Не содержащий металлической фольги ламинированный материал для мешка, способ производства материала для мешка и полученный из него упаковочный материал

Иллюстрации

Показать все

Изобретение относится к не содержащему фольги ламинированному материалу (10) мешка для упаковки жидких продуктов или напитков, содержащему первый слой (11) бумаги или другого материала на основе целлюлозы, расположенный с внутренней стороны не содержащего фольги ламинированного материала мешка, второй слой (12) бумаги или другого материала на основе целлюлозы, расположенный с внешней стороны не содержащего фольги ламинированного материала мешка, причем указанные первый и второй слои ламинированы друг к другу посредством по меньшей мере одного промежуточного связующего слоя (13), выбранного из термопластических полимеров, газобарьерный покрывающий слой (14, 14'), нанесенный на одну или обе стороны первого слоя бумаги или другого материала на основе целлюлозы, барьерный слой металлического покрытия (15), осажденного из паровой фазы, расположенный на внутренней стороне указанного первого слоя, самый внутренний слой непроницаемого для жидкости термосвариваемого термопластического полимерного материала (16), выбранного из полиолефинов, нанесенный на внутреннюю сторону барьерного слоя металлического покрытия (15), осажденного из паровой фазы и самый внешний слой непроницаемого для жидкости термосвариваемого термопластического полимерного материала (17), выбранного из полиолефинов на противоположной стороне не содержащего фольги ламинированного материала мешка, нанесенный на внешнюю сторону второго слоя бумаги или другого материала на основе целлюлозы, причем газобарьерный покрывающий слой (14, 14') получен жидкопленочным нанесением жидкой композиции на указанный первый слой и последующей сушкой жидкой композиции, содержащей полимерный связующий материал, диспергированный или растворенный в водной среде или в другом растворителе. Изобретение также относится к способу производства упаковочного ламинированного материала и к упаковочному контейнеру, который изготавливают из упаковочного ламинированного материала. Упаковка по изобретению обладает приемлемыми газобарьерными свойствами и достаточной механической прочностью после нормального срока хранения. 3 н. и 14 з.п. ф-лы, 6 ил., 1 табл.

Реферат

Область техники

Изобретение относится к ламинированному материалу без фольги для мешка, в который упаковывают жидкие продукты или напитки. Настоящее изобретение также относится к способу производства упаковочного ламинированного материала и к упаковочному контейнеру, изготовленному из упаковочного ламинированного материала.

Уровень техники

Упаковочные контейнеры одноразового использования для жидких продуктов часто изготавливают из упаковочного ламинированного материала на основе плотной бумаги или картона. Один такой упаковочный контейнер известен под товарным знаком Tetra Brik Aseptic®, и его используют, главным образом, для асептической упаковки жидких продуктов, включая молоко, фруктовые соки и т.д., предназначенных для долгосрочного хранения в условиях окружающей среды. Упаковочный материал известного упаковочного контейнера обычно представляет собой ламинированный материал, включающий основной центральный слой из бумаги или картона и внешние непроницаемые для жидкости термопластмассовые слои. Чтобы сделать упаковочный контейнер газобарьерным, в частности непроницаемым для газообразного кислорода, например, с целью асептической упаковки, в том числе упаковки молока или фруктового сока, ламинированный материал в этих упаковочных контейнерах, как правило, включает по меньшей мере один дополнительный слой, наиболее часто алюминиевую фольгу.

На внутренней поверхности ламинированного материала, т.е. на поверхности, предназначенной для контакта с наполняющим пищевым содержимым контейнера, изготовленного из ламинированного материала, находится самый внутренний слой, нанесенный на алюминиевую фольгу, причем данный самый внутренний слой может состоять из одной или нескольких частей, включающих термосвариваемые связующие полимеры и/или полиолефины. Кроме того, с наружной стороны центрального слоя находится наиболее внешний термосвариваемый полимерный слой.

Алюминиевая фольга, кроме того, делает упаковочный материал термосвариваемым путем индуктивной термосварки, которая представляет собой быстрый и эффективный способ получения механически прочных, непроницаемых для жидкости и газов сварных соединений или швов в процессе производства контейнеров.

Упаковочные контейнеры, как правило, изготавливают с помощью современных высокоскоростных упаковочных машин такого типа, который производит, наполняет и запечатывает упаковки из полотна или из предварительно сделанных заготовок упаковочного материала. Упаковочные контейнеры можно, таким образом, производить изготовлением из полотна ламинированного упаковочного материала трубки соединением продольных краев полотна друг с другом внахлестку сварным соединением самых внутренних и наиболее внешних термосвариваемых термопластических полимерных слоев. Трубку наполняют заданным жидким продуктом питания и затем разделяют на индивидуальные упаковки повторяющейся поперечной сваркой трубки на заданном расстоянии между швами ниже уровня содержимого трубки. Упаковки отделяются от трубки насечками вдоль поперечных швов, и получают заданную геометрическую конфигурацию, как правило, форму параллелепипеда, сгибанием вдоль подготовленной линии сгиба в упаковочном материале или упаковки в виде подушкообразных пакетов.

Главное преимущество идеи данного непрерывного способа производства упаковки, изготавливаемой из трубки, наполняемой и запечатываемой, заключается в том, что полотно можно стерилизовать непрерывно непосредственно перед изготовлением трубки, таким образом, обеспечивая возможность осуществления способа асептической упаковки, т.е. способа, в котором подлежащее упаковке жидкое содержимое, а также сам упаковочный материал освобождают от бактерий и наполненный упаковочный контейнер производят в чистых условиях, в результате чего наполненную упаковку можно хранить в течение продолжительного времени даже при температуре окружающей среды без риска роста микроорганизмов в упакованном продукте. Другое важное преимущество способа непрерывной упаковки типа Tetra Brik® представляет собой, как указано выше, возможность непрерывной высокоскоростной упаковки, что дает существенный вклад в экономическую эффективность.

Слой алюминиевой фольги в упаковочном ламинированном материале обеспечивает превосходные газобарьерные свойства по сравнению с большинством полимерных газобарьерных материалов. Традиционный упаковочный ламинированный материал на основе алюминиевой фольги для асептической упаковки жидких продуктов представляет собой наиболее экономически эффективный упаковочный материал при своем уровне качества, который имеется на рынке в настоящее время. Любой другой конкурентный материал должен быть более экономически эффективным в отношении исходных материалов, иметь соизмеримые свойства сохранения продуктов и отличаться сравнительно низкой сложностью превращения в конечный упаковочный ламинированный материал.

В настоящее время усиливается тенденция к разработке таких упаковочных материалов, которые не содержат алюминиевой фольги в ламинированной структуре, с целью улучшения экологических характеристик получаемого в результате материала. Тогда, разумеется, желательно снизить стоимость производства упаковочного материала и сохранить необходимые свойства для асептического долгосрочного хранения упаковочных контейнеров, изготовленных из упаковочного ламинированного материала.

Имеющие форму пакетов и бумажную основу упаковочные контейнеры типа Tetra Fino Aseptic®, как правило, изготовлены из упаковочного ламинированного материала с использованием значительно более тонкого картона, чем картон, используемый в обладающих большей устойчивостью размеров упаковках в форме параллелепипеда. Более толстый картон, который, как правило, используют в имеющих форму параллелепипеда упаковках, обеспечивает хороший уровень свойств светобарьерности готового упаковочного ламинированного материала. Соответственно, ламинированному материалу для упаковок типа пакетов необходимо придать свойства светобарьерности другими способами. Кроме того, ламинированный материал, естественно, теряет механическую прочность, жесткость и способность сцепления, когда используют более тонкий бумажный слой.

Требования к свойствам непроницаемости по отношению к газообразному кислороду для упаковок типа пакетов, естественно, являются несколько менее строгими, чем для упаковок, обладающих большей устойчивостью размеров. Все же необходимо достижение определенного уровня свойств непроницаемости, несмотря на более гибкий материал, создающий трещины в непроницаемых слоях. Тогда желательно обеспечить стойкие непроницаемые слои, которые могут компенсировать более высокое механическое напряжение, приложенное к упаковкам.

Один способ усиления свойств светобарьерности бумажного слоя может представлять собой использование бумаги небеленого качества. Беленая бумага в некоторой степени подвергается такому воздействию, что страдают свойства светобарьерности. Небеленая бумага, однако, имеет бурый цвет и непривлекательный внешний вид. Бурая бумага имеет печатную поверхность, которая имеет неудовлетворительное качество для печати и, кроме того, придает дешевый внешний вид упаковочному материалу.

Описание изобретения

Таким образом, общая цель настоящего изобретения заключается в том, чтобы преодолеть или ослабить описанные выше проблемы в производстве экономически эффективного нефольгированного ламинированного упаковочного материала для упаковки жидких продуктов или напитков, подходящего для долгосрочной асептической упаковки жидких или влажных продуктов.

Другая цель настоящего изобретения заключается в том, чтобы предложить нефольгированный ламинированный упаковочный материал для упаковки жидких продуктов или напитков в упаковки типа пакетов, которые обладают приемлемыми газобарьерными свойствами и достаточной механической прочностью после нормального срока хранения.

Следующая цель настоящего изобретения заключается в том, чтобы предложить экономически эффективный нефольгированный ламинированный упаковочный материал для упаковки жидких продуктов или напитков, подходящий для долгосрочной асептической упаковки жидких или влажных продуктов, причем данные упаковочные контейнеры должны обладать хорошими свойствами непроницаемости не только по отношению к газу и водяному пару, но также по отношению к летучим и пахучим веществам.

Еще одна цель настоящего изобретения заключается в том, чтобы предложить экономически эффективный нефольгированный ламинированный упаковочный материал для упаковки жидких продуктов или напитков, подходящий для долгосрочной асептической упаковки жидких или влажных продуктов, который можно подвергать термосварке в непроницаемые для жидкости и газов упаковочные контейнеры посредством индукционной термосварки.

Данные цели, таким образом, достигают согласно настоящему изобретению, используя ламинированный упаковочный материал, упаковочный контейнер и способ изготовления упаковочного материала, как определено в прилагаемой формуле изобретения.

Согласно первому аспекту настоящего изобретения, общие цели достигают, используя нефольгированный ламинированный упаковочный материал для упаковки жидких продуктов или напитков, причем данный упаковочный ламинированный материал включает первый слой бумаги, причем данный первый бумажный слой находится с внутренней стороны ламинированного упаковочного материала, и второй слой бумаги, который обращен к внешней стороне ламинированного упаковочного материала, и первый и второй бумажные слои ламинированы друг с другом посредством по меньшей мере одного промежуточного связующего слоя (13), упаковочный ламинированный материал дополнительно включает газобарьерный покрывающий слой, нанесенный на одну или обе стороны первого бумажного слоя, непроницаемый слой осажденного из паровой фазы металлического покрытия нанесен или расположен на внутреннюю сторону, таким образом, необязательно покрытого первого бумажного слоя, упаковочный ламинированный материал дополнительно включает самый внутренний слой непроницаемого для жидкости термосвариваемого термопластического полимерного материала, нанесенного на внутреннюю сторону металлического осажденного из паровой фазы покрытия, и наиболее внешний слой непроницаемого для жидкости термосвариваемого термопластического полимерного материала на противоположной стороне упаковочного ламинированного материала, нанесенный на внешнюю сторону второго бумажного слоя.

Прикладывая бумажные слои друг к другу с промежуточным термопластическим слоем, можно обеспечить более высокие механические параметры, но также более высокую гибкость, с которой свойства бумаги можно регулировать по требованию внутри и снаружи упаковочного ламинированного материала.

Чтобы обеспечить экономическую эффективность упаковочного материала, газобарьерный покрывающий слой предпочтительно получают жидкопленочным покрытием, используя способ нанесения, также часто называемым дисперсионным покрытием, жидкой композиции на указанный первый бумажный слой, и последующей сушкой жидкой композиции, содержащей полимерный связующий материал, диспергированный или растворенный в водной среде или в другом растворителе.

Согласно одному варианту осуществления, газобарьерный покрывающий слой наносят на внутреннюю сторону первого бумажного слоя и непроницаемый слой нанесенного из паровой фазы металлического покрытия затем наносят на внутреннюю сторону газобарьерного покрытия. Оказывается, что металлизированный слой, нанесенный на такой полученный жидкопленочным покрытием заготовленный слой, имеет улучшенное качество, т.е. однородность и равномерность, в результате чего улучшаются свойства непроницаемости и устойчивости.

Чтобы дополнительно улучшить газобарьерные свойства покрытой подложки с первым бумажным слоем, дополнительный газобарьерный покрывающий слой наносят на внешней стороне первого бумажного слоя.

Согласно альтернативному варианту осуществления, непроницаемый слой нанесенного из паровой фазы металлического покрытия (15) осажден на полимерную пленку-подложку (16), включающую термосвариваемый термопластический материал, и покрытую таким способом пленку затем ламинировали на имеющий газобарьерное покрытие первый бумажный слой посредством дополнительного промежуточного связующего слоя (18). В этом определенном варианте осуществления два непроницаемых покрытия в упаковочном материале разделены промежуточным связующим слоем, который увеличивает устойчивость к неправильному обращению и прочность слоев из непроницаемого материала в целом.

Предпочтительно газобарьерный покрывающий слой получают из композиции, включающей, главным образом, полимер, выбранный из группы, состоящей из поливинилового спирта (PVOH), диспергируемого в воде сополимера этилена и винилового спирта (EVOH), диспергируемого в воде полиамида (PA), полимеров акриловой или метакриловой кислоты (PAA, PMAA) или сополимеров этилена и (мет)акриловой кислоты (E(M)AA), поливинилиденхлорида (PVDC), диспергируемых в воде сложных полиэфиров, производных целлюлозы, полисахаридов, производных полисахаридов и комбинаций двух или более указанных веществ.

Согласно одному варианту осуществления, жидкая композиция дополнительно включает неорганические частицы, чтобы придавать или дополнительно улучшать свойства непроницаемости по отношению к газообразному кислороду имеющего жидкопленочное покрытие непроницаемого слоя.

Если желательно использовать полимер, который является более экономически эффективным и имеет положительные экологические характеристики, непроницаемый слой можно получать из композиции, включающей, главным образом, PVOH, диспергируемый в воде EVOH или крахмал или их сочетания. Диспергируемый в воде EVOH содержит большее количество звеньев винилового спирта по сравнению с обрабатываемым в расплаве EVOH и является ближе по своей природе к PVOH, чем к EVOH. Чистый PVOH и полимеры на основе крахмала могут быть в большей или меньшей степени биологически разложимыми, поэтому указанные полимеры могут оказаться более желательными для некоторых упаковочных применений.

Желательно, чтобы сам полимерный связующий материал имел собственные газобарьерные свойства. Соответственно, непроницаемый покрывающий слой можно предпочтительно получать из композиции, включающей, главным образом, полимер, выбранный из группы, состоящей из (PVOH), диспергируемого в воде (EVOH), (PVDC), диспергируемого в воде полиамида (PA), крахмала, производных крахмала и комбинаций двух или более указанных веществ.

По сравнению с алюминиевой фольгой, PVOH в качестве жидкопленочного покрывающего непроницаемого полимера обладает многими желательными свойствами, в результате чего он представляет собой наиболее предпочтительный непроницаемый материал во многих отношениях. Среди них можно упомянуть хорошие пленкообразующие свойства, совместимость с продуктами питания и экономическую ценность, помимо его высокой степени непроницаемости по отношению к газообразному кислороду. В частности, PVOH образует упаковочный ламинированный материал с высокой степенью непроницаемости для запахов, что особенно важно для молочных упаковок.

Водные системы обычно имеют определенные экологические преимущества. Предпочтительно, жидкая газобарьерная композиция составлена на водной основе, потому что, помимо прочего, такая композиция обычно наносит меньший ущерб окружающей среде, чем системы на основе других растворителей.

Чтобы улучшить свойства непроницаемости по отношению к водяному пару и кислороду покрытия на основе PVOH, полимер или соединение с функциональными карбоксильными группами можно включить в данную композицию. Соответственно, полимер с функциональными карбоксильными группами выбирают из группы, состоящей из сополимера этилена и акриловой кислоты (EAA) и сополимеров этилена и метакриловой кислоты (EMAA) или их смесей. Один такой известный особенно предпочтительный непроницаемый слой состоит из смеси PVOH, EAA и неорганического слоистого соединения. Сополимер EAA затем включают в непроницаемый слой в количестве около 1-20 мас.% в расчете на массу сухого покрытия.

Считают, что улучшенные свойства непроницаемости по отношению к кислороду и воде возникают в результате реакции этерификации между PVOH и EAA при повышенной температуре сушки, что вызывает сшивку PVOH гидрофобными полимерными цепями EAA, которые тем самым встраиваются в структуру PVOH. Такая смесь, однако, стоит дороже вследствие стоимости добавок. Кроме того, композиции можно делать более долговечными посредством сушки и отверждения при повышенных температурах. Сшивку можно также индуцировать присутствием многовалентных соединений, например соединений металлов, в том числе оксидов металлов, хотя такие соединения являются менее предпочтительными в покровных композициях для этой цели.

Недавно разработаны особые виды диспергируемого в воде сополимера этилена и винилового спирта (EVOH), которые можно считать пригодными для кислородонепроницаемой жидкой покрывающей композиции. Традиционные полимеры EVOH, однако, как правило, предназначены для экструзии и не являются пригодными для диспергирования/растворения в водной среде, чтобы производить жидкопленочным покрытием тонкую непроницаемую пленку плотностью 5 г/м2 или ниже, предпочтительно 3,5 г/м2 или ниже. Считают, что EVOH должен включать достаточно большое количество мономерных звеньев винилового спирта, чтобы быть диспергируемым или растворимым в воде, и что его свойства должны быть близкими, насколько это возможно, к параметрам жидкопленочных покрытий на основе PVOH. Экструдированный слой EVOH не является альтернативой жидкопленочному покрытию на основе EVOH, потому что присущие ему свойства меньше похожи на параметры PVOH, чем EVOH для жидкопленочного покрытия, и потому что его невозможно наносить в экономически эффективном количестве менее 5 г/м2 в виде одного слоя методами экструзионного покрытия или экструзионного ламинирования, т.е. для него необходимы совместно экструдированные связующие слои, которые обычно представляют собой очень дорогие полимеры. Кроме того, очень тонкие экструдированные слои охлаждаются чрезмерно быстро и не содержат достаточно тепловой энергии, чтобы выдерживать соответствующее ламинирование для соединения с прилегающими слоями.

Другие примеры полимерных связующих материалов, подходящие для жидкопленочного покрытия, представляют собой полисахариды, в частности крахмал или производные крахмала, в том числе предпочтительно окисленный крахмал, катионный крахмал и гидроксипропилированный крахмал. Примеры таких модификаций крахмала представляют собой окисленный гипохлоритом картофельный крахмал (Raisamyl 306 от фирмы Raisio), гидроксипропилированный кукурузный крахмал (Cerestar 05773). Однако также и другие формы и производные крахмала можно использовать в качестве связующих материалов для жидкопленочного покрытия.

Дополнительные примеры полимерных связующих материалов представляют собой покрытия, включающие смеси содержащих карбоксильные кислоты полимеров, в том числе полимеры на основе акриловой кислоты или метакриловой кислоты, и полимеры на основе многоатомных спиртов, в том числе PVOH или крахмал. Реакция сшивки данных полимерных связующих материалов является предпочтительной, как упомянуто выше, для придания устойчивости к высокой влажности.

Наиболее предпочтительно, однако, использовать в качестве связующего полимерного материала PVOH, потому что он обладает всеми перечисленными выше хорошими свойствами, т.е. помимо хорошей стойкости к индукционной термосварке, его отличают также хорошие пленкообразующие свойства, газобарьерные свойства, экономическая эффективность, совместимость с продуктами питания и свойства непроницаемости для запахов.

Газобарьерная композиция на основе PVOH функционирует лучше всего, когда PVOH имеет степень омыления, составляющую по меньшей мере 98%, предпочтительно по меньшей мере 99%, хотя также и менее высокие степени омыления PVOH обеспечивают хорошие свойства.

Чтобы дополнительно улучшить газобарьерные свойства, жидкая непроницаемая композиция может дополнительно включать неорганические частицы.

Полимерный связующий материал можно, например, смешивать с неорганическим соединением, которое имеет слоистую структуру или форму хлопьев. Благодаря слоистой структуре имеющих форму хлопьев неорганических частиц, молекула газообразного кислорода должна проходить более длинный и извилистый путь через кислородонепроницаемый слой, по сравнению с нормальным прямым путем через непроницаемый слой.

Согласно одному варианту осуществления, неорганическое слоистое соединение представляет собой так называемое соединение из наночастиц, диспергированное до состояния отслаивания, т.е. слои слоистого неорганического соединения отделяются друг от друга посредством жидкой среды. Таким образом, слоистое соединение предпочтительно может набухать или расщепляться за счет дисперсии или раствора полимера, который при диспергировании проникает в слоистую структуру неорганического материала. Он может также набухать за счет растворителя перед введением в раствор полимера или дисперсию полимера. Таким образом, неорганическое слоистое соединение диспергируется до расслоенного состояния в жидкой газобарьерной композиции и в высушенном непроницаемом слое. Термин «глинистые минералы» включает минералы следующих типов: каолинит, антигорит, смектит, вермикулит, бентонит или слюда, соответственно. В частности, лапонит, каолинит, дикит, накрит, галлуазит, антигорит, хризотил, пирофиллит, монтмориллонит, гекторит, сапонит, сауконит, слюда на основе тетрасиликата натрия, тениолит натрия, слюда обыкновенная, маргарит, вермикулит, флогопит, ксантофиллит и тому подобные можно упомянуть в качестве подходящих глинистых минералов. Предпочтительные наночастицы представляют собой частицы монтмориллонита, наиболее предпочтительно очищенного монтмориллонита или натрийзамещенного монтмориллонита (Na-MMT). Состоящее из наночастиц неорганическое слоистое соединение или глинистый минерал предпочтительно имеет соотношение размеров от 50 до 5000 и размер частиц до приблизительно 5 мкм в отслоенном состоянии.

Предпочтительно неорганические частицы состоят, главным образом, из таких частиц слоистого бентонита, которые имеют соотношение размеров от 50 до 5000.

Соответственно, непроницаемый слой включает от приблизительно 1 до приблизительно 40 мас.%, предпочтительнее от приблизительно 1 до приблизительно 30 мас.% и наиболее предпочтительно от приблизительно 5 до приблизительно 20 мас.%, неорганического слоистого соединения в расчете на массу сухого покрытия. Если данное количество является чрезмерно низким, газобарьерные свойства нанесенного и высушенного непроницаемого слоя не будут заметно улучшены по сравнению со случаем, когда неорганическое слоистое соединение не используют. Если данное количество является чрезмерно высоким, станет более затруднительным нанесение жидкой композиции в качестве покрытия и станет труднее содержать ее в резервуарах для хранения и трубопроводах системы нанесения покрытия. Непроницаемый слой включает предпочтительно от приблизительно 99 до приблизительно 60 мас.%, предпочтительнее от приблизительно 99 до приблизительно 70 мас.% и наиболее предпочтительно от приблизительно 95 до приблизительно 80 мас.% полимера в расчете на массу сухого покрытия. Добавку, в том числе стабилизатор дисперсии или подобное вещество, можно включать в газобарьерную композицию, предпочтительно в количестве, составляющем не более чем приблизительно 1 мас.% в расчете на массу сухого покрытия.

Согласно другому варианту осуществления, неорганические частицы состоят, главным образом, из слоистых частиц талька, которые имеют соотношение размеров от 10 до 500. Композиция, как правило, включает количество от 10 до 50 мас.%, предпочтительнее от 20 до 40 мас.% частиц талька в расчете на сухую массу. Ниже 20 мас.% отсутствует значительное усиление газобарьерных свойств, в то время как выше 50 мас.% нанесенный слой может быть более хрупким и ломким, потому что уменьшается внутреннее сцепление между частицами в слое. Выше 50 мас.% полимерный связующий материал оказывается в слишком малом количестве, чтобы окружать и диспергировать частицы и отслаивать их друг от друга в пределах слоя.

В качестве альтернативы, неожиданно хорошие свойства кислородонепроницаемости могут быть достигнуты, когда используют коллоидные частицы диоксида кремния, и размер частиц составляет 3-150 нм, предпочтительно 4-100 нм и даже предпочтительнее 5-70 нм, причем данные частицы являются предпочтительно аморфными и сферическими. Использование коллоидных частиц диоксида кремния, кроме того, имеет преимущество в том, что жидкую непроницаемую композицию можно наносить при содержании сухого вещества, составляющем 15-40 мас.%, предпочтительно 20-35 мас.% и даже предпочтительнее 24-31 мас.%, в результате чего уменьшается потребность в принудительной сушке.

Другие альтернативы неорганических частиц, которые можно использовать, представляют собой частицы каолина, слюды, карбоната кальция и т.д.

Предпочтительный полимерный связующий материал, также при использовании неорганических частиц для обеспечения свойств кислородонепроницаемости, представляет собой PVOH отчасти благодаря его полезным свойствам, упомянутым выше. Кроме того, PVOH является полезным с точки зрения перемешивания, т.е. его, как правило, легко диспергировать или отслаивать неорганические частицы в водном растворе PVOH, чтобы получать устойчивую смесь PVOH и частиц, таким образом, обеспечивая хорошее пленочное покрытие с однородным составом и морфологией.

Соответственно, газобарьерный покрывающий слой наносят в полном количестве, составляющем от 0,3 до 7 г/м2, предпочтительно от 0,5 до 5 г/м2, предпочтительнее от 0,5 до 3 г/м2 в расчете на сухую массу. Ниже 0,3 г/м2 эффект непроницаемости будет слишком слабым. Кроме того, может существовать риск образования отверстий малого диаметра, в зависимости от характеристик бумаги или подложки в связи с удалением воды или растворителя для сушки нанесенного непроницаемого слоя, если нанесенный слой является слишком тонким. С другой стороны, при полном содержании выше 5 г/м2 нанесенный слой не сделает экономически эффективным упаковочный ламинированный материал вследствие высокой стоимости полимеров в целом и вследствие высокого энергопотребления для испарения диспергирующей жидкости.

Кроме того, признанный уровень кислородонепроницаемости достигается при содержании PVOH, составляющем 0,5 г/м2 и выше, и хорошее равновесие между свойствами непроницаемости и затратами достигается в интервале от 0,5 до 3,5 г/м2.

Согласно одному варианту осуществления настоящего изобретения, непроницаемый по отношению к газообразному кислороду слой наносят в две последовательные стадии с промежуточной сушкой в виде слоя из двух частей. Нанесенный таким образом слой состоит из двух частей, причем каждую часть, соответственно, наносят в количестве от 0,3 до 3,5 г/м2, предпочтительно от 0,5 до 2,5 г/м2, обеспечивая более высокое качество всего слоя при меньшем количестве жидкой газобарьерной композиции. Состоящие из двух частей слои наносят в количестве, составляющем предпочтительно от 0,5 до 2 г/м2, предпочтительнее от 0,5 до 1,5 г/м2 для каждой части.

Нанесение слоя металлического покрытия из паровой фазы осуществляют посредством физического осаждения из паровой фазы (PVD) на тонкую бумажную подложку с покрытием. Тонкие металлические покрытия из паровой фазы согласно настоящему изобретению имеют нанометровую толщину, т.е. имеют толщину, которую удобнее всего выражать в нанометрах, например от 5 до 500 нм (от 50 до 5000 Å), предпочтительно от 5 до 200 нм, предпочтительнее от 5 до 100 нм и наиболее предпочтительно от 5 до 50 нм.

Как правило, ниже 5 нм свойства устойчивости к индукционному нагреванию могут оказаться недостаточными для применения, а выше 200 нм покрытие может оказаться недостаточно гибким и, таким образом, более склонным к образованию трещин при нанесении на гибкую подложку.

Обыкновенно такое осажденное из паровой фазы покрытие, обладающее устойчивостью к индукционному нагреванию, изготавливают из соединения металла, и предпочтительно нанесенный индукционной термосваркой из паровой фазы слой металлического покрытия представляет собой слой, практически состоящий из алюминия. Как правило, алюминиевый металлизированный слой по своей природе содержит тонкую поверхностную пленку, состоящую из оксида алюминия, что обусловлено характером используемого процесса нанесения металлизированного покрытия.

Соответственно, нанесенный слой металлического покрытия из паровой фазы имеет оптическую плотность (OD), составляющую от 1 до 5, предпочтительно от 1,5 до 3,5, предпочтительнее от 2 до 3.

Предпочтительно, металлическое покрытие, нанесенное из паровой фазы, включает главным образом, металлический алюминий.

Осажденный из паровой фазы слой на основе алюминия имеет толщину, составляющую предпочтительно от 5 до 100 нм, предпочтительнее от 5 до 50 нм, что соответствует менее чем 1% металлического алюминиевого материала, присутствующего в алюминиевой фольге традиционной толщины, т.е. 6,3 мкм.

Предпочтительно, стадию поверхностной обработки пленки подложки осуществляют перед осаждением покрытия из паровой фазы, в частности перед металлизацией подложки.

Наиболее предпочтительным металлом согласно настоящему изобретению является алюминий, хотя любой другой металл, который можно осаждать из вакуума в виде однородного покрытия, можно использовать согласно настоящему изобретению. Таким образом, менее предпочтительные и реже встречающиеся металлы, в том числе Au, Ag, Cr, Zn, Ti или Cu, также являются приемлемыми. Как правило, тонкие покрытия из металла или смеси металла и оксида металла обеспечивают свойства непроницаемости по отношению к водяному пару, и их также используют, когда желательной функцией является предотвращение миграции водяного пара в объем и сквозь ламинированную пленку или упаковочный ламинированный материал. Наиболее часто, однако, металл в металлизированном покрытии представляет собой алюминий (Al).

Чтобы сделать способ нанесения металлического покрытия из паровой фазы экономически эффективным, слой подложки, т.е. первый, самый внутренний, слой бумаги или другого материала на основе целлюлозы, должен быть тонким, насколько это возможно, чтобы максимально возможное количество метров содержалось в рулоне бумаги с покрытием. Первый бумажный слой имеет удельный вес предпочтительно от 20 до 100 г/м2, предпочтительно от 20 до 70 г/м2, предпочтительнее от 20 до 60 г/м2. Когда бумага является слишком тонкой, ее, естественно, будет труднее использовать в процессах последующего покрытия и ламинирования. Однако чем тоньше бумага, тем более экономически эффективной она может оказаться в процессе нанесения металлического покрытия из паровой фазы. С другой стороны, более толстый первый бумажный слой может способствовать более высокой жесткости и способности сцепления всей структуры упаковочного ламинированного материала, а также улучшению свойств светобарьерности.

Чтобы дополнительно придать ламинированному материалу достаточную жесткость и полную толщину или удельный вес, материал дополнительно включает второй, наиболее внешне расположенный слой бумаги или другого материала на основе целлюлозы, который имеет удельный вес от 20 до 100 г/м2, предпочтительно от 20 до 70 г/м2, предпочтительнее от 20 до 60 г/м2.

Традиционный ламинированный материал на основе алюминиевой фольги для производства подушкообразных гибких упаковок типа пакетов содержит, как правило, один центральный слой бумаги, удельный вес которого составляет от приблизительно 50 до приблизительно 140 г/м2, предпочтительно от приблизительно от 70 до приблизительно 120 г/м2, предпочтительнее от 70 до приблизительно 110 г/м2. Алюминиевую фольгу, которая также обеспечивает определенную степень жесткости в полной жесткости ламинированного материала, не используют в нефольгированных ламинированных материалах, поэтому ламинированную конструкцию с двумя бумажными слоями следует уравновешивать таким образом, чтобы создавать такой же уровень полной жесткости в ламинированном материале.

Согласно одному варианту осуществления, первый (внутренний) бумажный слой состоит из небеленой экономичной бумаги, в то время как второй (внешний) бумажный слой имеет повышенную белизну вследствие отбеливания или покрытия на основе глины по сравнению с первым бумажным слоем, и данный внешний бумажный слой, таким образом, лучше пригоден для печати внешнего декоративного слоя. Такое особое сочетание бумажных слоев в результате придает определенную желательную гибкость производству ламинированного упаковочного материала для упаковки жидкостей и выбору материалов соответствующим образом. В некоторых случаях может оказаться желательным придание бумаге более естественного внешнего вида и более бурого оттенка с наружной стороны, в результате чего небеленую бумагу можно также выбирать для второго (внешнего) бумажного слоя.

Согласно одному экономически эффективному и простому варианту осуществления ламинированного материала, промежуточный связующий слой представляет собой полученный экструзионным ламинированием слой термопластического полимера.

Согласно другому варианту осуществления, ламинированному материалу придает дополнительные свойства светобарьерности и жесткости промежуточный связующий слой, который представляет собой слой вспененного, наполненного или пустотного термопластического полимера.

Подходящие термопластические материалы для наиболее внешних и самых внутренних термосвариваемых непроницаемых для жидкости слоев представляют собой материалы на основе полиолефинов, в том числе, например, полиэтилены или полипропилены, предпочтительно полиэтилены и предпочтительнее полиэтилены низкой плотности, в том числе, например, LDPE, линейный LDPE (LLDPE) или полиэтилены, полученные полимеризацией на одноцентровом металлоценовом катализаторе (m-LLDPE), или смеси двух или более данных веществ.

Альтернативные примеры полиолефинов, подходящих для связующих слоев, экструзионно ламинируемых слоев или даже термосвариваемых слоев, представляют собой модифицированные полиолефины на основе сополимеров LDPE или LLDPE или, предпочтительно, привитые сополимеры с содержащими функциональные группы мономерными звеньями, включая карбоксильные или глицидильные функциональные группы, например мономеры (мет)акриловой кислоты или мономеры малеинового ангидрида (MAH), (т.е. сополимер этилена и акриловой кислоты (EAA) или сополимер этилена и метакриловой кислоты (EMAA)), сополимер этилена и глицидил(мет)акрилата (EG(M)A) или полиэтилен с привитым малеиновым ангидридом (MAH-g-PE). Другой пример таких модифицированных полимеров или связующих полимеров представляют собой так называемые иономеры или иономерные полимеры. Модифицированный полиолефин предпочтительно представляет собой сополимер этилена и акриловой кислоты (EAA) или сополимер этилена и метакриловой кислоты (EMAA).

Имеющий осажденное из паровой фазы покрытие первый бумажный слой можно присоединять ко второму бумажному или картонному слою посредством промежуточного полимерного слоя, предпочтительно термопластического полимерного слоя и предпочтительнее слоя из полимера, выбранного из полиолефинов и сополимеров на основе полиолефинов, часто известных в качестве модифицированных или связующих полимеров, в частности LDPE или полимеров или сополимеров на основе полиэтилена или связующих полимеров, как описано в предыдущем параграфе.

Чтобы дополнительно улучшить светобарьерность упаковочного ламинированного материала согласно настоящему изобре