Измерительная система с измерительным преобразователем вибрационного типа

Иллюстрации

Показать все

Измерительная система включает в себя измерительный преобразователь (MW) вибрационного типа, через который в процессе работы проходит текучая среда, для выработки соответствующих параметрам текучей среды колебательных сигналов, а также электрички соединённый с измерительным преобразователем электронный преобразователь (ME) для управления измерительным преобразователем и для произведения оценки поданных от измерительного преобразователя колебательных сигналов. Измерительный преобразователь (MW) имеет, по меньшей мере, одну измерительную трубу (10, 10′) для проведения текучей среды, по меньшей мере, один электромеханический возбудитель (41) колебаний для активного возбуждения и/или поддержания изгибных колебаний, по меньшей мере, одной измерительной трубы в полезном режиме и, по меньшей мере, один датчик (51) колебаний для регистрации вибраций, по меньшей мере, одной измерительной трубы и для выработки выражающего собой вибрации, по меньшей мере, одной измерительной трубы колебательного сигнала (s1) измерительного преобразователя. Электронный преобразователь (ME) опять же посредством компонента колебательного сигнала, который выражает собой режим изгибных колебаний, в котором, по меньшей мере, одна вибрирующая измерительная труба осуществляет изгибные колебания, по меньшей мере, с одной пучностью колебаний, более чем при изгибных колебаниях в полезном режиме, в частности изгибных колебаниях, по меньшей мере, с двумя пучностями колебаний, генерирует сообщение (XKV) о кавитации, которое сигнализирует о возникновении кавитации в текучей среде. Технический результат - обеспечение заблаговременного и надежного определения кавитации. 28 з.п. ф-лы, 13 ил.

Реферат

Изобретение относится к осуществленной, в частности, в виде компактного измерительного прибора и/или прибора для измерения кориолисова массового расхода, измерительной системе для текучих сред, включающей в себя измерительный преобразователь вибрационного типа, через который в процессе работы, по меньшей мере, периодически, проходит текучая среда и который генерирует колебательные сигналы, на которые воздействует, по меньшей мере, один характеризующий протекающую среду измеряемый параметр, в частности массовый расход, плотность, вязкость и т.д., а также электрически соединенный с измерительным преобразователем и переводящий поданные от измерительного преобразователя колебательные сигналы в измеренные значения электронный преобразователь.

В промышленной технике измерений, в частности, также в связи с регулировкой и контролем автоматизированных технологических процессов для определения характеристических измеренных величин протекающих в рабочей магистрали, к примеру, в трубопроводе, текучих сред, к примеру жидкостей и/или газов, нередко используются такие измерительные системы, которые посредством измерительного преобразователя вибрационного типа и присоединенного к нему, в большинстве случаев установления в отдельном корпусе электронного блока, электронного преобразователя, индуцируют в протекающей среде силы реакции, к примеру, силы Кориолиса, и на основании их, периодически вырабатывают, соответственно, выражающее собой, по меньшей мере, одну измеренную величину, к примеру, норму массового расхода, плотность, вязкость или другой параметр процесса, измеренное значение. Такие - зачастую образованные посредством встроенного измерительного прибора в компактном исполнении, со встроенным измерительным преобразователем, к примеру, измерителем кориолисова массового расхода - измерительные системы известны уже давно и хорошо зарекомендовали себя в промышленном применении. Примеры таких измерительных систем с измерительными преобразователем вибрационного типа или же его отдельными компонентами, описаны, к примеру, в EP-A 317 340, JP-A 8-136311, JP-A 9-015015, US-A 2007/0119264, US-A 2007/0119265, US-A 2007/0151370, US-A 2007/0151371, US-A 2007/0186685, US-A 2008/0034893, US-A 2008/0141789, US-A 46 80 974, US-A 47 38 144, US-A 47 77 833. US-A 48 01 897, US-A 48 23 614, US-A 48 79 911, US-A 50 09 109, US-A 50 24 104, US-A 50 50 439, US-A 52 91 792, US-A 53 59 881, US-A 53 98 554, US-A 54 76 013, US-A 55 31 126, US-A 56 02 345, US-A 56 91 485, US-A 57 34 112, US-A 57 96 010, US-A 57 96 011, US-A 57 96 012, US-A 58 04 741, US-A 58 61 561, US-A 58 69 770, US-A 59 45 609, US-A 59 79 246, US-A 60 47 457, US-A 60 92 429, US-A 6073495, US-A 63 111 36, US-B 62 23 605, US-B 63 30 832, US-B 63 97 685, US-B 65 13 393, US-B 65 57 422, US-B 66 51 513, US-B 66 66 098, US-B 66 91 583, US-B 68 40 109, US-B 68 68 740, US-B 68 83 387, US-B 70 17 424, US-B 70 40 179, US-B 70 73 396, US-B 70 77 014, US-B 70 80 564, US-В 71 34 348, US-B 72 16 550, US-B 72 99 699, US-B 73 05 892, US-B 73 60 451, US-B 73 92 709, US-B 74 06 878, WO-A 00/14 485, WO-A 01/02 816, WO-A 2004/072588, WO-A 2008/013545, WO-A 2008/07 7574, WO-A 95/29386, WO-A 95/16897 или WO-A 99 40 394. Каждый из представленных в них измерительных преобразователей включает в себя, по меньшей мере, одну размещенную в корпусе измерительного преобразователя, в основном, прямую или изогнутую измерительную трубу для проведения текучей среды, в случае необходимости, также предельно быстро или предельно медленно. В процессе работы измерительной системы, по меньшей мере, одна измерительная труба, с целью генерирования колебательных форм, на которые оказывает воздействие протекающая среда, принуждается к колебаниям.

У измерительных преобразователей с двумя измерительными трубами эти трубы в большинстве случаев соединены с рабочей магистралью посредством проходящего между измерительными трубами и присоединительным фланцем со стороны впуска, разделителем потока со стороны впуска, а также посредством проходящего между измерительными трубами и присоединительным фланцем со стороны выпуска разделителем потока со стороны выпуска. У измерительных преобразователей с одной единственной измерительной трубой эта труба соединяется с рабочей магистралью в большинстве случаев посредством входящего со стороны впуска, в основном, прямого соединительного патрубка, а также посредством входящего со стороны выпуска, в основном, прямого соединительного патрубка. Каждый из представленных измерительных преобразователей с одной единственной измерительной трубой включает в себя далее, соответственно, по меньшей мере, один цельный или выполненный составным, к примеру, имеющий форму трубы, кожуха или пластины, противоколебательный контур, который при образовании первой соединительной зоны со стороны впуска присоединен к измерительной трубе, и который при образовании второй соединительной зоны со стороны выпуска присоединен к измерительной трубе, и который в процессе работы находится, в основном, в неподвижном положении или вибрирует с той же частотой, однако, в противофазе по отношению к измерительной трубе. Образованная посредством измерительной трубы и противоколебательного контура внутренняя часть измерительного преобразователя удерживается в большинстве случаев лишь посредством двух соединительных патрубков, через которые измерительная труба в процессе работы сообщается с рабочей магистралью, в защищающем ее корпусе измерительного преобразователя, в частности, таким образом, что возможны колебательные движения внутренней части относительно измерительной трубы. У представленных, к примеру, в US-A 52 91 792, US-A 57 96 010, US-A 59 45 609, US-B 70 77 014, US-A 2007/0119264, WO-A 01 02 816 или же в WO-А 99 40394 измерительных преобразователей с одной единственной, в основном, прямой измерительной трубой, эта труба и противоколебательный контур, что является обычным для традиционных измерительных преобразователей, ориентированы относительно друг друга, в основном, соосно. У имеющих спрос на рынке измерительных преобразователей вышеуказанного типа в большинстве случаев и противоколебательный контур имеет, в основном, форму трубы и осуществлен, в основном, как прямой полый цилиндр, который располагается в измерительном преобразователе таким образом, что измерительная труба, по меньшей мере, частично оказывается закрыта противоколебательным контуром. В качестве материалов для таких противоколебательных контуров, в частности, при использовании титана, тантала или циркония для измерительной трубы, в большинстве случаев используются сравнительно недорогие сорта стали, к примеру конструкционная сталь или автоматная сталь.

В качестве возбуждаемой формы колебаний - так называемого полезного режима - у измерительных преобразователей с изогнутой, к примеру, U-, V- или Z-образно сформированной, измерительной трубой обычно выбирается та форма собственных колебаний, при которой измерительная труба, по меньшей мере, частично на самой низкой естественной резонансной частоте колеблется вокруг воображаемой продольной оси измерительного преобразователя по типу зажатой с одной стороны консоли, вследствие чего в протекающей среде индуцируются зависящие от массового расхода силы Кориолиса. Они, опять же, способствуют тому, что на возбужденные колебания полезного режима, в случае изогнутых измерительных труб, тем самым, по типу вибрирующих консольных колебаний, к тому же, накладываются изгибные колебания той же частоты в соответствии, по меньшей мере, с одной, также естественной, второй формой колебаний, так называемым режимом Кориолиса. У измерительных преобразователей с изогнутой измерительной трубой такие, генерированные силами Кориолиса консольные колебания в режиме Кориолиса обычно соответствуют той форме собственных колебаний, при которой измерительная труба осуществляет также крутильные колебания относительно ориентированной перпендикулярно продольной оси, воображаемой вертикальной оси. У измерительных преобразователей с прямой измерительной трубой, напротив, с целью генерирования зависящих от массового расхода сил Кориолиса, зачастую выбирается такой полезный режим, при котором измерительная труба, по меньшей мере, частично осуществляет изгибные колебания, в основном, в одной единственной воображаемой плоскости колебаний, так что колебания в режиме Кориолиса формируются, соответственно, как осуществляемые в той же плоскости, что и колебания в полезном режиме, изгибные колебания той же частоты. Вследствие наложения полезного режима и режима Кориолиса зарегистрированные посредством сенсорного устройства со стороны впуска и со стороны выпуска колебания вибрирующей измерительной трубы имеют также зависящую от массового расхода измеримую разность фаз. Обычно измерительные трубы таких, используемых, к примеру, в измерителях кориолисового массового расхода, измерительных преобразователей в процессе работы возбуждаются на естественной резонансной частоте в данный момент времени выбранной для полезного режима формы колебаний, в частности, при отрегулированной на постоянную величину амплитуде колебаний. Так как эта резонансная частота зависит, в частности, и от плотности текучей среды в данный момент времени, то посредством обычных измерителей кориолисова массового расхода, наряду с массовым расходом, дополнительно можно измерять и плотность протекающих сред. Далее возможно также, как показано, к примеру, в US-B 66 51 513 или в US-B 70 80 564, посредством измерительных преобразователей вибрационного типа непосредственно измерять вязкость протекающей среды, к примеру, базируясь на необходимой для поддержания колебаний энергии возбуждения или мощности возбуждения, и/или базируясь на затухании колебаний, вследствие рассеивания энергии колебаний, по меньшей мере, одной измерительной трубы, в частности, этих колебаний в вышеуказанном полезном режиме. Дополнительно к этому, могут быть определены и другие, выведенные из вышеуказанных первичных измеренных значений нормы массового расхода, плотности и вязкости, измеряемые параметры, как, к примеру, в соответствии с US-B 65 13 393, число Рейнольдса.

Для возбуждения колебаний, по меньшей мере, одной измерительной трубы измерительные преобразователи вибрационного типа имеют далее управляемое в процессе работы от генерированного посредством вышеупомянутой управляющей техники и соответствующим образом кондиционированного, электрического сигнала возбуждения, к примеру, отрегулированного тока, устройство возбуждения, которое побуждает измерительную трубу посредством, по меньшей мере, одного в процессе работы пронизываемого током, практически непосредственно воздействующего на измерительную трубу, электромеханического, в частности, электродинамического возбудителя колебаний, к изгибным колебаниям в полезном режиме. Такие измерительные преобразователи включают в себя далее сенсорное устройство, в частности, с электродинамическими датчиками колебаний, по меньшей мере, для выборочной регистрации колебаний со стороны впуска и со стороны выпуска, по меньшей мере, одной измерительной трубы, в частности, ее колебаний в режиме Кориолиса, и для генерирования служащих в качестве колебательных сигналов измерительного преобразователя электрических сигналов датчика, на которые воздействуют регистрируемые параметры процесса, к примеру, массовый расход или плотность. Как описано, к примеру, в US-B 72 16 550, у измерительных преобразователей обсуждаемого типа, в случае необходимости, возбудитель колебаний может использоваться также, по меньшей мере, периодически, в качестве датчика колебаний, и/или датчик колебаний, по меньшей мере, периодически в качестве возбудителя колебаний. Устройство возбуждения измерительных преобразователей обсуждаемого типа имеет обычно, по меньшей мере, один электродинамический, и/или дифференциально воздействующий, по меньшей мере, на одну измерительную трубу и, в случае необходимости, имеющийся противоколебательный контур, или, в случае необходимости, имеющуюся другую измерительную трубу, возбудитель колебаний, в то время как сенсорное устройство включает в себя расположенный со стороны впуска, в большинстве случаев также электродинамический датчик колебаний, а также, по меньшей мере, один, в основном, аналогичный ему по конструкции, расположенный с выпускной стороны, датчик колебаний. Такие электродинамические и/или дифференциальные возбудители колебаний популярных на рынке измерительных преобразователей вибрационного типа образованы посредством катушки электромагнита, через которую, по меньшей мере, периодически проходит ток - зафиксированной у измерительных преобразователей с одной измерительной трубой и с присоединенным к ней противоколебательным контуром, в большинстве случаев, на последнем - а также, посредством погружаемого в нее, служащего в качестве сердечника, как правило, продолговатого, в частности, выполненного в форме стержня, постоянного магнита, который соответствующим образом закреплен на приводимой в движение измерительной трубе. Постоянный магнит и служащая в качестве катушки возбуждения катушка электромагнита обычно ориентированы при этом таким образом, что располагаются, в основном, концентрично друг другу. К тому же, у традиционных измерительных преобразователей устройство возбуждения выполнено обычно таким образом и размещено в измерительном преобразователе так, что оно, в основном, по середине воздействует, по меньшей мере, на одну измерительную трубу. При этом возбудитель колебаний, а, тем самым, и устройство возбуждения, как показано, к примеру, и у предложенных в US-A 57 96 010, US-B 68 40 109, US-B 70 77 014 или в US-B 70 17 424 измерительных преобразователей, в большинстве случаев, по меньшей мере, выборочно закреплены снаружи на измерительной трубе, вдоль воображаемой серединной линии периферии измерительной трубы. В качестве альтернативы образованному посредством действующих по центру и непосредственно на измерительную трубу возбудителей колебаний, устройству возбуждения, как предложено, к примеру, в US-B 65 57 422, US-A 60 92 429 или в US-A 48 23 614, могут быть использованы, к примеру, также образованные посредством двух, зафиксированных не по центру измерительной трубы, а со стороны впуска или со стороны выпуска, возбудителей колебаний, устройства возбуждения, или, как предложено, в частности, в US-B 62 23 605 или в US-A 55 31 126, образованные, к примеру, также посредством действующего между имеющимся, в случае необходимости, привоколебательным контуром и корпусом измерительного преобразователя возбудителя колебаний, устройства возбуждения. У большинства распространенных измерительных преобразователей вибрационного типа датчики колебаний сенсорного устройства, как уже отмечалось ранее, по меньшей мере, в том отношении выполнены, в основном, аналогичными по конструкции, по меньшей мере, одному возбудителю колебаний, так что они работают по такому же принципу. Соответственно этому, и датчики колебаний такого сенсорного устройства в большинстве случаев образованы, соответственно, посредством, по меньшей мере, одного - обычно зафиксированного на, соответственно, имеющемся, противоколебательном контуре - по меньшей мере, периодически пронизываемого изменяющимся магнитным полем и, тем самым, по меньшей мере, периодически нагружаемого индуцированным измеряемым напряжением, а также зафиксированного на измерительной трубе, взаимодействующего, по меньшей мере, с одной катушкой, сердечника с возбуждением от постоянных магнитов, который создает магнитное поле. Каждая из вышеуказанных катушек, к тому же, посредством, по меньшей мере, одной пары электрических соединительных проводов соединена с упомянутым электронным преобразователем встроенного измерительного прибора, которые в большинстве случаев по максимально короткому пути проведены от катушек через противоколебательный контур к корпусу измерительного преобразователя.

Как обсуждается, в частности, в упомянутых ранее US-B 74 Об 878, US-B 73 05 892, US-B 71 34 348, US-B 65 13 393, US-A 58 61 561, US-A 53 59 881 или WO-A 2004/072588, следующим, важным параметром для работы измерительной системы и/или для работы установки, в которую встроена измерительная система, может являться - к примеру, провоцируемое самим измерительным преобразователем и, в этом отношении, измерительной системой - падение давления в потоке или, вследствие этого, падение давления со стороны выпуска измерительного преобразователя, и, не в последнюю очередь, также для случая, когда текучая среда образована двух- или многофазной, к примеру, в виде газожидкостной смеси, и/или когда в процессе работы следует считаться с нежелательной, не в последнюю очередь наносящей ущерб также и структурной целостности измерительного преобразователя, кавитацией, вследствие уровня давления ниже минимального статического давления в текучей среде, и, соответственно, непременно предотвращать ее.

Задача изобретения состоит, поэтому, в создании измерительной системы, улучшенной посредством измерительного преобразователя вибрационного типа таким образом, что имеется возможность максимально заблаговременно и надежно определять возникновение кавитации в протекающей через измерительный преобразователь текучей среде, не в последнюю очередь также с целью подачи сигнала или компенсации повышенной погрешности измерений, и/или с целью подачи сигнала тревоги о спровоцированном посредством измерительного преобразователя, нежелательно сильном падении давления в протекающей через измерительный преобразователь текучей среде, и/или с целью определения повышенного износа измерительного преобразователя, вследствие коррозии от кавитации; и это, в частности, также при дальнейшем, в случае необходимости, также исключительном применении зарекомендовавшей себя в таких измерительных системах измерительной техники, такой, к примеру, как подходящая для этого сенсорная техника для регистрации колебаний или электронные преобразователи, на основе зарекомендовавших себя технологий и конструкций.

Для решения задачи изобретение включает в себя измерительную систему, в частности, компактный измерительный прибор и/или измерительный прибор кориолисова массового расхода, в частности, для протекающих по трубопроводам текучих сред, и эта измерительная система включает в себя измерительный преобразователь вибрационного типа, через который в процессе работы проходит текучая среда, к примеру, жидкость или другой текучий, иногда склонный к кавитации, материал, для выработки соответствующих параметрам текучей среды, в частности, норме массового расхода, плотности и/или вязкости, колебательных сигналов, а также электрички соединенный с измерительным преобразователем электронный преобразователь для управления измерительным преобразователем и для проведения оценки поданных от измерительного преобразователя колебательных сигналов. Измерительный преобразователь имеет, по меньшей мере, одну, к примеру, V-образную, U-образную, Z-образную или прямую измерительную трубу для проведения текучей среды; по меньшей мере, один электромеханический, к примеру, электродинамический возбудитель колебаний для активного возбуждения и/или поддержания вибраций, по меньшей мере, одной измерительной трубы в полезном режиме, к примеру, таким образом, чтобы, по меньшей мере, одна измерительная труба по длине полезных колебаний, по меньшей мере, частично осуществляла изгибные колебания с одной единственной пучностью колебаний, и/или изгибные колебания с присущей данной измерительной трубе в данный момент времени минимальной резонансной частотой изгибных колебаний, и/или изгибные колебания в присущем для данной измерительной трубы естественном режиме изгибных колебаний; а также, в частности, электродинамический первый датчик колебаний для регистрации, в частности, вибрации со стороны впуска, по меньшей мере, одной измерительной трубы, и для выработки выражающего собой, в частности, вибрации со стороны выпуска, по меньшей мере, одной измерительной трубы, и не в последнюю очередь ее изгибных колебаний, первого колебательного сигнала измерительного преобразователя. Электронный преобразователь посредством первого компонента выработанного посредством, по меньшей мере, одного датчика колебаний колебательного сигнала, который выражает собой режим изгибных колебании, в котором, по меньшей мере, одна вибрирующая измерительная труба осуществляет изгибные колебания, по меньшей мере, с одной пучностью колебаний, более чем при изгибных колебаниях в полезном режиме, к примеру, изгибные колебания, по меньшей мере, с двумя пучностями колебаний, генерирует декларированное, к примеру, также как сигнал тревоги сообщение о кавитации, которое, к примеру, визуально и/или с возможностью акустического восприятия сигнализирует о возникновении кавитации в текучей среде.

В соответствии с первым вариантом осуществления изобретения далее предусмотрено, что электронный преобразователь подает, по меньшей мере, один, вызывающий изгибные колебания, по меньшей мере, одной измерительной трубы, возбуждающий сигнал, по меньшей мере, для одного возбудителя колебаний. В соответствии с вариантом усовершенствования данного варианта осуществления изобретения далее предусмотрено, что возбуждающий сигнал - по меньшей мере, однако, доминирующий в отношении мощности сигнала и/или напряжения сигнала, вызывающий изгибные колебания измерительной трубы полезный компонент данного возбуждающего сигнала - имеет частоту сигнала, которая соответствует резонансной частоте изгибных колебания измерительной трубы в данный момент времени, в частности, резонансной частоте режима изгибных колебания первого порядка в данный момент времени, в котором, по меньшей мере, одна вибрирующая измерительная труба по длине полезных колебаний осуществляет изгибные колебания ровно с одной пучностью колебаний, так что, по меньшей мере, одна измерительная труба, возбужденная посредством, по меньшей мере, одного возбудителя колебаний к вибрациям в полезном режиме, по меньшей мере, частично осуществляет изгибные колебания с резонансной частотой в данный момент времени. К примеру, частота возбуждающего сигнала или полезного компонента возбуждающего сигнала может соответствовать резонансной частоте режима изгибных колебания первого порядка в данный момент времени, в котором, по меньшей мере, одна вибрирующая измерительная труба по длине полезных колебаний осуществляет изгибные колебания ровно с одной пучностью колебаний, и первый компонент колебательного сигнала может иметь частоту сигнала, которая больше, чем соответствующая резонансной частоте режима изгибных колебаний первого порядка в данный момент времени, частота возбуждающего сигнала.

В соответствии со вторым вариантом осуществления изобретения далее предусмотрено, что первый компонент колебательного сигнала имеет частоту сигнала, которая соответствует резонансной частоте присущего измерительной трубе естественного режима изгибных колебаний в данный момент времени, в котором измерительная труба осуществляет изгибные колебания ровно с одной пучностью колебаний, более чем при изгибных колебаниях в полезном режиме, в частности, в режиме изгибных колебаний второго порядка, в котором, по меньшей мере, одна вибрирующая измерительная труба по длине полезных колебаний осуществляет изгибные колебания ровно с двумя пучностями колебаний, и/или в возбужденном, вследствие индуцированных в протекающей по вибрирующей в полезном режиме измерительной трубе текучей среде кориолисовых сил, режиме Кориолиса.

В соответствии с третьим вариантом осуществления изобретения далее предусмотрено, что электронный преобразователь генерирует сообщение о кавитации лишь тогда, когда величина напряжения первого компонента колебательного сигнала превышает заданное для этого, в частности, сохраненное в памяти электронного преобразователя и/или изменяемое в процессе работы, предельное значение.

В соответствии с четвертым вариантом осуществления изобретения далее предусмотрено, что электронный преобразователь генерирует сообщение о кавитации также посредством второго компонента колебательного сигнала, который выражает собой режим изгибных колебаний, в котором, по меньшей мере, одна вибрирующая измерительная труба осуществляет изгибные колебания, по меньшей мере, с одной пучностью колебаний, более чем при выраженном посредством первого компонента сигнала режиме изгибных колебаний, в частности, изгибных колебаний, по меньшей мере, с тремя пучностями колебаний. В соответствии с вариантом усовершенствования данного варианта осуществления изобретения далее предусмотрено, что второй компонент колебательного сигнала имеет частоту колебаний, которая соответствует резонансной частоте того режима изгибных колебании третьего порядка в данный момент времени, в котором, по меньшей мере, одна вибрирующая измерительная труба осуществляет изгибные колебания ровно с двумя пучностями колебания, более чем при изгибных колебаниях в полезном режиме и/или, что электронный преобразователь генерирует сообщение о кавитации лишь тогда, когда величина напряжения второго компонента колебательного сигнала не превышает заданное для этого, к примеру, изменяемое в процессе работы, и/или зависящее от напряжения первого компонента колебательного сигнала в данный момент времени, предельное значение. Предельное значение для величины напряжения первого компонента колебательного сигнала может быть выбрано, к примеру, большим величины напряжения второго компонента колебательного сигнала. В альтернативном варианте или в дополнение к этому, предельное значение для величины напряжения первого компонента колебательного сигнала и предельное значение для величины напряжения второго компонента колебательного сигнала могут быть выбраны таким образом, что соотношение предельных значений, определенное соотношением предельного значения для величины напряжения первого компонента колебательного сигнала и предельного значения для величины напряжения второго компонента колебательного сигнала, больше единицы. Электронный преобразователь может быть настроен далее с возможностью генерировать сообщение о кавитации лишь тогда, когда соотношение напряжений сигналов, определенное соотношением величины напряжения первого компонента колебательного сигнала и величины напряжения второго компонента колебательного сигнала превышает заданное для данного соотношения напряжений сигналов, в частности, изменяемое в процессе работы, и/или зависящее от напряжения первого компонента колебательного сигнала в данный момент времени, и/или зависящее от напряжения второго компонента колебательного сигнала в данный момент времени, предельное значение.

В соответствии с пятым вариантом осуществления изобретения предусмотрено далее, что электронный преобразователь генерирует сообщение о кавитации также с использованием сохраненного в памяти предусмотренного, к примеру, в электронном преобразователе, энергозависимого запоминающего устройства измеренного значения давлении, которое выражает собой преобладающее в текучей среде, к примеру, против течения на выпускном конце измерительного преобразователя и/или по течению на впускном конце измерительного преобразователя, измеренное, к примеру, посредством взаимодействующего с электронным преобразователем датчика давления и/или определенное посредством колебательных сигналов измерительного преобразователя и/или статическое, и/или отрегулированное посредством насоса, давление.

В соответствии с шестым вариантом осуществления изобретения далее предусмотрено, что измерительная система имеет далее взаимодействующий в процессе работы с электронным преобразователем датчик давления для регистрации, в частности, против течения на впускном конце измерительного преобразователя или по течению на выпускном конце измерительного преобразователя, преобладающего в проводящем текучую среду трубопроводе, к примеру, статического давления. В соответствии с седьмым вариантом осуществления изобретения далее предусмотрено, что электронный преобразователь подает, по меньшей мере, один вызывающий изгибные колебания, по меньшей мере, одной измерительной трубы сигнал возбуждения, по меньшей мере, для одного возбудителя колебаний и, что электронный преобразователь посредством возбуждающего сигнала и посредством колебательного сигнала генерирует измеренное значение разности давлений, которое выражает собой возникающую между двумя заданными нулевыми точками в проходящей текучей среде разность давлений, к примеру, таким образом, что первая из двух нулевых точек со стороны впуска и/или вторая из двух нулевых точек со стороны выпуска локализованы в измерительном преобразователе. Электронный преобразователь может определить измеренное значение разности давлений при использовании удерживаемого в памяти, в частности, предусмотренного в электронном преобразователе энергозависимого запоминающего устройства и/или генерированного посредством возбуждающего сигнала и/или посредством, по меньшей мере, одного поданного от измерительного датчика колебательного сигнала, измеренного значения числа Рейнольдса, которое выражает собой число Рейнольдса для проходящей через измерительный преобразователь текучей среды, и/или при использовании удерживаемого в памяти, в частности, предусмотренного в электронном преобразователе энергозависимого запоминающего устройства, и/или генерированного в процессе работы посредством возбуждающего сигнала и/или посредством, по меньшей мере, одного из колебательных сигналов, измеренного значения вязкости, которое выражает собой вязкость проходящей через измерительный преобразователь текучей среды, к примеру, таким образом, что электронный преобразователь для определения измеренного значения разности давлений генерирует коэффициент падения давления, который выражает собой зависящее от числа Рейнольдса текучей среды в данный момент времени падение давления через измерительный преобразователь, относительно кинетической энергии проходящей через измерительный преобразователь в данный момент времени текучей среды. Этот седьмой вариант осуществления изобретения в плане усовершенствования предусматривает далее, что электронный преобразователь генерирует сообщение о кавитации при использовании измеренного значения разности давлений. В альтернативном варианте или в дополнение к этому, электронный преобразователь при использовании измеренного значения разности давлений может также генерировать, к примеру, сигнал тревоги, который сигнализирует о превышении заранее определенного, максимально допустимого понижения статического давления в проходящей через измерительный преобразователь текучей среде, в частности, визуально или с возможностью акустического восприятия, и/или сигнал тревоги, который сигнализирует о спровоцированном посредством измерительного преобразователя, слишком сильном падении давления в текучей среде, к примеру, также визуально или с возможностью акустического восприятия.

Основная идея изобретения состоит в том, чтобы на основании отдельных выбранных спектральных компонентов, по меньшей мере, одного из колебательных сигналов, к примеру, также посредством оценки амплитуд (n) сигналов и/или их относительного положения в спектре частот, определять возникновение, как правило, нежелательной или даже вредной кавитации внутри фактически измеряемой посредством соответствующей измерительной системы текучей среды; и это, соответственно, с учетом некоторого небольшого количества существенных для измерения текучей среды измеренных значений, таких как, плотность, вязкость, норма массового расхода и/или число Рейнольдса, которые и так уже, как правило, имеют место в измерительных системах обсуждаемого типа, и, в частности, также определяются, и/или на основании других, генерированных посредством электронного преобразователя таких измерительных систем рабочих параметров, к примеру, разности фаз между выражающими собой колебания, по меньшей мере, одной измерительной трубы со стороны впуска и со стороны выпуска, колебательными сигналами. Изобретение основывается при этом, не в последнюю очередь, на неожиданной идее о том, что, соответственно, только лишь на основании колебательных сигналов вышеуказанного типа, и тем самым, на основании примененного затем спектрального анализа или выборки в зависимости от частоты отдельных спектральных компонентов этих сигналов, в протекающей среде можно определить возможно возникающую кавитацию с достаточной для подачи сигнала тревоги точностью и надежностью; и это также в пределах очень большого диапазона числа Рейнольдса, то есть как для ламинарного, так и для турбулентного течения. Преимущество изобретения состоит, при этом, в частности, в том, что для определения кавитации/подачи сигнала о кавитации в соответствии с изобретением, можно прибегнуть как к зарекомендовавшим себя в работе, традиционным измерительным преобразователям, так и к зарекомендовавшим себя в работе, традиционным - разумеется, соответствующим образом приведенным в соответствие в отношении использованного для оценки программного обеспечения - измерительным преобразователям.

Изобретение, а также другие предпочтительные варианты осуществления изобретения разъясняются далее более детально на основании примеров осуществления изобретения, которые представлены на чертежах. Одинаковые детали снабжены на всех фигурах одинаковыми ссылочными позициями; для лучшей наглядности или, если это представляется целесообразным, уже обозначенные ранее ссылочные позиции на последующих фигурах опускаются. Другие предпочтительные варианты осуществления изобретения или варианты усовершенствования, в частности, также комбинации ранее лишь отдельно поясненных аспектов изобретения, выявляются далее на основании фигур на чертежах, а также на основании зависимых пунктов формулы изобретения.

На чертежах представлено:

фиг.1 - вариант осуществленной в виде компактного измерительного прибора измерительной системы для протекающих в трубопроводах текучих сред, на различных видах сбоку;

фиг.2 - следующий вариант осуществленной в виде компактного измерительного прибора измерительной системы для протекающих в трубопроводах текучих сред, на различных видах сбоку;

фиг.3 - схематично, по типу блок-схемы, пригодный также для измерительной системы в соответствии с фиг.1a, 1b, 2a, 2b электронный преобразователь с присоединенным к нему измерительным преобразователем вибрационного типа;

фиг.4, 5 - в частичном разрезе и, соответственно, перспективном изображении вариант пригодного, в частности, для измерительной системы в соответствии с фиг.1a, 1b измерительного преобразователя вибрационного типа;

фиг.6, 7 - в частичном разрезе и, соответственно, перспективном изображении следующий вариант пригодного, в частности, для измерительной системы в соответствии с фиг.2a, 2b измерительного преобразователя вибрационного типа;

фиг.8-12 - данные проведенных в связи с изобретением, в частности, также с применением компьютерных моделирующих программ и/или посредством реальных измерительных систем в лаборатории, экспериментальных опытов и, соответственно, выведенные на основании этого, служащие для определения разности давлений в протекающей через измерительный преобразователь вибрационного типа - к примеру, в соответствии с фиг.4, 5 или 6, 7 - текучей среде характеристические кривые; а также

фиг.13 - экспериментально определенные, в частности, также с использованием компьютерных моделирующих программ, профили падения давления в традиционном измерительном преобразователе вибрационного типа.

На фиг.1a, 1b или 2a, 2b представлен, соответственно, вариант выполненной с возможностью вставки в рабочий трубопровод, к примеру, трубопровод промышленной установки, образованной, к примеру, посредством расходомера, работающего по принципу Кориолиса, плотномера, вискозиметра или аналогичного прибора, системы для измерения текучих сред, тем самым, жидкостей или паст, которая служит, в основном, для определения кавитации, возникающей в протекающей в рабочем трубопроводе текучей среде, а, в случае необходимости, еще и для измерения и/или контроля, по меньшей мере, одного другого физического параметра текучей среды, к примеру, нормы массового расхода и/или плотности и т.д. Реализованная в данном случае посредством встроенного измерительного прибора компактной конструкции измерительная система включает в себя для э