Способ производства высокопроницаемой электротехнической изотропной стали
Изобретение относится к черной металлургии, конкретно к производству высокопроницаемой электротехнической изотропной стали, используемой для изготовления магнитопроводов электрических машин. Технический эффект при использовании изобретения заключается в улучшении магнитных свойств высокопроницаемой электротехнической изотропной стали. Указанный технический эффект достигают тем, что в способе производства высокопроницаемой электротехнической изотропной стали, включающем выплавку, разливку стали, горячую прокатку, термообработку горячекатаной полосы, травление, холодную прокатку и термообработку холоднокатаной полосы, при выплавке стали выполняют соотношение 0,16%≤Al+P≤0,50%, при следующем содержании компонентов, мас.%: углерода не более 0,04, кремния 0,10-2,50, алюминия 0,10-0,23, фосфора 0,06-0,27, марганца не более 0,40, серы не более 0,010, азота не более 0,008, железо и неизбежные примеси - остальное. Полученную после травления полосу подвергают холодной прокатке при степени деформации, равной 70-80%. 1 пр., 1 табл.
Реферат
Изобретение относится к черной металлургии, конкретно к производству холоднокатаной электротехнической изотропной стали, используемой для изготовления магнитопроводов электрических машин (электродвигателей, генераторов, дросселей и т.п.).
Характерной особенностью качества такой стали является более высокий уровень магнитной индукции и относительной пиковой магнитной проницаемости. Во многом эти характеристики достигаются оптимизацией структурного и текстурного состояний стали, которые в значительной степени определяются химическим составом и технологией обработки металла.
Одним из способов увеличения значений магнитной индукции и относительной пиковой магнитной проницаемости является повышение доли кубических ориентировок текстуры стали (200), (310), обеспечивающих существенное улучшение магнитных свойств металла вдоль и поперек направления прокатки.
При этом текстура (111), ухудшающая магнитные свойства и ребровая текстура (220), приводящая к анизотропии магнитных свойств вдоль и поперек направления прокатки, должны быть развиты слабо или подавлены.
В целях снижения развития текстур (111) и (220) используют добавки специальных элементов, например фосфора, что позволяет управлять текстурой.
Фосфор, сегрегируя по границам зерен, обеспечивает меньший наклеп зерен кубических ориентировок при холодной прокатке, что снижает их поверхностную энергию. В процессе термообработки холоднокатаной стали зерна кубических ориентировок, обладая минимальной энергией, растут за счет зерен с ориентировками (111) и (220).
При введении фосфора в сталь необходимо учитывать уровень легирования металла алюминием, так как их соотношение влияет на процесс текстурообразование стали и технологичность обработки проката.
Известен способ изготовления электротехнической изотропной стали, приведенный в патенте Германии, заявка №19918484, С21D 8/12 от 23.04.1999 г., в котором для улучшения магнитных свойств используют алюминий и фосфор.
Способ включает горячую прокатку стального сляба, содержащего, мас.%: углерода 0,06; кремния 0,02-2,5; алюминия не более 0,40; марганца 0,05-1,0; фосфора 0,08-0,25 до толщины не более 3,5 мм, отжиг горячекатаной полосы при температуре 650-850°C, травление и холодную прокатку на толщину 0,2-1,0 мм с общей деформацией не более 85%, рекристаллизационный отжиг холоднокатаной стали при температуре 580-780°C и дрессировку с обжатием 15%.
Однако в этом способе не учитывается влияние химического состава, соотношение алюминия и фосфора в металле выбирают произвольно, что ухудшает развитие кубических составляющих текстуры, повышение полюсной плотности кубических ориентировок (200) и (310) достигается не во всем заявленном диапазоне степени деформации при холодной прокатке, а на заключительной стадии технологического процесса производят дрессировку. Это снижает уровень магнитной индукции и относительной пиковой магнитной проницаемости.
Технической задачей, на решение которой направлено изобретение, является улучшение магнитных свойств холоднокатаной электротехнической изотропной стали, а именно повышение степени изотропности при снижении анизотропии удельных магнитных потерь, увеличение уровня магнитной индукции и относительной пиковой магнитной проницаемости.
Для решения поставленной задачи в предлагаемом способе производства высокопроницаемой электротехнической изотропной стали, включающем выплавку, разливку стали, горячую прокатку, термообработку горячекатаной полосы, травление, холодную прокатку и термообработку холоднокатаной полосы, при выплавке стали выполняется соотношение 0,16%≤Al+P≤0,50%, при следующем содержании компонентов, мас.%:
углерода | не более 0,04 |
кремния | 0,10-2,50 |
алюминия | 0,10-0,23 |
фосфора | 0,06-0,27 |
марганца | не более 0,40 |
серы | не более 0,010 |
азота | не более 0,008 |
железо и неизбежные примеси | остальное |
где Al - содержание алюминия в стали, мас.%; P - содержание фосфора в стали, мас.%. Полученную после травления полосу из такой стали подвергают холодной прокатке при степени деформации, равной 70-80%.
Для получения высокопроницаемой электротехнической изотропной стали с высоким уровнем магнитных свойств является необходимым формирование в металле оптимального размера микрозерна и увеличение полюсной плотности кубических ориентировок текстуры (200) и (310).
Результаты проведенных исследований позволяют утверждать, что для получения оптимального размера микрозерна и повышения полюсной плотности кубических ориентировок (200) и (310) в текстуре холоднокатаных полос необходимо использовать сталь с определенным соотношением содержания алюминия и фосфора, а холодную прокатку такой стали необходимо производить при степени деформации 70-80%.
На основании проведенных лабораторных и промышленных опытов установлены граничные условия содержания основных элементов в стали. Предлагаемый способ распространяется на электротехнические изотропные стали с содержанием кремния Si=0,10-2,50%. При этом нижний предел обусловлен повышением удельных магнитных потерь готовой стали вследствие снижения удельного электросопротивления металла при содержании кремния менее 0,10%, а верхний предел - снижением технологичности обработки проката из-за повышения жесткости металла при увеличении соотношения (Al+P) более 0,50%.
Диапазон значений легирования стали алюминием установлен равным 0,10-0,23%. Нижний предел обусловлен уменьшением воздействия на структурно-текстурное состояние готовой стали при содержании алюминия менее 0,10%, а верхний предел - повышением количества неметаллических включений на основе мелкодисперсного оксида Al2O3 при содержании алюминия более 0,23%, что приводит к снижению магнитной индукции и относительной пиковой магнитной проницаемости.
Диапазон содержания фосфора в металле, равный 0,06-0,27%, установлен исходя из пределов соотношения алюминия и фосфора 0,16%≤Al+P≤0,50%. Нижний предел содержания фосфора обусловлен снижением эффекта подавления текстур (111) и (220) в поверхности полосы при уменьшении соотношения алюминия и фосфора (Al+P) менее 0,16%, а верхний предел - снижением пластичности метала при холодной прокатке горячекатаного проката с соотношением алюминия и фосфора (Al+P) более 0,50%.
Диапазон степени деформации при холодной прокатке установлен равным 70-80%.
При этом нижний предел обусловлен повышением анизотропии удельных магнитных потерь готовой стали вследствие повышения доли ребровой текстуры (220) в готовом металле при степени деформации менее 70%, а верхний предел - снижением технологичности обработки проката из-за повышения жесткости металла при степени деформации более 80%.
Анализ патентной литературы показывает отсутствие отличительных признаков заявленного способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявленного технического решения критерию «изобретательский уровень».
Применение изобретения позволяет улучшить магнитные свойства холоднокатаной высокопроницаемой электротехнической изотропной стали, в том числе снизить анизотропию удельных магнитных потерь ΔP1,5/50 на 5-8%, повысить магнитную индукцию на 0,02-0,04 Тл и относительную пиковую магнитную проницаемость µ1,5/50 на 400-600 единиц.
Ниже приведен вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.
Пример
Выплавляли электротехническую изотропную сталь при соотношении алюминия и фосфора (Al+P)=0,265% с содержанием углерода 0,034%; кремния 1,60%; алюминия 0,17%; фосфора 0,095%; марганца 0,17%; серы 0,003%; азота 0,005%; железо и неизбежные примеси - остальное. Сталь разливали в слябы и производили горячую прокатку на толщину 2,2 мм. Горячекатаную полосу подвергали термообработке в агрегате нормализации, травлению и холодной прокатке на толщину 0,50 мм при степени деформации 77%.
Далее холоднокатаную полосу подвергали окончательной термообработке в агрегате непрерывного отжига.
Варианты реализации способа производства высокопроницаемой электротехнической изотропной стали в толщине 0,50 мм при различном содержании кремния, алюминия и фосфора приведены в таблице 1.
Таблица 1. | ||||||||
Технологические параметры обработки и магнитные свойства высокопроницаемой электротехнической изотропной стали | ||||||||
№ п/п | Содержание элементов, % | Степень деформации при холодной прокатке, % | Магнитные свойства | |||||
Si | Al | P | Al+P | ΔP1,5/50, % | B2500, Тл | µ1,5/50 | ||
1 | 0,10 | 0,10 | 0,26 | 0,36 | 70,0 | 3,0 | 1,70 | 3120 |
2 | 0,16 | 0,15 | 0,24 | 0,39 | 75,0 | 3,0 | 1,69 | 2930 |
3 | 0,21 | 0,23 | 0,27 | 0,50 | 80,0 | 4,0 | 1,68 | 2845 |
4 | 0,94 | 0,18 | 0,18 | 0,36 | 78,0 | 5,0 | 1,67 | 2615 |
5 | 1,28 | 0,20 | 0,14 | 0,34 | 80,0 | 5,0 | 1,66 | 2525 |
6 | 1,60 | 0,17 | 0,095 | 0,265 | 77,0 | 6,0 | 1,65 | 2310 |
7 | 2,15 | 0,10 | 0,06 | 0,16 | 74,0 | 7,0 | 1,64 | 2265 |
8 | 2,50 | 0,23 | 0,27 | 0,50 | 71,0 | 7,0 | 1,63 | 2150 |
9* | 0,09 | 0,08 | 0,27 | 0,35 | 69,0 | 9,0 | 1,68 | 2510 |
10* | 0,20 | 0,23 | 0,28 | 0,51 | 80,0 | 11,0 | 1,65 | 2350 |
11* | 0,91 | 0,25 | 0,17 | 0,42 | 75,0 | 12,0 | 1,63 | 2130 |
12* | 1,62 | 0,19 | 0,08 | 0,27 | 60,0 | 11,0 | 1,62 | 1860 |
13* | 2,17 | 0,11 | 0,06 | 0,17 | 65,0 | 12,0 | 1,60 | 1745 |
14** | 2,50 | 0,24 | 0,28 | 0,52 | 81,0 | - | - | - |
Примечание: * - обработка без учета режимных параметров производства стали; | ||||||||
** - хрупкий металл, обработке не подвергался |
Способ производства высокопроницаемой электротехнической изотропной стали, включающий выплавку, разливку стали, горячую прокатку, термообработку горячекатаной полосы, травление, холодную прокатку и термообработку холоднокатаной полосы, отличающийся тем, что выплавляют сталь при следующем содержании компонентов, мас.%:
углерода | не более 0,04 |
кремния | 0,10-2,50 |
алюминия | 0,10-0,23 |
фосфора | 0,06-0,27 |
марганца | не более 0,40 |
серы | не более 0,010 |
азота | не более 0,008 |
железо и неизбежные примеси | остальное |