Способ и пользовательское устройство для передачи информации обратной связи

Иллюстрации

Показать все

Изобретение относится к способу передачи информации обратной связи. Технический результат изобретения заключается в уменьшении задержки информации обратной связи. Согласно способу: выполняют пользовательским устройством (ПУ) расширение временной области для информации обратной связи в пределах одного подкадра; и распределяют данные, прошедшие указанное расширение временной области, и демодулированные опорные сигналы, соответствующие указанным данным, прошедшим расширение временной области, относительно нескольких восходящих символов SC-FDMA (Single Carrier-Frequency Division Multiple Access, способ множественного доступа с частотным разделением каналов на одной несущей) в пределах подкадра, и передают указанные данные, прошедшие расширение временной области, и демодулированные опорные сигналы, соответствующие указанным данным, прошедшим расширение временной области, в той же самой части частотной области при помощи мультиплексирования с временным разделением каналов; причем каждый восходящий символ SC-FDMA занимает n последовательных физических ресурсных блоков в указанной частотной области, где n - натуральное число. 4 н. и 16 з.п. ф-лы, 7 табл., 14 ил.

Реферат

Область техники

Настоящее изобретение относится к области мобильной радиосвязи, в частности к способу передачи информации обратной связи и пользовательскому устройству.

Уровень техники

Радиокадры в системах LTE (Long Term Evolution, долговременное развитие) содержат структуру кадра в режиме с частотным разделением каналов (FDD, Frequency Division Duplex) и структуру кадра в режиме с временным разделением каналов (TDD, Time Division Duplex). Как показано на фиг.1, в структуре кадра FDD режима один радиокадр длиной 10 мс состоит из 20 временных интервалов длительностью 0,5 мс, пронумерованных от 0 до 19, причем слоты 2i и 2i+1 составляют подкадр i длительностью 1 мс (при 0≤i≤9). Как показано на фиг.2, в структуре кадра TDD режима один радиокадр длиной 10 мс состоит из двух полукадров длительностью 5 мс, причем в одном полукадре содержатся 5 подкадров длительностью 1 мс, а подкадр i определяется как комбинация двух слотов 2i и 2i+1 длительностью 0,5 мс (при 0≤i≤9). При использовании обычного циклического префикса (обычный CP, Cyclic Prefix) в вышеописанных структурах кадра в одном слоте содержатся семь символов длиной 66,7 мкс, причем длина циклического префикса первого символа составляет 5,21 мкс, а длина циклического префикса для остальных шести символов составляет 4,69 мкс; при использовании увеличенного циклического префикса (увеличенный CP) в одном слоте содержатся шесть символов, а длина циклического префикса каждого символа составляет 16,67 мкс.

В таблице 1 показаны конфигурации восходящей и нисходящей передачи, поддерживаемые каждым подкадром. Причем символ «D» означает подкадр, используемый исключительно для нисходящей передачи, символ «U» означает подкадр, используемый исключительно для восходящей передачи, а символ «S» означает специальный подкадр, используемый для 3 временных интервалов: временного слота нисходящего пилотного сигнала (DwPTS, Downlink Pilot Time Slot), защитного интервала (GP, Guard Period) и временного слота восходящего пилотного сигнала (UpPTS, Uplink Pilot Time Slot).

Таблица 1
Схематическая таблица восходящих и нисходящих конфигураций, поддерживаемых каждым подкадром
Восходящие и нисходящие конфигурации Восходящий-нисходящий период переключения Номер подкадра №
0 1 2 3 4 5 6 7 8 9
0 5 мс D S U U U D S U U U
1 5 мс D S U U D D S U U D
2 5 мс D S U D D D S U D D
3 10 мс D S U U U D D D D D
4 10 мс D S U U D D D D D D
5 10 мс D S U D D D D D D D
6 5 мс D S U U U D S U U D

Из вышеприведенной таблицы можно увидеть, что режим TDD систем LTE поддерживает 5 мс период переключения восходящей и нисходящей связи и 10 мс период переключения восходящей и нисходящей связи. Если период переключения восходящей и нисходящей связи составляет 5 мс, то специальный подкадр будет существовать в двух полукадрах, а если период переключения восходящей и нисходящей связи составляет 10 мс, то специальный подкадр существует только в первом полукадре; для нисходящей передачи всегда используются подкадр 0, подкадр 5 и DwPTS, а для восходящей передачи используются исключительно UpPTS и подкадры, следующие сразу за специальными подкадрами.

Система LTE для восходящего канала использует способ множественного доступа с частотным разделением каналов на одной несущей (SC-FDMA, Single Carrier-Frequency Division Multiple Access), а символ восходящего временного интервала является восходящим символом SC-FDMA. Форматы физического восходящего управляющего: канала (PUCCH, Physical Uplink Control Channel) делятся на шесть форматов: формат 1, формат 1a, формат 1b, формат 2, формат 2a и формат 2b, при этом могут быть переданы по большей мере 15 бит исходной информации. Каждый канал PUCCH занимает ресурсы двух физических ресурсных блоков в одном подкадре, а также занимает ресурсы одного физического ресурсного блока в одном слоте.

Для того чтобы удовлетворить требования сектора усовершенствования Международного союза электросвязи (ITU-Advanced, International Telecommunication Union-Advanced), система LTE-A (Long Term Evolution Advanced, усовершенствованная технология долговременного развития) в качестве усовершенствованного стандарта технологии LTE требует поддержки более широкой полосы (до 100 МГц) и требует обратной совместимости с существующим стандартом LTE. На основании существующей системы LTE полосы пропускания системы LTE могут быть объединены для получения более широкой полосы пропускания. Такая технология носит название технологии объединения несущих (СА, Carrier Aggregation). Эта технология может улучшить эффективность использования спектра усовершенствованной системы международной мобильной связи (IMT-Advanced, International Mobile Telecommunications-Advanced) и уменьшить недостаток ресурсов спектра, тем самым оптимизируя использование ресурсов спектра. Полосы пропускания системы LTE агрегации несущих могут рассматриваться как компонентные несущие (СС, Component Carriers), а каждая компонентная несущая также может называться интервалом, и она может быть образована объединением n интервалов (компонентных несущих). Ресурсы пользовательского оборудования R10 состоят из n интервалов (компонентных несущих) частотной области, причем один интервал называется первичным интервалом, а каждый из остальных интервалов называется вторичным интервалом.

В системе LTE-A вводится формат, основанный на мультиплексировании с ортогональным частотным разделением каналов и расширением спектра дискретным преобразованием Фурье (DFT-S-OFDM, Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing), который применяют для поддержки выполнения пользовательским устройством с более чем 4 битами обратной связи в виде подтверждение/отсутствие подтверждения (ACK/NACK, ACKnowledgement/Non-ACKnowledgement) сообщений, этот новый формат, основанный на процессе DFT-S-OFDM, называется форматом 3 управляющего канала, а формат 3 канала PUCCH применяет шифрование Рида-Маллера (32, O), известное из области техники (т.е. способ шифрования RM (32, O)), и могут быть переданы не более чем 11 бит информации.

В системе TDD один восходящий подкадр будет соответствовать нескольким нисходящим подкадрам, а каждый нисходящий подкадр имеет n интервалов, как показано на фиг.3. В соответствии с различными режимами передачи каждый интервал для передачи может иметь один передаточный блок, но также может иметь для передачи и два передаточных блока. Благодаря объединению несущих, когда один подкадр соответствует нескольким интервалам в частотной области, требуется, чтобы пользовательское устройство выполняло обратную связь в виде информации о нисходящем канале указанных нескольких интервалов. В настоящее время, так как емкость в битах информации обратной связи канала PUCCH ограничена, оно не может выполнять одновременную обратную связь в виде информации о нескольких интервалах соответствующего нисходящего канала в одном канале PUCCH, следовательно, необходимо размещать ее в различных подкадрах для выполнения передачи, и это будет вызывать более долгую задержку информации обратной связи, что вступает в противоречие с нисходящим динамическим графиком базовой станции и оказывает влияние на характеристики системы.

Раскрытие изобретения

Основной объект настоящего изобретения состоит в обеспечении способа передачи информации обратной связи и пользовательского устройства (ПУ) для того, чтобы преодолеть недостаток, состоящий в том, что пользовательское устройство не может выполнять одновременную обратную связь в виде информации о нескольких интервалах соответствующего нисходящего канала в одном физическом восходящем управляющем канале (PUCCH), и известный из уровня техники.

Для того чтобы решить вышеуказанную проблему, настоящее изобретение обеспечивает способ передачи информации обратной связи, согласно которому:

выполняют пользовательским устройством (ПУ) расширение временной области для информации обратной связи в пределах одного подкадра; и

распределяют данные, прошедшие указанное расширение временной области, и демодулированные опорные сигналы, соответствующие указанным данным, прошедшим расширение временной области, относительно нескольких восходящих символов SC-FDMA (Single Carrier-Frequency Division Multiple Access, множественный доступ с частотным разделением каналов на одной несущей) в пределах подкадра, и передают указанные данные, прошедшие расширение временной области, и демодулированные опорные сигналы, соответствующие указанным данным, прошедшим расширение временной области, в той же самой части частотной области при помощи способа мультиплексирования с временным разделением;

причем каждый восходящий символ SC-FDMA занимает n последовательных физических ресурсных блоков в указанной частотной области, где n - натуральное число.

В вышеописанном способе согласно этапу выполнения расширения временной области для информации обратной связи: выполняют шифрование, скремблирование и/или чередование и модуляцию информации обратной связи, и затем выполняют дискретное преобразование Фурье для данных, прошедших шифрование, скремблирование и/или чередование и модуляцию, при этом порядок прохождения шифрования, скремблирования, чередования и модуляции является произвольным.

В вышеописанном способе согласно этапу выполнения шифрования информации обратной связи: прежде всего, разделяют O бит информации обратной связи на Y групп, а затем шифруют каждую группу данных соответственно, шифрование представляет собой шифрование RM (32, O) или сверточное шифрование; причем, если длина i-ой группы шифрованных данных составляет Zi после шифрования, то ∑ i = 0 Y − 1 Z i = n × L × Q × 2 или ∑ i = 0 Y − 1 Z i = n × L × Q , где Q - количество бит, соответствующих одному модулированному символу, L - количество поднесущих, содержащихся в одном физическом ресурсном блоке, а Y - натуральное число.

В вышеописанном способе согласно этапу выполнения расширения временной области для информации обратной связи в пределах одного подкадра:

объединяют по порядку все группы зашифрованной информации обратной связи пользовательским устройством, или чередуют все группы зашифрованной информации обратной связи, или чередуют все группы зашифрованной информации обратной связи по блокам; или после соответствующего выполнения операций скремблирования и модуляции каждой группы зашифрованной информации обратной связи объединяют пользовательским устройством все группы символов, полученные после модуляции, причем объединение представляет собой объединение по порядку или чередование.

В вышеописанном способе согласно этапу разделения О бит информации обратной связи на Y групп: начинают с первого бита в последовательности, состоящей из информации обратной связи, выполняют разделение на Y групп по порядку, за исключением последней группы, в каждой группе содержатся ⌊ O Y ⌋ бит, а количество бит, содержащихся в последней группе больше или равно ⌊ O Y ⌋ бит; выполняют операцию по модулю между положением, в котором расположен каждый бит в указанной последовательности, состоящей из информации обратной связи, и Y, и распределяют биты с одинаковыми значениями модулей в группу; или, когда информация обратной связи является информацией о состоянии канала, распределяют биты, представляющие информацию обратной связи, соответствующую каждому интервалу, в группу соответственно; или начиная с первого бита в указанной последовательности, состоящей из информации обратной связи, выполняют разделение на Y групп по порядку, причем количество бит, содержащихся в каждой группе из O mod Y групп составляет, ⌊ O Y ⌋ + 1 , а количество бит, содержащихся в каждой группе из оставшихся Y-(O mod Y) групп составляет ⌊ O Y ⌋ .

В вышеописанном способе чередование состоит в выполнении чередования данных, подлежащих чередованию, в соответствии с установленной последовательностью, или в выполнении чередования данных, подлежащих чередованию, в соответствии с матрицей построчной записи и поколоночного чтения, или в выполнении чередования в соответствии со способом блочного чередования.

В вышеописанном способе согласно этапу выполнения дискретного преобразования Фурье для данных, прошедших шифрование, скремблирование и/или чередование и модуляцию: выполняют дискретное преобразование Фурье для всех данных в указанной временной области или выполняют дискретное преобразование Фурье для данных, переносимых посредством каждого физического ресурсного блока указанной временной области соответственно.

В вышеописанном способе последовательность демодулированных опорных сигналов состоит из последовательности длиной n×L; или последовательность демодулированных опорных сигналов состоит из n последовательностей длиной L, где L - количество поднесущих, содержащихся в одном физическом ресурсном блоке.

В вышеописанном способе указанная последовательность представляет собой последовательность Задова-Чу (ЗЧ) или последовательность ЗЧ, полученную на компьютере.

В вышеописанном способе, когда общая полоса пропускания составляет N, а нумерация индексов ресурсных блоков начинается с 0, то в случае если индекс физического ресурсного блока, занятого восходящим символом SC-FDMA в пределах первого временного слота в подкадре, составляет m, то индекс физического ресурсного блока, занятого восходящим символом SC-FDMA в пределах второго временного слота в подкадре, составляет N-1-m или m.

В вышеописанном способе, когда h восходящих символов SC-FDMA содержатся в одном временном слоте, то согласно этапу распределения данных, прошедших расширение временной области, и демодулированных опорных сигналов, соответствующих указанным данным, прошедшим расширение временной области, относительно нескольких восходящих символов SC-FDMA в пределах подкадра: распределяют данные, прошедшие расширение временной области, относительно ƒ восходящих символов SC-FDMA в пределах каждого временного слота в подкадре, и распределяют демодулированные опорные сигналы, соответствующие указанным данным, прошедшим расширение временной области, относительно других g восходящих символов SC-FDMA в пределах каждого временного слота в подкадре; или распределяют части указанных данных, прошедших расширение временной области, относительно ƒ восходящих символов SC-FDMA в пределах первого временного слота в подкадре, распределяют другую часть указанных данных относительно ƒ восходящих символов SC-FDMA в пределах второго временного слота в подкадре и распределяют демодулированные опорные сигналы, соответствующие всем частям распределенных данных, соответственно, относительно других g восходящих символов SC-FDMA в пределах соответствующих временных слотов в подкадре; причем h=ƒ+g, а ƒ представляет собой длину расширенной последовательности временной области.

В вышеописанном способе, когда во временных слотах используют обычный циклический префикс, то h=7, ƒ=5 и g=2; а когда во временных слотах используют увеличенный циклический префикс, то h=6, ƒ=S и g=1.

В вышеописанном способе информация обратной связи содержит любую одну или любую комбинацию из следующего: подтверждение/отсутствие подтверждения (ACK/NACK) информации, информацию о состоянии канала, информацию об индикации ранга и информацию о графике запросов.

Для того чтобы решить вышеуказанную проблему, настоящее изобретение дополнительно обеспечивает способ передачи информации обратной связи, согласно которому:

после разделения пользовательским устройством информации обратной связи на n групп, передают каждую группу данных соответственно по одному физическому восходящему управляющему каналу (PUCCH), формат которых представляет собой PUCCH формат 2 или PUCCH формат 3; причем n равно 2, а канал PUCCH несет указанные данные, занимающие один и тот же физический ресурсный блок или смежные физические ресурсные блоки в частотной области.

В вышеописанном способе согласно этапу разделения пользовательским устройством информации обратной связи на n групп: начиная с первого бита в последовательности, состоящей из O бит информации обратной связи, исполняют разделение n групп по порядку, исключая последнюю группу, в каждой группе содержится ⌊ O n ⌋ бит, а количество бит, содержащихся в последней группе, равно или больше ⌊ O n ⌋ бит; или исполняют операцию по модулю между положением, в котором расположен каждый бит в указанной последовательности, состоящей из информации обратной связи, и n, и распределяют биты с одинаковыми значениями модуля по группам; или, когда информация обратной связи является информацией о состоянии канала, распределяют биты, представляющие информацию обратной связи, соответствующую каждому интервалу, по группам соответственно; или начиная с первого бита в указанной последовательности, состоящей из информации обратной связи, выполняют разделение на Y групп по порядку, причем количество бит, содержащихся в каждой группе из O mod n групп составляет ⌊ O n ⌋ + 1 , а количество бит, содержащихся в каждой группе из оставшихся n-(O mod n) групп составляет ⌊ O n ⌋ .

В вышеописанном способе информация обратной связи содержит любую одну или любую комбинацию из следующего: подтверждение/ отсутствие подтверждения (ACK/NACK) информации, информацию о состоянии канала, информацию об индикации ранга и информацию о графике запросов.

Для того чтобы решить вышеуказанную проблему, настоящее изобретение также обеспечивает пользовательское устройство, содержащее: расширяющий временную область модуль и передающий данные модуль; причем:

расширяющий временную область модуль выполнен с возможностью выполнения расширения временной области для информации обратной связи в пределах одного подкадра;

передающий данные модуль выполнен с возможностью распределения расширенных данных, полученных при помощи расширяющего временную область модуля, и демодулированных опорных сигналов, соответствующих указанным расширенным данным, относительно нескольких восходящих SC-FDMA сигналов в пределах указанного подкадра, и возможностью передачи указанных расширенных данных и указанных демоделированных сигналов, соответствующих указанным расширенным данным, в той же самой части частотной области при помощи мультиплексирования с временным разделением каналов; причем каждый восходящий символ SC-FDMA занимает n последовательных физических ресурсных блоков в частотной области, где n - натуральное число.

В вышеописанном пользовательском устройстве расширяющий временную область модуль выполнен с возможностью выполнения расширения временной области для информации обратной связи в пределах одного подкадра следующим способом: выполняют шифрование, скремблирование и/или чередование и модуляцию информации обратной связи и выполняют дискретное преобразование Фурье для данных, прошедших вышеуказанную обработку, причем порядок прохождения шифрования, скремблирования, чередования и модуляции является произвольным.

Для того чтобы решить вышеописанную проблему, настоящее изобретение также обеспечивает пользовательское устройство, содержащее: разделяющий на группы модуль и передающий модуль; причем

разделяющий на группы модуль выполнен с возможностью разделения информации обратной связи на n групп;

передающий модуль выполнен с возможностью передачи каждой группы данных соответственно по одному физическому восходящему управляющему каналу (PUCCH), формат которых представляет собой PUCCH формат 2 или PUCCH формат 3; причем n равно 2, а канал PUCCH несет указанные данные, занимающие один и тот же физический ресурсный блок или смежные физические ресурсные блоки в частотной области.

В вышеописанном пользовательском устройстве разделяющий на группы модуль модуль выполнен с возможностью разделения информации обратной связи на n групп следующим способом:

начиная с первого бита в последовательности, состоящей из O бит информации обратной связи, выполняют разделение n групп по порядку, исключают последнюю группу, в каждой группе содержится ⌊ O n ⌋ бит, а количество бит, содержащихся в последней группе, равно или больше ⌊ O n ⌋ бит; или выполняют операцию по модулю между положением, в котором расположен каждый бит в указанной последовательности, состоящей из информации обратной связи, и n, и распределяют биты с одинаковыми значениями модуля по группам; или, когда информация обратной связи является информацией о состоянии канала, распределяют биты, представляющие информацию обратной связи, соответствующую каждому интервалу, по группам соответственно;

или начиная с первого бита в указанной последовательности, состоящей из информации обратной связи, выполняют разделение на n групп по порядку, причем количество бит, содержащихся в каждой группе из O mod n групп, составляет ⌊ O n ⌋ + 1 , а количество бит, содержащихся в каждой группе из оставшихся n-(O mod n) групп составляет ⌊ O n ⌋ .

В настоящем изобретении количество бит информации обратной связи пользовательского устройства увеличено, что увеличивает емкость восходящей обратной связи, обеспечивает максимальную пропускную способность указанной системы и уменьшает задержку обратной связи для информации о нисходящем канале.

Краткое описание чертежей

Фиг.1 представляет собой схематическую диаграмму структуры кадра в FDD системе из области техники.

Фиг.2 представляет собой схематическую диаграмму структуры кадра в TDD системе из области техники.

Фиг.3 представляет собой схематическую диаграмму нисходящего распределительного окна, соответствующего одному восходящему подкадру в сценарии объединения несущих из области техники.

Фиг.4a и 4b представляют собой схематические диаграммы структур канала для PUCCH формата X для случаев обычного циклического префикса и увеличенного циклического префикса соответственно, когда n=2.

Фиг.5 представляет собой схематическую диаграмму сверточного кода с задаваемой концевой комбинацией бит в примере настоящего изобретения.

Фиг.6a и 6b представляют собой схематические диаграммы структур канала для PUCCH формата X для случаев обычного циклического префикса и увеличенного циклического префикса соответственно, когда n=3.

Фиг.7a и 7b представляют собой схематические диаграммы структур канала для PUCCH формата X для случаев обычного циклического префикса и увеличенного циклического префикса соответственно, когда n=1.

Фиг.8a, 8b и 8c представляют собой схематические диаграммы процессов шифрования, модуляции и распределения для PUCCH формата X, когда n=1.

Фиг.9 представляет собой блок-схему способа передачи информации обратной связи в соответствии с примером осуществления настоящего изобретения.

Осуществление изобретения

Для того чтобы сделать объект, техническую схему и преимущества настоящего изобретения более понятными, ниже будут подробно описаны примеры осуществления настоящего изобретения в комбинации с сопутствующими чертежами. Следует отметить, что примеры осуществления настоящего изобретения и характеристики в указанных примерах могут опционально комбинироваться друг с другом в условиях отсутствия конфликта.

Способ передачи информации обратной связи в соответствии с примером осуществления настоящего изобретения показан на фиг.9 и включает:

выполнение пользовательским устройством (ПУ) расширения временной области для информации обратной связи в пределах одного подкадра; причем информация обратной связи содержит любую одну или любую комбинацию из следующего: подтверждение/отсутствие подтверждения (ACK/NACK. ACKnowledgement/Non-ACPCnowledgement) информации, информацию о состоянии канала, информацию о указании на ранг и информацию о графике запросов; а количество бит, содержащихся в указанной информации обратной связи, может быть определено в соответствии с восходящими и нисходящими конфигурациями временных слотов, интервалов, сконфигурированных для пользовательского устройства, и соответствующих режимов передачи;

распределение данных, прошедших указанное расширение временной области и демодулированных опорных сигналов, соответствующих указанным данным, прошедших расширение временной области, относительно нескольких восходящих символов SC-FDMA в пределах подкадра, и передачу указанных данных, прошедших расширение временной области, и демодулированных опорных сигналов, соответствующих указанным данным, прошедшим расширение временной области, в той же самой части частотной области при помощи мультиплексирования с временным разделением каналов; причем каждый восходящий символ SC-FDMA занимает n последовательных физических ресурсных блоков в указанной частотной области, где n - натуральное число; последовательность демодулированных опорных сигналов может состоять из последовательности Задова-Чу (ЗЧ), полученной на компьютере (CG-ZC), или последовательности ЗЧ (ZC) длиной n×L (как показано в таблице 2, таблице 3a и таблице 3b), а также может состоять из n последовательностей CG-ZC или n последовательностей ZC длиной L, причем L представляет собой количество поднесущих, содержащихся в одном физическом ресурсном блоке.

Таблица 2
30 последовательностей CG-ZC длиной 12
u φ(0),…, φ(11)
0 -1 1 3 -3 3 3 1 1 3 1 -3 3
1 1 1 3 3 3 -1 1 -3 -3 1 -3 3
2 1 1 -3 -3 -3 -1 -3 -3 1 -3 1 -1
3 -1 1 1 1 1 -1 -3 -3 1 -3 3 -1
4 -1 3 1 -1 1 -1 -3 -1 1 -1 1 3
5 1 -3 3 -1 -1 1 1 -1 -1 3 -3 1
6 -1 3 -3 -3 -3 3 1 -1 3 3 -3 1
7 -3 -1 -1 -1 1 -3 3 -1 1 -3 3 1
8 1 -3 3 1 -1 -1 -1 1 1 3 -1 1
9 1 -3 -1 3 3 -1 -3 1 1 1 1 1
10 -1 3 -1 1 1 -3 -3 -1 -3 -3 3 -1
11 3 1 -1 -1 3 3 -3 1 3 1 3 3
12 1 -3 1 1 -3 1 1 1 -3 -3 -3 1
13 3 3 -3 3 -3 1 1 3 -1 -3 3 3
14 -3 1 -1 -3 -1 3 1 3 3 3 -1 1
15 3 -1 1 -3 -1 -1 1 1 3 1 -1 -3
16 1 3 1 -1 1 3 3 3 -1 -1 3 -1
17 -3 1 1 3 -3 3 -3 -3 3 1 3 -1
18 -3 3 1 1 -3 1 -3 -3 -1 -1 1 -3
19 -1 3 1 3 1 -1 -1 3 -3 -1 -3 -1
20 -1 -3 1 1 1 1 3 1 -1 1 -3 -1
21 -1 3 -1 1 -3 -3 -3 -3 -3 1 -1 -3
22 1 1 -3 -3 -3 -3 -1 3 -3 1 -3 3
23 1 1 -1 -3 -1 -3 1 -1 1 3 -1 1
24 1 1 3 1 3 3 -1 1 -1 -3 -3 1
25 1 -3 3 3 1 3 3 1 -3 -1 -1 3
26 1 3 -3 -3 3 -3 1 -1 -1 3 -1 -3
27 -3 -1 -3 -1 -3 3 1 -1 1 3 -3 -3
28 -1 3 -3 3 -1 3 3 -3 3 3 -1 -1
29 3 -3 -3 -1 -1 -3 -1 3 -3 3 1 -1
Таблица 3a
Значения первых 12-ти бит в 30 последовательностях CG-ZC длиной 24
u φ(0),…, φ(11)
0 -1 3 1 -3 3 -1 1 3 -3 3 1 3
1 -3 3 -3 -3 -3 1 -3 -3 3 -1 1 1
2 3 -1 3 3 1 1 -3 3 3 3 3 1
3 -1 -3 1 1 3 -3 1 1 -3 -1 -1 1
4 -1 -1 -1 -3 -3 -1 1 1 3 3 -1 3
5 -3 1 1 3 -1 1 3 1 -3 1 -3 1
6 1 1 -1 -1 3 -3 -3 3 -3 1 -1 -1
7 -3 3 3 -1 -1 -3 -1 3 1 3 1 3
8 -3 1 3 -3 1 -1 -3 3 -3 3 -1 -1
9 1 1 -3 3 3 -1 -3 -1 3 -3 3 3
10 -1 1 -3 -3 3 -1 3 -1 -1 -3 -3 -3
11 1 3 3 -3 -3 1 3 1 -1 -3 -3 -3
12 1 3 3 1 1 1 -1 -1 1 -3 3 -1
13 3 -1 -1 -1 -1 -3 -1 3 3 1 -1 1
14 -3 -3 3 1 3 1 -3 3 1 3 1 1
15 -1 -1 1 -3 1 3 -3 1 -1 -3 -1 3
16 -1 -3 3 -1 -1 -1 -1 1 1 -3 3 1
17 1 3 -1 3 3 -1 -3 1 -1 -3 3 3
18 1 1 1 1 1 -1 3 -1 -3 1 1 3
19 1 3 3 1 -1 -3 3 -1 3 3 3 -3
20 -1 -3 3 -3 -3 -3 -1 -1 -3 -1 -3 3
21 -3 -3 1 1 -1 1 -1 1 -1 3 1 -3
.22 -3 -1 -3 3 1 -1 -3 -1 -3 -3 3 -3
23 -1 -1 -1 -1 3 3 3 1 3 3 -3 1
24 1 -1 3 3 -1 -3 3 -3 -1 -1 3 -1
25 1 -1 1 -1 3 -1 3 1 1 -1 -1 -3
26 -3 -1 1 3 1 1 -3 -1 -1 -3 3 -3
27 -1 -3 3 3 1 1 3 -1 -3 -1 -1 -1
28 -1 -3 -1 -1 1 -3 -1 -1 1 -1 -3 1
29 1 1 -1 -1 -3 -1 3 -1 3 -1 1 3
Таблица 3b
Значения последних 12-ти бит в 30 последовательностях CG-ZC длиной 24
u φ(12),…, φ(23)
0 -3 3 1 1 -1 1 3 -3 3 -3 -1 -3
1 1 3 1 -1 3 -3 -3 1 3 1 1 -3
2 -1 3 -1 1 1 -1 -3 -1 -1 1 3 3
3 3 1 3 1 -1 3 1 1 -3 -1 -3 -1
4 -1 1 -1 -3 1 -1 -3 -3 1 -3 -1 -1
5 1 -1 -1 3 -1 -3 3 -3 -3 -3 1 1
6 1 -1 1 1 -1 -3 -1 1 -1 3 -1 -3
7 1 1 -1 3 1 -1 1 3 -3 -1 -1 1
8 -1 -1 1 -3 -3 -3 1 -3 -3 -3 1 -3
9 3 -1 1 1 -3 1 -1 1 1 -3 1 1
10 -1 -3 -3 1 -1 1 3 3 -1 1 -1 3
11 3 3 -3 3 3 -1 -3 3 -1 1 -3 1
12 1 1 -3 3 3 -1 -3 3 -3 -1 -3 -1
13 3 3 3 -1 1 1 -3 1 3 -1 -3 3
14 3 3 -1 -1 -3 1 -3 -1 3 1 1 3
15 1 3 1 -1 -3 -3 -1 -1 -3 -3 -3 -1
16 3 3 1 -1 1 -3 1 -3 1 1 -3 -1
17 3 -1 1 1 3 -1 -3 -1 3 -1 -1 -1
18 -3 1 -3 -1 1 1 -3 -3 3 1 1 -3
19 1 -1 1 -1 -3 -1 1 3 -1 3 -3 -3
20 1 3 -3 -1 3 -1 1 -1 3 -3 1 -1
21 -1 1 -1 1 -1 -1 3 3 -3 -1 1 -3
22 3 -3 -1 1 3 1 -3 1 3 3 -1 -3
23 3 -1 3 -1 3 3 -3 3 1 -1 3 3
24 3 -1 -1 1 1 1 1 -1 -1 -3 -1 3
25 1 1 -3 1 3 -3 1 1 -3 -3 -1 -1
26 3 1 -3 3 -3 1 -1 1 -3 1 1 1
27 3 1 -3 -3 -1 3 -3 -1 -3 -1 -3 -1
28 1 -3 1 -3 -3 3 1 1 -1 3 -1 -1
29 1 -1 3 1 3 -3 -3 1 -1 -1 1 3

Предполагается, что общая полоса пропускания составляет N, нумерация индексов ресурсных блоков начинается с 0, в случае если индекс физического ресурсного блока, занятого восходящим символом SC-FDMA в пределах первого временного слота в подкадре, составляет m, то индекс физического ресурсного блока, занятого восходящим символом SC-FDMA в пределах второго временного слота в подкадре, составляет либо N-1-m, либо m. Информация о ресурсах канала может быть настроена на пользовательское устройство посредством сигнализации п