Способ получения наночастиц платиновых металлов

Изобретение относится к области нанотехнологий и может быть использовано в медицине, фармацевтике, косметологии. Наночастицы платиновых металлов получают в прозрачной жидкости на водной основе 7 при разрушении мишени 6 из платинового металла или сплава кавитацией, возникающей путем доставки лазерного излучения 2, представленного в виде импульсов сфокусированного излучения лазера на парах меди 1 с величиной энергии импульса 1-5 мДж и длительностью импульса 20 нс, с частотой следования импульсов 10-15 кГц и плотностью мощности 5,7 ГВт/см2, через прозрачное дно кюветы 5 к мишени 6, помещенной в кювету 5 с прозрачной жидкостью на водной основе 7. Изобретение позволяет получать чистые наночастицы в виде чешуек с размером не более 200 нм без посторонних примесей. 1 ил., 3 пр.

Реферат

Изобретение относится к области нанотехнологий и может быть использовано в медицине, фармацевтике, косметологии.

Известен способ получения наночастиц платиновых металлов (патент №2333077, опубл. 2008), включающий в себя приготовление прямых или обратных мицелл с последующим восстановлением в них прекурсоров металлов. Перед приготовлением мицелл их концентрируют из водных растворов ионной флотацией или фотоэкстракцией с применением поверхностно-активных веществ (ПАВ) и углеводородов. Недостатком данного способа является необходимость отмывки спиртом полученных наночастиц от ПАВ.

Известен способ получения наночастиц платиновых металлов (патент №2344021, опубл. 2009), включающий в себя электрохимическое растворение сплава цветного и платинового металлов при контролируемом значении анодного потенциала от +0,1 до +1,2 В с получением наночастиц размером 1-15 нм. Недостатком данного способа является необходимость использования сторонних химических реагентов.

Известен способ получения наночастиц платиновых металлов (патент №2424051, опубл. 2011), включающий в себя электрохимическое взаимодействие платиновых электродов с раствором гидроксида щелочного металла концентрацией 2-6 моль/л при циклическом изменении полярности электродов с частотой 30-80 Гц при плотности тока 1 А/см2 и температуре 30-35°С. Недостатком данного способа является необходимость использования сторонних химических реагентов и поддерживание определенной температуры.

Техническим результатом заявляемого способа является получение чистых наночастиц с помощью инициирования механизма кавитации платиновых металлов и сплавов без посторонних примесей в виде чешуек с размером не более 200 нм.

Указанный технический результат достигается в процессе импульсного воздействия излучения лазера на парах меди на мишень из платиновых металлов или сплавов, помещенную в прозрачную жидкость. Продукты разрушения мишени представляют собой частицы в виде чешуек размером не более 200 нм. В качестве жидкости может быть использована любая прозрачная жидкость на водной основе: дистиллированная вода, вода с глицерином и вода с примесью этилового спирта.

Способ основан на кавитационном разрушении мишени платинового металла или сплава, вызванного воздействием импульсов лазера на парах меди на металл, размещенный в слое прозрачной жидкости. Последовательность физических процессов, сопровождающих взаимодействие импульсов лазерного излучения с металлической поверхностью, следующая:

1) материал прогревается до температуры 5000°C;

2) формируется парогазовый пузырь, состоящий из перегретой смеси металлического и водяного паров под давлением несколько атмосфер;

3) происходит конденсация паров и сжатие пузыря;

4) материал разрушается на ограниченной площади из-за механического воздействия.

Продукты эрозии представляют собой чешуйки материала в растворе жидкости размером не более 200 нм.

В качестве примера использован лазер на парах меди «Кулон-10» с параметрами:

- энергия импульса излучения - 1 мДж;

- длительность импульса излучения - 20 нс;

- частота следования импульсов - 15 кГц;

- фокусное расстояние фокусирующего объектива - 100 мм.

Для разрушения подбирается специальный так называемый «взрывной» режим воздействия лазерных импульсов.

Параметры лазерного излучения:

- длины волн излучения - 0,51 и 0,58 мкм;

- энергия импульса излучения - 1…5 мДж;

- плотность мощности - 5,7 ГВт/см2;

- длительность импульса излучения - 20 нс;

- частота следования импульсов - 10-15 кГц.

Схема установки представлена на чертеже. Луч 2 лазера 1 отражается зеркалом 3, проходит через линзу 4 и фокусируется на мишени из платинового металла или сплава 6, которая находится в прозрачной ванне 5, наполненной водой либо какой-нибудь другой жидкостью 7.

Пример 1. Платиновую мишень в виде пластины размером 10×10 мм и толщиной примерно 1 мм, помещенную в дистиллированную воду объемом около 40 см3, облучали около 3 минут при помощи лазера на парах меди серии «Кулон». В результате получился коллоидный раствор с частицами платины размером до 200 нм.

Пример 2. Палладиевую мишень в виде пластины размером 15×10 мм и толщиной примерно 1 мм, помещенную в воду с небольшим содержанием этилового спирта объемом около 40 см3, облучали около 3 минут при помощи лазера на парах меди серии «Кулон». В результате получился коллоидный раствор с частицами палладия размером до 200 нм.

Пример 3. Мишень из ювелирного сплава Pt900 (платинового сплава 900 пробы) размером 15×15 мм и толщиной примерно 1-1,5 мм, помещенную в воду с примесью глицерина объемом около 40 см3, облучали около 4 минут при помощи лазера на парах меди серии «Кулон». В результате получился коллоидный раствор с частицами платинового сплава размером до 200 нм.

Способ получения наночастиц платиновых металлов, отличающийся тем, что наночастицы образуются в прозрачной жидкости на водной основе при разрушении мишени из платинового металла или сплава кавитацией, возникающей путем доставки лазерного излучения, представленного в виде импульсов сфокусированного излучения лазера на парах меди с величиной энергии импульса 1-5 мДж и длительностью импульса 20 нс, с частотой следования импульсов 10-15 кГц и плотностью мощности 5,7 ГВт/см2, через прозрачное дно кюветы к мишени, помещенной в кювету с прозрачной жидкостью на водной основе.