Разностно-дальномерный способ определения координат источника радиоизлучения
Иллюстрации
Показать всеИзобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах для определения координат источников радиоизлучения (ИРИ). Достигаемым техническим результатом является уменьшение количества вычислений в процедуре расчета координат ИРИ. Способ основан на том, что за счет предварительной обработки сигналов ИРИ после их ретрансляции реализуется однократное вычисление взаимокорреляционных функций для оценки временных задержек при распространении сигналов ИРИ. 1 ил.
Реферат
Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах для определения координат источников радиоизлучения (ИРИ).
Известны:
1. Разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство [1].
2. Способ определения местоположения передатчика путем измерения разности времен задержек [2].
3. Разностно-дальномерные многопозиционные радиотехнические системы [3, с.246…248].
Вышеперечисленные способы определения координат/местоположения могут быть использованы в многопозиционных широкобазовых радиотехнических системах, в которых для ретрансляции сигнала источника радиоизлучения из пунктов приема в пункт обработки применяются аналоговые линии (каналы) связи (имеет место аналоговая ретрансляция).
Наиболее близким к заявляемому способу по совокупности совпадающих существенных признаков является один из способов [3, с.14-25], который выбран в качестве прототипа.
Данный способ заключается в приеме сигнала источника радиоизлучения разнесенными в пространстве периферийными пунктами приема (ППП), связанными с центральным пунктом приема и обработки (ЦППО) командными линиями связи и линиями аналоговой ретрансляции сигнала, причем по командным линиям связи с ЦППО на ППП передаются команды настройки на частоту сигнала источника радиоизлучений, а по линиям аналоговой ретрансляции принятые в ППП сигналы ИРИ передаются на ЦППО, где производится измерение разностей времени приема этих сигналов в ППП и ЦППО как аргумента максимизации модулей взаимокорреляционных функций сигналов ИРИ после их ретрансляции, и вычисляются координаты ИРИ.
Структурная схема устройства, реализующего данный способ, содержащая три периферийных пункта приема сигнала источника радиоизлучения (ППП) и один центральный пункт приема и обработки (ЦППО), приведена на фиг.1.
Каждый периферийный пункт приема сигнала ИРИ (ПППi), представляющий совокупность устройств, выделяющих радиосигналы от ИРИ на фоне помех, а также устройств, организующих линии аналоговой ретрансляции, включает в себя:
- антенное и радиоприемное (РПрУi) устройства для приема сигнала ИРИ;
- радиопередающее (РПдУi) и антенное устройства для ретрансляции сигнала ИРИ,
где i=1, 2, 3.
Центральный пункт приема и обработки, представляющий совокупность устройств, выделяющих радиосигналы от ИРИ на фоне помех, а также устройств, предназначенных для выделения полезной информации о параметрах ИРИ путем совместной обработки радиосигналов, включает в себя:
- антенные и радиоприемные устройства (РПрУ) для приема ретранслированных сигналов ИРИ;
- антенное и радиоприемное (РПрУо) устройства для приема сигналов ИРИ;
- центральный пункт обработки (ЦПО).
В ЦПО производится оценка величины взаимных задержек сигнала ИРИ в приемных пунктах путем вычисления аргумента максимизации модуля взаимокорреляционных функций Ri,k[τ] сигналов ИРИ после их ретрансляции [4, с.103…104]:
где
i, k=0, 1, 2, … N - номера ППП (i, k>0) и ЦППО (i, k=0), i≠k; N - количество ППП; |·| - модуль комплексного числа; xi(t), xk(t) - сигнал ИРИ, принятый на i, k-м пункте; t - время; x i ∗ ( t ) , x k ∗ ( t ) - сигналы, комплексно сопряженные с сигналами xi(t), xk(t).
И, наконец, в ЦПО рассчитывается положение ИРИ, которое определяется точками пересечения гиперболоидов вращения с фокусами в местах расположения приемных позиций, построенных с учетом измеренных разностей времен распространения сигнала ИРИ τi,k [5, с.318].
Однако на практике при измерении взаимных задержек распространения сигналов возможны ошибки из-за частотного рассогласования при ретрансляции, которое обусловлено двумя факторами.
Во-первых, если носителем ИРИ является быстроперемещающийся объект, например самолет, несущие частоты ретранслируемых сигналов могут смещаться на величину доплеровского сдвига, пропорционального радиальной скорости ИРИ относительно приемного пункта.
Во-вторых, в многопозиционных радиотехнических системах при ретрансляции сигнала ИРИ с ППП на ЦППО предварительно осуществляется перенос частоты сигнала fc на частоту ретрансляции fp. Перенос с частоты сигнала fc на частоту ретрансляции fp обычно реализуется последовательно в нескольких преобразователях частоты, каждый из которых содержит гетеродин, смеситель и выходной полосовой фильтр. Для обеспечения равенства частот при ретрансляции в [6, с.40…41, рис.2.5] предлагается использовать общие гетеродины для всех ППП. Однако техническая реализация такого способа при большом территориальном разносе ППП затруднительна, поскольку требует включения в состав оборудования дополнительных линий ретрансляции сигналов гетеродинов. Поддержание одинаковой частоты разных гетеродинов в преобразователях частоты на всех ППП тоже является достаточно сложной задачей и требует как постоянного контроля номинала их частот, так и применения высокостабильных опорных генераторов с компенсацией внешних дестабилизирующих факторов (температура, старение элементной базы, нестабильность напряжения питания и т.п.).
Таким образом, частоты ретранслированных сигналов источника радиоизлучения, которые поступают на ЦПО (фиг.1), могут отличаться по номиналу из-за доплеровского смещения и (или) из-за несовпадения частот гетеродинов на приемных пунктах.
Для оценки влияния частотного рассогласования ретранслируемых сигналов ИРИ xi(t) и xk(t) на величину смещения максимума взаимокорреляционной функции (2), приводящего к ошибкам в измерении разностей времен распространения сигнала ИРИ τi,k, используется время-частотная функция рассогласования [4, с.105]. Получим формулу такой функции применительно к рассматриваемой задаче.
С этой целью запишем в комплексной форме сигнал, поступающий на вход ЦПО с i-го приемного пункта:
где A(t-ti), φ(t-ti), ti и µi - соответственно, действительные амплитуда и фаза сигнала ИРИ, а также задержка и ослабление сигнала при распространении от ИРИ до ЦПО; ωi - несущая частота сигнала после ретрансляции; j - мнимая единица; t - время.
Тогда, с учетом (3), взаимокорреляционная функция i-го и k-го сигналов может быть представлена в следующем виде:
где Δωi,k=ωi-ωk; Фi,k=-ωi·ti+ωk·tk-ωk·τ; P i = ∫ − ∞ ∞ x i ( t ) ⋅ x i ∗ ( t ) d t ; P k = ∫ − ∞ ∞ x k ( t ) ⋅ x k ∗ ( t ) d t .
Осуществляя замену переменных под знаком интеграла в (4) - s=t-ti, а также учитывая, что Фi,k не зависит от переменной интегрирования, получаем выражение:
где Xi(s), Xk(s) - комплексные амплитуды ретранслированных сигналов:
Нетрудно заметить, что выражение (5) совпадает с известной формулой расчета время-частотной функции рассогласования (ВЧФР) [4, с.105, ф-ла (9.12)].
Так как положение максимума ВЧФР (5) зависит как от временного сдвига, так и от частотного рассогласования ретранслированных сигналов, на практике поиск задержек времен распространения сигналов в разностно-дальномерной системе осуществляется в многоканальном корреляционно-фильтровом устройстве как максимум максиморум по всем возможным значениям временных и частотных сдвигов [4, с.106, рис.9.2].
Таким образом, основным недостатком прототипа является то, что при оценке временных задержек принимаемых на ППП сигналов ИРИ в ЦПО необходимо реализовывать многократное вычисление взаимокорреляционных функций для всех возможных значений частотных сдвигов.
Цель изобретения - уменьшение количества вычислений при оценке временных задержек принимаемых сигналов ИРИ в реализуемой центральным пунктом обработки процедуре вычисления координат ИРИ.
Поставленная цель достигается тем, что в предлагаемом способе изменяется последовательность действий, предшествующих процедуре вычисления координат ИРИ. Суть этих изменений заключается в том, что перед вычислением взаимокорреляционной функции ретранслированные на ЦПО сигналы ИРИ подвергаются дополнительной обработке:
где T - фиксированный временной сдвиг, T≤1/(2·F); F - ширина спектра сигнала ИРИ, а оценка задержки сигналов определяется как аргумент максимизации модуля взаимокорреляцонной функции уже сигналов yi(t) и yk(t):
Покажем, что (9) эквивалентно (1). Для этого воспользуемся неравенством Коши-Буняковского-Шварца [7]:
Причем равенство в (10) достигается тогда, когда f(r) и g(r) равны с точностью до постоянного множителя.
Применительно к сигналам (8) неравенство (10) представим в следующем виде:
С учетом принятых ранее обозначений (3) и (8), получим формулы входящих в числитель и знаменатель (11) выражений:
где Ei{t}=A(t-ti)·A(t-ti+T); Ek{t}=A(t-tk+τ)·A(t-tk+T+τ); Θi{t}=φ(t-ti)-φ(t-ti+T); Θk{t}=φ(t-tk+τ)-φ(t-tk+T+τ);
С учетом (12) - (14) получаем эквивалентное (11) неравенство
Основываясь на свойствах неравенства Коши-Буняковского-Шварца [7], можно утверждать, что если Θi{t}-Θk{t}≠0, то есть когда τ≠tk-ti, модуль взаимокорреляционной функции сигналов yi(t) и yk(t) (левая часть неравенства (15)), будет меньше единицы. Если же τ=tk-ti, то неравенство (15) преобразуется в равенство:
Основываясь на (16), можно утверждать, что аргумент максимизации модуля взаимокорреляцонной функции сигналов yi(t) и yk(t) (9), также как и аргумент максимизации модуля взаимокорреляцонной функции идеальных сигналов xi(t) и xk(t) без частотных сдвигов (1), будет равен разности времен распространения сигналов ИРИ между i-м и k-м ППП: τ=tk-ti. Кроме того, из предыдущих выкладок следует, что при вычислении разностей времен распространения сигналов не требуется многократное вычисление взаимокорреляционных функций для всех возможных значений частотных сдвигов.
Следовательно, при определении координат ИРИ разностно-дальномерным способом предлагаемый подход позволяет вычислять разности времен распространения сигналов ИРИ за меньшее количество операций, чем это требуется в прототипе.
Сопоставительный анализ предлагаемого технического решения с прототипом показывает, что предлагаемый способ отличается от известного тем, что перед вычислением координат ИРИ оценка временных задержек принимаемых сигналов осуществляется после дополнительной обработки ретранслированных на ЦПО сигналов ИРИ. Таким образом, заявляемый способ соответствует критерию «новизна».
Источники информации
1. Патент RU: №2309420, опубл. 27.10.2007 г.
2. Патент ГДР №274102.
3. Кондратьев B.C. и др. Многопозиционные радиотехнические системы. / Под редакцией проф. В.В. Цветнова - М.: Радио и связь, 1986. - 264 с.
4. Ширман Я.Д., Манжос В.Н., Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981, 416 с.
5. Черняк В.С. Многопозиционная радиолокация. - М.: Радио и связь, 1993. - 415 с.
6. Куприянов А.И., Сахаров А.В. Радиоэлектронные системы в информационном конфликте. - М.: Вузовская книга, 2003. - 528 с.
7. Неравенство Коши-Буняковского: [Электронный ресурс] // Википедия. URL: http://ru.wikipedia.org/wiki/Неравенство_Коши_-_Буняковского (Дата обращения: 16.12.2013).
Способ определения координат источника радиоизлучения (ИРИ), основанный на приеме его сигнала разнесенными в пространстве периферийными пунктами приема (ППП), связанными с центральным пунктом приема и обработки (ЦППО) командными линиями связи и линиями аналоговой ретрансляции сигнала, причем по командным линиям связи с ЦППО на ППП передаются команды настройки на частоту сигнала источника радиоизлучений, а по линиям аналоговой ретрансляции принятые в ППП сигналы ИРИ передаются на ЦППО, где измеряются разности времени приема этих сигналов в ППП и ЦППО, а также производится вычисление координат ИРИ, отличающийся тем, что разности времени приема ретранслированных сигналов источника радиоизлучения τi,k определяются как аргумент максимизации модуля взаимокорреляционной функции: где i, k=0, 1, 2, …,N - номера ППП (i, k>0) и ЦППО (i, k=0); N - количество ППП, в которой перед ее вычислением сигналы yi(t) и yk(t) преобразуются из исходных сигналов ИРИ xi(t) и xk(t), принятых соответственно на i,k- ом пункте (t - время), путем их перемножения на эти же сигналы, подвергнутые комплексному сопряжению и временному сдвигу на интервал T: (•)* - знак комплексного сопряжения;T≤1(2·F);F - ширина спектра сигнала ИРИ.