения является повышение эффективности и безопасности разработки месторождения.
Поставленная техническая задача решается за счет того, что в способе сейсмического мониторинга процесса разработки месторождения углеводородов на акваториях, включающем проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс, сейсмокосы размещают на дне акватории до начала бурения эксплуатационных скважин, в процессе их бурения регистрируются микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, размещение и траекторию бурения эксплуатационных скважин, зон перфорации и гидроразрыва пласта, причем в процессе гидроразрыва пласта регистрируют микросейсмические колебания, определяют трехмерные координаты их источников и дополнительно уточняют трехмерную модель резервуара и ориентацию системы трещин.
Сущность изобретения заключается в том, что реализуют сейсмический мониторинг процесса разработки месторождения углеводородов на акваториях на начальной стадии его освоения. Это позволяет получать детальную информацию о пространственных изменениях анизотропных свойств среды в разрабатываемой залежи с прогнозом ориентации основных систем субвертикальных трещин для уточнения трехмерной гидрогеологической и геомеханической моделей залежи, оптимизировать размещение вертикальных, наклонных и горизонтальных стволов эксплуатационных скважин и направлений вскрытия пластов при их перфорации, а также выбор мест гидравлического разрыва пласта (ГРП). Технология подразумевает установку на дно стационарных сейсмокос до начала бурения эксплуатационных скважин. Места размещения на дне сейсмокос, количество линий и пунктов приема упругих колебаний задают с учетом экономических соображений, но не менее чем необходимо для проведения сейсмического мониторинга 4D.
Сейсмокосами осуществляется периодическая регистрация упругих колебаний (сейсмических волновых полей), возникающих в процессе разрушения породы при бурении стволов первой и последующих скважин в пласте-резервуаре (микросейсмы). При обработке рассчитываются амплитудно-частотные спектры (АЧС) и другие динамические характеристики регистрируемых волновых полей, выбираются АЧС сейсмических каналов, равноудаленных от точки проекции текущего забоя скважины на дно, для частот максимальных значений амплитуд АЧС строятся индикатрисы (азимутальные зависимости) амплитуд фиксированных частот АЧС, при интерпретации которых на основе выявления экстремумов определяют ориентацию основных систем субвертикальных трещин [3].
Возможность получения сейсмических записей волновых полей, возбуждаемых долотом, пригодных для изучения анизотропных свойств среды, доказана в работе [4] на примере полевого эксперимента по изучению околоскважинного пространства в скважине Скворцовская-1 на северном борту Днепрово-Донецкой впадины. Результаты данного эксперимента хорошо согласуются с данными ультразвукового прозвучивания образцов керна. Получаемая информация об анизотропных свойствах среды по данным прямых волн, возбуждаемых долотом в призабойной зоне, отличается большей точностью и корректностью по сравнению с отраженными волнами, возбуждаемыми и регистрируемыми в водной толще или вблизи поверхности земли. Это обусловлено тем, что первые проходят систему субвертикальных трещин до пунктов приема по одному лучу под одним углом к системе трещин, а вторые - по двум лучам (падающему и отраженному) под двумя углами.
Использование описываемого способа за счет оперативного получения информации об ориентации систем трещин в условиях ”реального времени” позволяет повысить эффективность и безопасность разработки месторождений путем возможной коррекции ориентации горизонтального ствола скважины, а после завершения бурения скважины выбирать оптимальные места для перфорации и многостадийного ГРП на основе выбора зон с наиболее выраженной анизотропией динамических характеристик зарегистрированных волновых полей. Правильность определения ориентации систем трещин и эффективность каждого ГРП подтверждается при обработке микросейсм, возбуждаемых в процессе ГРП [5, 6] и регистрируемых теми же донными сейсмокосами.
Источники информации
1. Smit F., Ligtendag М., Wills P., Calvert R. Towards Affordable Permanent Seismic Reservoir Monitoring Using the Sparse OBC Concept. Exploration and production: the oil and gas review, 2006, p.56-62.
2. Ампилов Ю.П., Батурин Д.Г. Новейшие технологии сейсмического мониторинга 4D при разработке морских месторождений нефти и газа. Технологии сейсморазведки, №2, 2013, С.31-36.
3. Богоявленский В.И., Урупов А.К., Будагова Т.А., Добрынин С.В. Анизотропные свойства осадочного чехла континентального шельфа. Газовая промышленность, №7, 1997, С.16-18.
4. Бланк A.M., Урупов А.К., Жуков A.M. Возможность контроля природно-техногенных процессов в геологической среде методами сейсморазведки при бурении глубоких скважин. В сб.: ”Проблемы техногенного изменения среды и охраны недр в горнодобывающих регионах”. Пермь, 1991, С.70-71.
5. Бутула К.К., Верещагин С.А. Разработка трудноизвлекаемых запасов - интеграция данных для заканчивания скважин с целью оптимальной разработки месторождений. Oil&Gas Journal Russia, №7 (73), 2013, С.42-43.
6. Александров С.И., Мишин В.А., Буров Д.И. и др. Применение микросейсмического мониторинга для контроля технологических рисков ГРП. Нефтесервис, №1 (21), 2013, С.50-52.
1. Способ сейсмического мониторинга процесса разработки месторождения углеводородов на акваториях, включающий проведение трехмерной сейсморазведки и построение по ее данным модели резервуара, прогнозирование ориентации систем субвертикальных трещин и проектирование размещения эксплуатационных и нагнетательных скважин, размещение на дне акватории над месторождением стационарных сейсмокос, регистрацию сейсмотрасс с упругими колебаниями от искусственных источников и контроль процесса разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс, отличающийся тем, что сейсмокосы размещают на дне акватории до начала бурения эксплуатационных скважин, в процессе их бурения регистрируются микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, размещение и траекторию бурения эксплуатационных скважин, зон перфорации и гидроразрыва пласта.
2. Способ по п.1, отличающийся тем, что в процессе гидроразрыва пласта регистрируют микросейсмические колебания, определяют трехмерные координаты их источников и дополнительно уточняют трехмерную модель резервуара и ориентацию системы трещин.