Не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, способ его изготовления и электронное устройство

Иллюстрации

Показать все

Изобретение относится к белковым фотоэлектрическим преобразователям. Не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь выполнен с возможностью работы без присутствия жидкости, такой как вода, внутри и снаружи устройства, и имеет структуру, в которой твердый белковый слой состоит из переносящего электроны белка и помещен между первым электродом и вторым электродом, при этом твердый белковый слой непосредственно иммобилизирован на обоих электродах. Изобретение обеспечивает создание не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя с улучшенными характеристиками. 3 н. и 8 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к не увлажняемому, полностью твердому белковому фотоэлектрическому преобразователю, способу его изготовления и к электронному устройству, в котором используется не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь,

Уровень техники

Белки демонстрируют сложные функции, хотя их размер является существенно малым (от 2 до 10 нм, оба предела включительно). Таким образом, белки обещают возможность разработки функционального устройства следующего поколения, которое могло бы заменить полупроводниковое устройство.

В прошлом, в качестве фотоэлектрического преобразователя, использующего белок, был предложен фотоэлектрический преобразователь, в котором используется электрод с иммобилизированным белком, в котором замещенный цинком цитохром с (полученный путем замены цинком железа, которое является центральным металлом гемма-простетической группы цитохрома с сердца лошади) иммобилизируют на золотом электроде (см. Патентный документ 1). Известно, что из электрода с иммобилизированным белком получен фототок.

Документы предшествующего уровня техники

Патентные документы

Патентный документ 1: Публикация №2007-220445, находящаяся на экспертизе заявки на японский патент

Патентный документ 2: Публикация №2009-21501, находящаяся на экспертизе заявки на японский патент

Непатентный документ

Непатентный документ 1: Tokita Y. and for others, J. Chem. Soc. 130, 5302 (2008)

Сущность изобретения

Белки представляют собой биологические материалы. Таким образом, общая идея состоит в том, что в устройстве, в котором используется белок, такой белок должен удерживаться в жидкости, содержащей воду. На практике, например в эксперименте, в котором был получен фототок из электрода с иммобилизированным белком, в фотоэлектрическом преобразователе, предложенном в Патентном документе 1, электрод с иммобилизированным белком и противоположный электрод были пропитаны в буферном водном растворе фосфорной кислоты, содержащей электролит.

Однако если вода присутствует в фотоэлектрическом преобразователе, в котором используется белок, или фотоэлектрический преобразователь удерживается в жидкости, содержащей воду, возникают проблемы, такие как возможность электрического удара и трудность при обеспечении прочности. Кроме того, происходит тепловая денатурация белка и повреждение белка, вызванное образованием радикалов растворенного кислорода в воде, что может возникать из-за присутствия воды. В связи с этим, большое электрическое напряжение нельзя прикладывать к устройству, что ограничивает рабочие характеристики устройства.

Поэтому цель настоящего изобретения состоит в том, чтобы создать не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, который не имел бы описанных выше дефектов из-за его возможности работы без присутствия жидкости, такой как вода, внутри или снаружи устройства, и способ его изготовления.

Другая цель настоящего изобретения состоит в том, чтобы создать электронное устройство, использующее не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь.

Авторы изобретения посвятили себя своим исследованиям. В результате они обнаружили факт, который бросает вызов существующему общему мнению, в соответствии с которым в устройстве, в котором используется белок, такой белок должен содержаться в жидкости, содержащей воду. В частности, вначале они реализовали белковый фотоэлектрический преобразователь, используя белок, переносящий электроны, но выполненный с возможностью его работы в отсутствие воды внутри или снаружи устройства, и положили начало настоящему изобретению.

То есть для решения описанных выше задач настоящее изобретение направлено на не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, который имеет структуру, в которой твердый белковый слой, состоящий из белков, переносящих электроны, расположен между первым электродом и вторым электродом.

Кроме того, настоящее изобретение представляет собой способ изготовления не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, характеризующийся тем, что наносят раствор, содержащий белок, переносящий электроны, по меньшей мере на часть первого электрода; формируют твердый белковый слой, состоящий из белка, переносящего электроны, путем сушки первого электрода, на который был нанесен раствор и удаления растворителя из раствора; и формируют второй электрод на твердом белковом слое.

Далее, настоящее изобретение направлено на электронное устройство, которое имеет не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, имеющий структуру, в которой твердый белковый слой, состоящий из белка, переносящего электроны, зажат между первым электродом и вторым электродом.

В настоящем изобретении твердый белковый слой означает твердое тело пластинчатой структуры, состоящее из скопления белков, переносящих электроны, не содержащее жидкость, такую как вода. Кроме того, "не увлажняемый" в не увлажняемом полностью твердом белковом фотоэлектрическом преобразователе означает, что устройство используется в состоянии, в котором и внутри и снаружи белковый фотоэлектрический преобразователь не находится в контакте с жидкостью, такой как вода. Далее, "полностью твердый" в не увлажняемом полностью твердом белковом фотоэлектрическом преобразователе означает, что все части устройства не содержат жидкость, такую как вода.

Твердый белковый слой может состоять из мономолекулярной пленки белка, переносящего электроны, или из мультимолекулярной пленки, состоящей из двух или больше слоев белка, переносящего электроны. Твердый белковый слой обычно иммобилизирован непосредственно на первом электроде и на втором электроде. В качестве электропроводного материала, используемого для первого электрода и второго электрода, можно использовать, например, металл, электропроводное стекло, электропроводную окись, электропроводный полимер и т.п. Форма поверхности первого электрода и второго электрода может представлять собой оптимальную форму, такую как вогнутая поверхность, выпуклая поверхность и выпукло-вогнутая поверхность. Твердый белковый слой выполнен с возможностью его легкой иммобилизации на поверхности любой формы. Электропроводный материал, используемый в качестве первого электрода, может быть таким же или отличающимся от электропроводного материала, используемого в качестве второго электрода. В случае, когда свет попадает на твердый белковый слой через первый электрод и/или второй электрод, этот первый электрод и/или второй электрод представляет собой прозрачный электрод, изготовленный из материала, прозрачного для видимого света.

В качестве белка, переносящего электроны, составляющего упомянутый белковый слой, можно использовать белок, переносящий электроны, содержащий металл, или белок, переносящий электроны, не содержащий металл (без металла). Металл, содержащийся в белке, переносящем электроны, по существу представляет собой переходный металл, имеющий электрон на более высокой энергетической орбитали, равной или больше чем орбиталь d (например, цинк, железо и т.п.).

В способе изготовления не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, обычно растворитель из раствора удаляют во время сушки первого электрода, на который был нанесен раствор, содержащий белок, переносящий электроны, при температуре ниже, чем температура денатурации белка, переносящего электроны. Для закрепления раствора, содержащего белок, переносящий электроны, первый электрод может быть покрыт раствором, этот раствор может быть распылен на первый электрод, или первый электрод может быть погружен в этот раствор. Раствор, содержащий белок, переносящий электроны, обычно представляет собой буферный раствор, содержащий воду или растворитель. В качестве способа формирования твердого белкового слоя можно использовать различные слои и выбрать соответствующий способ. Например, можно использовать способ падающих капель, способ нанесения покрытия при раскручивании, способ погружения, способ напыления, и т.п. После формирования твердого белкового слоя на первом электроде, в качестве способа формирования второго электрода на твердом белковом слое используют метод распыления или метод вакуумного испарения, хотя не ограничиваются этим.

Не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, например, представляет собой устройство оптического переключения, оптический датчик, устройство захвата изображения и т.п. Оптический датчик выполнен с возможностью его использования с различным назначением, например детектирования оптического сигнала, и может быть применен в качестве искусственной сетчатки глаза и т.п. Примеры электронного устройства включают в себя различные устройства, в которых используется фотоэлектрический преобразователь. Конкретные его примеры включают в себя электронное устройство, использующее оптическое устройство переключения или оптический датчик.

В настоящем изобретении, выполненном, как описано выше, поскольку, фотоэлектрический преобразователь включает в себя твердый белковый слой, состоящий из белка, переносящего электроны, и представляет собой не увлажняемый, полностью твердый преобразователь, отсутствует возможность возникновения электрического удара и легко обеспечивается прочность. Кроме того, поскольку вода отсутствует внутри фотоэлектрического преобразователя, денатурация под действием тепла, повреждение радикалами, разложение и т.п.белка, переносящего электроны, которые могли бы возникнуть из-за присутствия воды, устраняются.

В соответствии с настоящим изобретением, не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь, выполненный с возможностью работы без присутствия жидкости, такой как вода, внутри или снаружи устройства, может быть реализован, и оптический переключатель, оптический датчик, устройство захвата изображения и т.п. могут быть реализованы с использованием не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя. Не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь выполнен с возможностью его установки в электронном устройстве, в котором присутствие жидкости, является проблематичным. Благодаря использованию не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя можно реализовать исключительное по характеристикам электронное устройство.

Краткое описание чертежей

На фиг.1 показан вид в поперечном сечении, иллюстрирующий не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь в соответствии с вариантом осуществления настоящего изобретение.

На фиг.2 показан вид в поперечном сечении, иллюстрирующий увеличенный основной участок не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, представленного на фиг.1.

На фиг.3 показана схема, иллюстрирующая не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь в соответствии с вариантом выполнения настоящего изобретение.

На фиг.4 показан вид в плане для пояснения способа производства не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.5 показан вид в плане для пояснения способа производства не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.6 показан вид в поперечном сечении, иллюстрирующий поперечную структуру не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.7 показана схема, иллюстрирующая результат измерений спектральных характеристик фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.8 показана схема, иллюстрирующая результат измерений фоновых вольтамперных характеристик не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.9 показана схема, иллюстрирующая результат измерений вольтамперных характеристик не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.10 показана схема, иллюстрирующая результат измерений спектральных характеристик фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением и белкового фотоэлектрического преобразователя жидкостного типа.

На фиг.11 показана схема, полученная в результате нормализации результатов измерений спектров не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением и белкового устройства преобразования фототока жидкостного типа так, чтобы пиковое значение фототока было равно 1.

На фиг.12 показана схема, иллюстрирующая результат измерений кривых деградации под действием света не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением и белкового фотоэлектрического преобразователя жидкостного типа.

На фиг.13 показана схема, полученная путем нормализации результата измерений кривых деградации под действием света не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением и белкового фотоэлектрического преобразователя жидкостного типа так, чтобы пиковое значение фототока во время начала облучения стало равно 1.

На фиг.14 показана схема, иллюстрирующая результат измерений частотной характеристики белкового фотоэлектрического преобразователя жидкостного типа.

На фиг.15 показана схема, иллюстрирующая результат измерений частотной характеристики не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.16 показана схема, иллюстрирующая результат измерений спектральной характеристики фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.17 показана схема, иллюстрирующая результат измерений кривых деградации под действием света не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.18 показана схема, иллюстрирующая результат измерений спектральной характеристики фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 1 в соответствии с настоящим изобретением.

На фиг.19 показан вид в поперечном сечении, иллюстрирующий поперечную структуру не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 2 в соответствии с настоящим изобретением.

На фиг.20 показана схема, иллюстрирующая результат измерений спектральной характеристики фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 2 в соответствии с настоящим изобретением.

На фиг.21 показан вид в поперечном сечении, иллюстрирующим поперечную структуру не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя по Примеру 3 в соответствии с настоящим изобретением.

Подробное описание изобретения

Вариант осуществления для выполнения настоящего изобретения (ниже называется "вариантом осуществления") будет описан ниже.

На фиг.1 иллюстрируется не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь в соответствии с вариантом выполнения.

Как показано на фиг.1, не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь имеет структуру, в которой твердый белковый слой 13, состоящий из белка, переносящего электроны, расположен между электродом 11 и электродом 12. Твердый белковый слой 13 иммобилизирован на электродах 11 и 12. Твердый белковый слой 13 обычно иммобилизирован непосредственно на электродах 11 и 12. Однако в соответствии с необходимостью, промежуточный слой, не содержащий жидкость, такую как вода, может быть предусмотрен между твердым белковым слоем 13 и электродами 11 и 12. Твердый белковый слой 13 не содержит жидкость, такую как вода. Твердый белковый слой 13 состоит из мономолекулярной пленки или мультимолекулярной пленки белка, переносящего электроны.

Пример структуры, в которой твердый белковый слой 13 состоит из мультимолекулярной пленки, представлен на фиг.2. Как показано на фиг.2, твердый белковый слой 13 получают путем формирования многослойной структуры из n слоев (n представляет собой целое число, равное или большее 2) мономолекулярных пленок, которые сформированы из двумерного скопления переносящих электроны белков 13а. На фиг.2 иллюстрируется случай для n=3.

В качестве белка 13а, переносящего электроны, можно использовать, например, цитохромы, железосерные белки, голубые медьсодержащие белки и т.п. Примеры цитохромов включают в себя цитохром с (замещенный цинком цитохром с, замещенный оловом цитохром с, цитохром с, не содержащий металла, и т.п.), цитохром b, цитохром b5, цитохром с1, цитохром а, цитохром а3, цитохром f и цитохром b6. Примеры железосерных белков включают в себя рубредоксин, ферредоксин с двумя атомами железа, ферредоксин с тремя атомами железа, и ферредоксин с четырьмя атомами железа. Примеры голубых медьсодержащих белков включают в себя пластоцианин, азурин, псевдоазурин, плантацианин, стерацианин и амицианин. Белок 13а, переносящий электроны, не ограничивается этим. Например, может использоваться производное описанных выше белков, переносящих электроны (полученных путем химической модификации аминокислотного остатка скелета) или его вариант (полученный путем замены части аминокислотного остатка скелета другим аминокислотным остатком). Все эти белки, переносящие электроны, являются водорастворимыми белками.

На фиг.1 каждая поверхность со стороны твердого белкового слоя 13 электродов 12 представлена как имеющая форму плоской поверхности. Однако каждая форма поверхности электродов 11 и 12 является произвольной, и любую форму поверхности, такую как вогнутая поверхность, выпуклая поверхность и выпукло-вогнутая поверхность, можно использовать. Плоская форма поверхности не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя выбрана в качестве подходящей. Типичные примеры такой поверхности включают в себя прямоугольник и квадрат.

В качестве электропроводного материала, составляющего электроды 11 и 12, как описано выше, можно использовать, например, металл, электропроводное стекло, электропроводный оксид, электропроводный полимер и т.п.. В частности, в качестве металла, например, можно использовать золото, алюминий, палладий, серебро, хром и т.п. Кроме того, в качестве электропроводного стекла или электропроводного окисла можно использовать, например, ITO (композит оксидов индия и олова), FTO (разбавленный фтором оксид олова), стекло NESA (стекло SnO2) и т.п. Кроме того, в качестве электропроводного материала, например, можно также использовать политиофен, полипиррол, полиацетилен, полидиацетилен, полипарафенилен, сульфид полипарафенилена и т.п. В качестве электропроводного полимера также можно использовать ионообменные комплексы (например, TTF-TCNQ и т.п.), содержащие производное тетратиафулвалена (TTF, TMTSF, BEDT-TTF и т.п.). Электроды 11 и 12 могут быть предусмотрены на подложке, изготовленной из неэлектропроводного материала. Для излучения света на весь, или почти весь твердый белковый слой 13, размещенного между электродами 11 и 12, по меньшей мере, один из электродов 11 и 12 выполнен, по существу, прозрачным для света (в общем, видимого света), используемого для возбуждения света твердого белкового слоя 13. В частности, электроды 11 и 12 выполнены из электропроводного материала, прозрачного для света, используемого для возбуждения света, такие как ITO, FTO и стекло NESA, или изготовлены из ультратонкой металлической пленки, через которую можно передавать свет, такой как золотая пленка.

Далее, будет представлено описание способа изготовления не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя.

Вначале раствор, содержащий белок, переносящий электроны, который обычно представляет собой раствор белка, полученный в результате растворения белка, переносящего электроны, в буферном растворе, содержащем воду, прикрепляют на одном из электродов 11 и 12, например, на электроде 11, используя способ падающих капель, способ нанесения покрытия центрифугированием, способ погружения, способ распыления и т.п.

Далее, полученный продукт, в котором раствор белка нанесен на электрод 11, выдерживают при комнатной температуре или температуре ниже, чем комнатная температура. В результате этого, белок, переносящий электроны, в растворе прикрепленного белка иммобилизируется на электроде 11.

Далее, продукт, в котором переносящий электроны белок в растворе белка иммобилизирован на электроде 11, нагревали до температуры ниже, чем температура денатурации белка, переносящего электроны, и затем сушили. После этого всю жидкость, содержащуюся в растворе белка, испаряли и удаляли.

В результате, только белок, переносящий электроны, был иммобилизирован на электроде 11, и сформирован твердый белковый слой 13. Толщину твердого белкового слоя 13 легко регулировать путем изменения количества раствора белка, прикрепленного к электроду 11, концентрации раствора белка и т.п.

Далее, сформировали второй электрод 12 на твердом белковом слое 13. Второй электрод 12 может быть сформирован путем осаждения электропроводного материала способом распыления, способом выпаривания в вакууме и т.п.

Таким образом, изготовили требуемый не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь.

Ниже будет представлено описание работы не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя.

Напряжение (напряжение смещения) прикладывают между электродом 11 и электродом 12 не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя так, что сторона электрода 12 имеет более низкий электрический потенциал. В этом случае, электрод 11 представляет собой прозрачный электрод. В случае, когда свет не попадает на твердый белковый слой 13 не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, твердый белковый слой 13 является изолирующим, и ток не протекает между электродом 11 и электродом 12. Такое состояние представляет собой состояние выключено не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя. В то же время, как показано на фиг.3, в случае когда свет (hυ) попадает в твердый белковый слой 13 через электрод 11, белок 13а переноса электронов, составляющий твердый белковый слой 13, фотовозбуждается, и в результате твердый белковый слой 13 становится электропроводным. В соответствии с этим, электроны (е) протекают через твердый белковый слой 13 из электрода 12 в электрод 11, и фототок протекает между электродом 11 и электродом 12. Такое состояние представляет собой состояние "включено" не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя. Как описано выше, твердый белковый слой 13 ведет себя как фотопроводник и позволяет выполнять операцию включения/выключения в соответствии с присутствием света, падающего на не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь.

Представленное выше состояние, в котором твердый белковый слой 13 ведет себя как фотопроводник, может быть получено из механизма межмолекулярного переноса электронов, описанного в Непатентном документе 1 и в Патентном документе 2. То есть в случае, когда белки 13а переноса электронов, составляющие твердый белковый слой 13, возбуждаются под действием света, инициируется перенос электрона между орбиталями молекул. В результате электрон или дырка движутся из центральной области в другую область белков 13а переноса электронов. Такое движение электрона или дырки постоянно происходит во множестве белков 13а переноса электронов, составляющих твердый белковый слой 13. В результате фототок протекает между электродом 11 и электродом 12. Поэтому белки переноса 13а электронов могут представлять собой, в принципе, любой белок, если только описанный выше механизм межмолекулярного переноса электронов работает в этом белке.

Пример 1

Как показано на фиг.4А, электрод 22 ITO с заданной формой сформировали как первый электрод 11 на стеклянной подложке 21. Толщина электрода 22 ITO составляла 100 нм, и его площадь составила 1 мм2. Электрод 22 ITO представлял собой рабочий электрод.

Подготовили растворы белка (200 мкМ), полученные в результате соответствующего растворения замещенного цинком цитохрома с сердца лошади, замещенного оловом цитохрома с сердца лошади, замещенного оловом цитохрома с сердца коровы и цитохрома с сердца лошади, не содержащего металл, в качестве белка, переносящего электроны, в концентрированной форме, в буферном растворе Tris-HCl (pH 8.0). Замещенный цинком цитохром с сердца лошади получили путем замещения цинком железа, в качестве центрального металла гема цитохрома с сердца лошади.

Замещенный оловом цитохром с сердца лошади получили путем замещения оловом железа как центрального металла гема цитохрома с сердца лошади. Замещенный оловом цитохром с сердца коровы получили путем замещения оловом железа в качестве центрального металла гема цитохрома с сердца коровы. Цитохром с сердца лошади, не содержащий металл, был получен путем удаления железа, в качестве центрального металла гемма-цитохрома с сердца коровы.

Замещенный цинком цитохром с сердца лошади, замещенный оловом цитохром с сердца лошади, замещенный оловом цитохром с сердца коровы и цитохром с сердца лошади, не содержащий металл, описанные выше, приготовили следующим образом.

Использовали цитохром с сердца лошади и цитохром с сердца коровы производства компании Sigma Corporation.

Описание, в основном, будет представлено для способа приготовления замещенного оловом цитохрома с сердца лошади. Однако способы приготовления замещенного цинком цитохрома с сердца лошади и замещенного цинком цитохрома с сердца коровы аналогичны способу приготовления замещенного оловом цитохрома с сердца лошади. Следует отметить, что белок, который состоит из последовательности аминокислот, полученный путем удаления, замены, или добавления одной или больше аминокислот в последовательности аминокислот цитохрома с сердца лошади или цитохрома с сердца коровы, и который содержит олово или цинк, также может быть аналогичным образом приготовлен путем использования технологии, такой как случайная мутация и химическая модификация, соответственно.

6 мл 70%-ной фторсодержащей кислоты/пиридина добавили к 100 мг порошка цитохрома с сердца лошади, и полученный продукт инкубировали в течение 10 минут при комнатной температуре. В результате, железо, как центральный металл гема, было удалено из цитохрома с сердца лошади. 9 мл 50-мМ буферного раствора ацетата аммония (pH 5,0) добавили к цитохрому с сердца лошади, из которого было удалено железо, как описано выше. После окончания реакции, не содержащей металла цитохром с сердца лошади, из которого был удален центральный металл, был получен с использованием фильтрационной колонны гель-хроматографии (кубический объем колонны: 150 мл, смола: Sephadex G-50, проявляющий растворитель: 50 мМ буферного раствора ацетата натрия (pH 5.0)).

Раствор цитохрома с сердца лошади, не содержащий металла, конденсировали как можно в большей степени, и ледяную уксусную кислоту добавляли к продукту для получения pH 2.5 (+/-0,05). Приблизительно 25 мг порошка хлорида олова добавили к полученному раствору, и продукт инкубировали в течение 30 минут при 50°С, без доступа света. В представленном выше процессе, в случае когда ацетат или хлорид цинка добавляли вместо хлорида олова, получали замещение цинком. Спектр поглощения, видимый в ультрафиолете, измеряли каждые 10 минут. Инкубацию продолжали до тех пор, пока отношение между пиком абсорбции на длине волны 280 нм белка и пиком абсорбции на длине волны 408 нм, полученные из порфирина олова, не становилось постоянным.

Все операции после описанного выше процесса выполняли в условиях экранирования света. После того как насыщенный раствор кислого пирофосфорнокислого натрия добавили к предыдущему раствору, который был, в конечном итоге, получен, для получения нейтральных pH (6,0<), выполнили замену буферного раствора на 10 мМ буферного раствора фосфата натрия (pH 7,0). После этого собрали монометрическую фракцию, используя хромотографическую колонну катионного обмена (объем колонны:

40 мл, смола: SP-Sephadex, Fast Flow, элюирование: коэффициент линейной концентрации от 10 до 150 мМ буферного раствора фосфата натрия (pH 7,0)). Таким образом, приготовили замещенный оловом цитохром с сердца лошади.

Замещенный оловом цитохром с сердца коровы и замещенный цинком цитохром с сердца коровы можно приготовить аналогичным образом.

Далее, как показано на фиг.4 В, 10 микролитров растворов белка, подготовленных как описано выше, нанесли в виде капель на один конец 22а электрода 22 ITO, и в результате капля 23 белка прикрепилась к электроду 22 ITO.

Далее, полученный продукт оставили на 2 часа при комнатной температуре или на один день и одну ночь при 4°С, и затем замещенный цинком цитохром с сердца лошади, замещенный оловом цитохром с сердца лошади, замещенный оловом цитохром с сердца коровы или не содержащий металла цитохром с сердца лошади в капле 23 белка иммобилизировали на электроде 22 ITO.

Затем образцы поместили в сушильное устройство, в котором поддерживали от 30 до 40°С, оба значения включительно, и сушили в течение 30-60 минут, оба значения включительно. В результате такого процесса сушки жидкость, такая как вода, содержащаяся в капле 23 белка, испарилась и была удалена. В результате только замещенный цинком цитохром с сердца лошади, замещенный оловом цитохром с сердца лошади, замещенный оловом цитохром с сердца коровы, или не содержащий металл цитохром с сердца лошади оставался на электроде 22 ITO, и твердый белковый слой 13 был сформирован, как показано на фиг.5А. Толщина твердого белкового слоя 13 составила приблизительно 1 мкм.

Далее, как показано на фиг.5В, электрод 24 формировали так, чтобы он охватывал твердый белковый слой 13, и электрод 25 формировали так, чтобы он охватывал другой конец 22b электрода 22 ITO. Электрод 24 использовали как противоположный электрод и опорный электрод. Электроды 24 и 25 были сформированы из пленки золота или пленки алюминия. Толщина пленки золота составила 20 нм, и толщина пленки алюминия составила 50 нм. Электроды 24 и 25 можно было сформировать путем маскирования других участков, кроме областей, в которых были сформированы электроды 24 и 25, и осаждения материала электрода способом распыления или способом испарения в вакууме. Плоские формы электродов 24 и 25 имели прямоугольную или квадратную форму.

Таким образом, не увлажняемый, полностью твердый белковый фотоэлектрический преобразователь был изготовлен. Структура поперечного сечения не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя показана на фиг.6.

Изготовили большое количество не увлажненных, полностью твердых белковых устройств фотоэлектрического преобразования, как описано выше, и сопротивление между электродами 24 и 25 измеряли в воздухе. В результате сопротивление было распределено в широком диапазоне от 1 кОм до 30 МОм, оба включительно. Причина, по которой сопротивление между электродами 24 и 25 было распределено в широком диапазоне, как описано выше, была в следующем. То есть толщина твердого белкового слоя 13 изменялась в соответствии с каждым устройством, или каждый тип белков 13а переноса электронов, составляющий твердый белковый слой 13, изменялся в соответствии с каждым устройством.

Измеряли спектральную характеристику фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя. В качестве белков 13а переноса электронов, содержащих твердый белковый слой 13, использовали замещенный цинком цитохром с сердца лошади, замещенный оловом цитохром с сердца коровы и не содержащий металл цитохром с сердца лошади. Измерение выполняли путем подключения рабочего электрода стабилизатора напряжения к электроду 25, соединенному с электродом 22 ITO, и подключения противоположного и опорного электрода к электроду 24. Электроды 24 и 25 каждый были изготовлены из пленки золота, толщиной 20 нм. Результат измерения спектральных характеристик при потенциале 0 мВ и -800 мВ для случая использования замещенного цинком цитохрома с сердца лошади, в качестве белков 13а, составляющих твердый белковый слой 13, представлен на фиг.7. Далее, результат измерений спектральной характеристики при потенциале 0 мВ для случая использования замещенного оловом цитохрома с сердца коровы, в качестве белков 13а, составляющих твердый белковый слой 13, показан на фиг.16. Затем, результат измерения спектральной характеристики при потенциале 0 мВ для случая использования не содержащего металл цитохрома с сердца лошади, в качестве белков 13а, составляющих твердый белковый слой 13, показан на фиг.18. Как показано на фиг.7, фиг.16 и фиг.18, в случае любого из замещенного цинком цитохрома с сердца лошади, замещенного оловом цитохрома с сердца коровы и не содержащего металл цитохрома с сердца лошади, использовавшихся в качестве белков 13а, составляющих твердый белковый слой 13, можно было наблюдать спектр действия. В частности как показано на фиг.7, в случае, когда замещенный цинком цитохром с сердца лошади, использовали в качестве белков 13а, составляющих твердый белковый слой 13, можно было наблюдать спектральную характеристику и в положительном, так и в отрицательном направлении. Кроме того, как показано на фиг.7, спектральную характеристику можно было измерять даже при избыточном напряжении -800 мВ, что представляло собой вновь установленный и выдающийся результат.

На фиг.8 иллюстрируется результат измерения фонового тока (тока, протекающего во время отключенного света) при каждом напряжении для случая приложения напряжения (напряжение смещения) между электродами 24 и 25 не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, используя замещенный цинком цитохром с сердца лошади в качестве белка 13а составляющего твердый белковый слой 13. Как показано на фиг.8, кривая, обозначающая соотношение между напряжением и фоновым током представляет собой прямую линию, что означает, что проводимость твердого белкового слоя 13 аналогична полупроводнику. По наклону прямой линии определили, что сопротивление между электродами 24 и 25 составляло приблизительно 50 МОм.

На фиг.9 иллюстрируется результат измерения фототока (тока, протекающего во время включенного света) при каждом напряжении для случая приложения напряжения между электродами 24 и 25 не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, в котором используется замещенный цинком цитохром с сердца лошади, в качестве белка 13а, составляющего твердый белковый слой 13. Как показано на фиг.9, кривая, обозначающая взаимосвязь между напряжением и фототоком, также является приблизительно прямой линией, что означает, что твердый белковый слой 13 действует как фотопроводник.

На фиг.10 иллюстрируется результат измерения спектральных характеристик фототока не увлажняемого, полностью твердого белкового фотоэлектрического преобразователя, в котором используется замещенный цинком цитохром с сердца лошади в качестве белка 13а, составляющего твердый белковый слой 13 и белково