Способы, обеспечивающие синхронизацию сигналов, и соответствующие сети и устройства

Иллюстрации

Показать все

Изобретение относится к радиосвязи. Техническим результатом является снижение энергопотребления. Способ обеспечения синхронизации сигналов для сети радиодоступа может включать в себя этап, на котором передают первую несущую, включающую в себя сигналы синхронизации, на первой частоте из сети радиодоступа. Информация, связывающая первую несущую на первой частоте со второй несущей на второй частоте, может передаваться из сети радиодоступа, причем эта информация предназначена для использования беспроводным терминалом при синхронизации после добавления второй несущей. Более конкретно, первая и вторая частоты могут отличаться. Команда добавить вторую несущую в качестве несущей нисходящей линии связи для передач может быть передана на беспроводной терминал. Также описываются соответствующие сетевые узлы и беспроводные терминалы. 6 н. и 24 з.п. ф-лы, 17 ил.

Реферат

Предпосылки изобретения

[0001] В типичной сотовой системе радиосвязи беспроводные терминалы (также известные как мобильные станции и/или пользовательские устройства (UE)) осуществляют связь через сеть радиодоступа (RAN) с одной или более базовыми сетями. Пользовательские устройства могут включать в себя мобильные телефоны (“сотовые” телефоны) и/или другие устройства обработки данных с возможностью беспроводной связи, такие как, например, портативные, карманные, наладонные, дорожные компьютеры, которые обмениваются речью и/или данными с RAN.

[0002] RAN охватывает географическую область, которая поделена на сотовые зоны, где каждая сотовая зона обслуживается базовой станцией, например базовой радиостанцией (RBS), которая в некоторых сетях также называется "NodeB" ("УзелВ") или усовершенствованный NodeB "eNodeB", аббревиатурой которого является "eNB". Сотовая зона представляет собой географическую область, где радиопокрытие обеспечивается оборудованием базовой станции на площадке базовой станции. Базовые станции осуществляют связь через радио(Air)интерфейс, работающий на радиочастотах с пользовательскими устройствами, находящихся в пределах дальности обслуживания базовых станций.

[0003] В некоторых вариантах сети радиодоступа некоторые базовые станции в типичном случае соединены (например, посредством наземных линий или микроволн) с контроллером радиосети (RNC). Контроллер радиосети, также иногда именуемый контроллером базовых станций (BSC), контролирует и координирует различные действия множества подсоединенных к нему базовых станций. Контроллеры радиосети в типичном случае подсоединены к одной или более базовым сетям.

[0004] Универсальная система мобильной связи (UMTS) является системой мобильной связи третьего поколения, которая является развитием Глобальной системы мобильной связи (GSM) и назначением которой является предоставление улучшенных услуг мобильной связи на основе технологии доступа, соответствующей широкополосному множественному доступу с кодовым разделением каналов (WCDMA). UTRAN, что является сокращением для наземной сети радиодоступа UMTS, является обобщающим понятием для узлов NodeB и контроллеров радиосети, которые составляют сеть радиодоступа UMTS. Таким образом, UTRAN по сути представляет собой сеть радиодоступа, использующую широкополосный множественный доступ с кодовым разделением каналов для пользовательских устройств.

[0005] В рамках Проекта партнерства в области систем связи третьего поколения (3GPP) было принято решение о дальнейшем развитии технологий сети радиодоступа, основывающихся на UTRAN и GSM. В этом отношении на текущий момент разрабатываются спецификации для усовершенствованной универсальной наземной сети радиодоступа (E-UTRAN) в рамках 3GPP. Усовершенствованная универсальная наземная сеть радиодоступа (E-UTRAN) содержит Долгосрочное развитие (LTE) и Развитие системной архитектуры (SAE).

[0006] Фиг. 1 представляет собой упрощенную схему RAN 100 согласно Долгосрочному развитию (LTE). RAN 100 LTE представляет собой вариант RAN 3GPP, где узлы базовых радиостанций (eNodeB) напрямую подсоединены к базовой сети 130, а не к узлам контроллеров радиосети (RNC). В общем случае в LTE функции узла контроллера радиосети (RNC) выполняются узлами базовых радиостанций. Каждый из узлов базовых радиостанций (eNodeB) 122-1, 122-2,..., 122-M осуществляет связь с пользовательскими устройствами (UE) (например, UE 110-1, 110-2, 110-3,..., 110-L), которые находятся в пределах их соответствующих сотовых зон предоставления коммуникационных услуг. Узлы базовых радиостанций (eNodeB) могут осуществлять связь друг с другом через X2 интерфейс и с базовой сетью 130 через S1 интерфейсы, что хорошо известно специалистам в данной области техники.

[0007] Стандарт LTE основывается на схемах радиодоступа с множеством несущих, таких как мультиплексирование с ортогональным разделением частот (OFDM) на нисходящей линии связи (DL) и OFDM с разнесением на основе дискретного преобразования Фурье (DFT) на восходящей линии связи (UL). Технология OFDM распределяет данные по большому количеству несущих, которые отделены друг от друга точно определенными частотами. Это разделение обеспечивает "ортогональность" в данной технологии, что позволяет избежать того, чтобы демодуляторы видели не только свои собственные частоты, но и другие. Выгодными эффектами OFDM являются высокая спектральная эффективность, устойчивость к радиочастотным (RF) помехам и низкое искажение вследствие многолучевого распространения.

[0008] Фиг.2 иллюстрирует ресурсную сетку для частотных и временных ресурсных элементов (RE), где каждый ресурсный элемент соответствует одной поднесущей OFDM в течение интервала одного символа OFDM. Во временной области нисходящие передачи LTE могут быть организованы в радиокадры длительностью 10 мс и каждый радиокадр может состоять из десяти одинаковых подкадров длиной Tsubframe=1 мс, как проиллюстрировано на Фиг.3.

[0009] Один или более планировщиков ресурсов в RAN 100 LTE выделяют ресурсы для восходящей линии связи и нисходящей линии связи в единицах ресурсных блоков, где ресурсный блок соответствует одному слоту (0,5 мс) во временной области и 12 поднесущим в частотной области. Ресурсные блоки нумеруются в частотной области, начиная с 0 от одного конца полосы частот системы.

[0010] Недавно был принят стандарт LTE Rel-8, поддерживающий полосы частот шириной вплоть до 20 МГц. В рамках 3GPP была инициирована работа над LTE Rel-10 для обеспечения поддержки полос частот шириной более 20 МГц и поддержки других требований, определенных в IMT-Advanced Requirements. Еще одно требование в отношении LTE Rel-10 заключается в обеспечении обратной совместимости с LTE Rel-8, включая спектральную совместимость. Это требование может привести к тому, что несущая LTE Rel-10 будет видеться для терминала LTE Rel-8 как некоторое количество несущих LTE. Каждая такая несущая может упоминаться как "компонентная несущая" (CC). В частности, для ранних реализаций LTE Rel-10 можно было ожидать, что будет небольшое количество терминалов, приспособленных для LTE Rel-10, по сравнению с многочисленными устаревшими терминалами LTE. Следовательно, может оказаться исключительно важным гарантировать эффективное использование широкой несущей устаревшими терминалами, например, путем обеспечения возможности планирования устаревших терминалов в отношении всех частей широкополосной несущей LTE Rel-10. Один путь достижения этого может заключаться в агрегировании несущих. Агрегирование несущих относится к конфигурированию терминала LTE Rel-10 для приема множества CC, где эти CC имеют или, по меньшей мере, обладают возможностью иметь ту же структуру, что и несущая Rel-8. Та же самая структура, что и Rel-8, подразумевает, что на каждой несущей передаются все сигналы Rel-8, например (основные и второстепенные) сигналы синхронизации, опорные сигналы, системная информация. Фиг. 4 графически иллюстрирует примерное агрегирование несущих в 100 МГц из пяти CC 20 МГц.

[0011] Согласно Фиг. 4 количество агрегированных CC, а также ширина полосы частот отдельной CC могут отличаться для восходящей линии связи и нисходящей линии связи. Симметричная конфигурация относится к случаю, где количество CC в нисходящей линии связи и восходящей линии связи одно и то же, тогда как асимметричная конфигурация относится к случаю, когда количества CC в нисходящей линии связи и восходящей линии связи различны. Важно отметить, что количество СС, предлагаемых сетью, может отличаться от количества CC, видимых терминалом. Например, терминал может поддерживать больше СС нисходящей линии связи, чем СС восходящей линии связи, даже несмотря на то, что сеть предлагает одно и то же количество СС нисходящей линии связи и восходящей линии связи.

[0012] Во время исходного доступа терминал LTE Rel-10 может функционировать аналогично терминалу LTE Rel-8. После успешного подсоединения к сети терминал может в зависимости от его собственных функциональных возможностей и сети конфигурироваться с дополнительными CC в UL и DL. Конфигурация основывается на управлении радиоресурсами (RRC). Вследствие высокой интенсивности передачи сигналов и весьма низкой скорости сигнализации RRC терминал может конфигурироваться с множеством CC, даже несмотря на то, что не все из них используются в текущий момент. Если терминал сконфигурирован для множества CC, от него может потребоваться отслеживать физический нисходящий канал управления (PDCCH) и физический нисходящий совместно используемый канал (PDSCH) на предмет всех CC DL. Однако такая конфигурация терминала может обусловить необходимость использования более широкой полосы частот приемника, более высоких частот дискретизации и т.д., что приводит в результате к более высокому энергопотреблению. Конфигурация дополнительных компонентных несущих обсуждается, например, в R2-104195 "Corrections and new Agreements on Carrier Aggregation", Nokia Siemens Networks.

Раскрытие изобретения

[0013] Согласно некоторым вариантам осуществления настоящего изобретения способ обеспечения синхронизации сигналов для сети радиодоступа может включать в себя передачу первой несущей, включающей в себя сигналы синхронизации, на первой частоте из сети радиодоступа. Информация, связывающая первую несущую на первой частоте со второй несущей на второй частоте, может передаваться из сети радиодоступа, причем эта информация предназначена для использования беспроводным терминалом при синхронизации после добавления второй несущей. Более того, первая и вторая частоты могут отличаться. Кроме того, на беспроводной терминал может быть передана команда добавить вторую несущую в качестве несущей нисходящей линии связи для передач.

[0014] Первая и вторая несущие могут быть выровнены по времени на пользовательском устройстве и сигналы синхронизации могут передаваться в периодических ресурсных элементах первой несущей. Информация, связывающая вторую несущую с первой несущей, может включать в себя список из множества вторых несущих на соответствующем множестве вторых частот, которые связаны с первой несущей, и/или информация, связывающая вторую несущую с первой несущей, может включать в себя список, идентифицирующий множество первых несущих на соответствующем множестве первых частот, которые связаны со второй несущей.

[0015] Первая несущая может быть сконфигурирована в качестве несущей нисходящей линии связи для беспроводного терминала и передача информации, связывающей вторую несущую с первой несущей, может включать в себя передачу этой информации по первой несущей на беспроводной терминал. Передача информации, связывающей вторую несущую с первой несущей, может включать в себя передачу этой информации на беспроводной терминал с командой добавить вторую команду. Передача информации, связывающей вторую несущую с первой несущей, может включать в себя передачу этой информации на третьей частоте, которая отличается от первой частоты и отличается от второй частоты.

[0016] После передачи упомянутой информации и команды добавить вторую несущую от беспроводного терминала может быть принята квитанция, показывающая синхронизацию и/или конфигурацию второй несущей на беспроводном терминале. В качестве реакции на прием квитанции на беспроводной терминал могут передаваться данные нисходящей линии связи по второй несущей.

[0017] Передача команды добавить вторую несущую может включать в себя передачу флага, имеющего одно из первого значения и второго значения. Первое значение может инструктировать беспроводной терминал синхронизировать и/или конфигурировать вторую несущую с использованием сигналов синхронизации первой несущей, а второе значение может инструктировать беспроводной терминал синхронизировать и/или конфигурировать вторую несущую без использования сигналов синхронизации первой несущей.

[0018] Согласно некоторым другим вариантам осуществления настоящего изобретения сигнал синхронизации может быть обеспечен для беспроводного терминала, осуществляющего связь с сетью радиодоступа, которая передает первую несущую, включающую в себя сигналы синхронизации, на первой частоте. Более конкретно, информация, связывающая вторую несущую на второй частоте с первой несущей на первой частоте, может быть принята из сети радиодоступа и команда добавить вторую несущую в качестве несущей нисходящей линии связи для передач может быть принята из сети радиодоступа. В качестве реакции на прием команды добавить вторую несущую вторая несущая на второй частоте может быть синхронизирована и/или сконфигурирована беспроводным терминалом с использованием сигналов синхронизации первой несущей на первой частоте.

[0019] Первая и вторая несущие могут быть выровнены по времени и сигналы синхронизации могут передаваться сетью радиодоступа в периодических ресурсных элементах первой несущей. Информация, связывающая вторую несущую с первой несущей, может включать в себя список из множества вторых несущих на соответствующем множестве вторых частот, которые связаны с первой несущей, и/или информация, связывающая вторую несущую с первой несущей, может включать в себя список, идентифицирующий множество первых несущих на соответствующем множестве первых частот, которые связаны со второй несущей.

[0020] Первая несущая может быть сконфигурирована в качестве несущей нисходящей линии связи из сети радиодоступа на беспроводной терминал и прием информации, связывающей вторую несущую с первой несущей, может включать в себя прием этой информации по первой несущей на беспроводном терминале. Прием информации, связывающей вторую несущую с первой несущей, может включать в себя прием этой информации на беспроводном терминале с командой добавить вторую несущую. Прием информации, связывающей вторую несущую с первой несущей, может включать в себя прием этой информации на третьей частоте, которая отличается от первой частоты и отличается от второй частоты.

[0021] Прием команды добавить вторую несущую может включать в себя прием флага, имеющего одно из первого значения и второго значения. Синхронизация и/или конфигурация второй несущей может включать в себя синхронизацию и/или конфигурацию второй несущей с использованием сигналов синхронизации первой несущей в качестве реакции на прием флага, имеющего первое значение, и синхронизация и/или конфигурация второй несущей может включать в себя синхронизацию и/или конфигурацию второй несущей без использования сигналов синхронизации первой несущей в качестве реакции на прием флага, имеющего второе значение.

[0022] До приема упомянутой команды третья несущая может быть сконфигурирована на третьей частоте в качестве несущей нисходящей линии связи для передач из сети радиодоступа на беспроводной терминал. В качестве реакции на прием упомянутого флага, имеющего первое значение, беспроводной терминал может синхронизировать и/или сконфигурировать вторую несущую на второй частоте с использованием сигналов синхронизации первой несущей на первой частоте. В качестве реакции на прием упомянутого флага, имеющего второе значение, беспроводной терминал может синхронизировать и/или сконфигурировать вторую несущую на второй частоте с использованием сигналов синхронизации третьей несущей на третьей частоте.

[0023] Согласно еще другим вариантам осуществления настоящего изобретения, узел сети радиодоступа может включать в себя радиочастотную схему, сконфигурированную для передачи первой несущей, включающей в себя сигналы синхронизации, на первой частоте. Кроме того, планировщик ресурсов может быть подключен к радиочастотной схеме, при этом планировщик ресурсов сконфигурирован для передачи информации, связывающей первую несущую на первой частоте со второй несущей на второй частоте, через радиочастотную схему на беспроводной терминал. Планировщик ресурсов может быть также сконфигурирован для передачи команды добавить вторую несущую на второй частоте в качестве несущей нисходящей линии связи для передач на беспроводной терминал, и эта команда добавить вторую несущую может передаваться через радиочастотную схему на беспроводной терминал. Первая и вторая частоты отличаются, и упомянутая информация предназначена для использования беспроводным терминалом при синхронизации после добавления второй несущей.

[0024] Согласно еще другим вариантам осуществления настоящего изобретения беспроводной терминал может быть сконфигурирован для осуществления связи с сетью радиодоступа, которая передает первую несущую, включающую в себя сигналы синхронизации, на первой частоте. Беспроводной терминал может включать в себя процессор, сконфигурированный для приема информации, связывающей вторую несущую на второй частоте с первой несущей на первой частоте, причем данная информация принимается из сети радиодоступа. Процессор может быть дополнительно сконфигурирован принимать команду добавить вторую несущую в качестве несущей нисходящей линии связи для передач из сети радиодоступа на беспроводной терминал и синхронизировать и/или конфигурировать вторую несущую на второй частоте с использованием сигналов синхронизации первой несущей на первой частоте в качестве реакции на прием команды добавить вторую несущую.

Перечень фигур чертежей

Сопровождающие чертежи, которые приведены для обеспечения лучшего понимания изобретения и включены в настоящую заявку и составляют ее часть, иллюстрируют некоторый вариант(ы) осуществления изобретения.

На чертежах:

Фиг. 1 блок-схема RAN LTE;

Фиг. 2 иллюстрация известной ресурсной сетки частотных и временных ресурсных элементов, которые могут быть запланированы для связи между сетевым узлом и пользовательскими устройствами;

Фиг. 3 иллюстрация примерного радиокадра нисходящей линии связи LTE, который разделен на подкадры;

Фиг. 4 иллюстрация примерной агрегации несущих для компонентных несущих;

Фиг. 5А и 5В иллюстрация примерной гетерогенной сети, в которой имеются три соты, которые могут привести к сильным межсотовым помехам;

Фиг. 6 иллюстрация одной модели повторного использования частот, которая может использоваться в примерной гетерогенной сети по Фиг. 5;

Фиг. 7А и 7В иллюстрация некоторых других моделей повторного использования частот, которые могут использоваться в примерной гетерогенной сети по Фиг. 5;

Фиг. 8 иллюстрация сети, которая включает в себя макроантенну и удаленный головной радиомодуль (RRH), где две компонентные несущие выровнены по времени при передаче (время 0), но более не являются выровненными по времени при приеме;

Фиг. 9 иллюстративная логическая блок-схема примерных операций и способов, которые могут выполняться сетью радиодоступа для уведомления одного или более терминалов (UE) о SMCCL, который должен использоваться для синхронизации SMCC;

Фиг. 10 иллюстративная логическая блок-схема примерных операций и способов, которые могут выполняться терминалом (UE) для выполнения неавтономной синхронизации или индивидуальной синхронизации;

Фиг. 11 - иллюстративная логическая блок-схема примерных операций и способов, которые могут выполняться сетью радиодоступа для уведомления одного или более терминалов (UE) о SMCCL.

Фиг. 12 - иллюстративная логическая блок-схема примерных операций и способов, которые могут выполняться терминалом (UE) для выполнения неавтономной синхронизации или индивидуальной синхронизации;

Фиг. 13 - блок-схема части RAN и множества UE, которые сконфигурированы согласно некоторым вариантам осуществления настоящего изобретения;

Фиг. 14 - иллюстративная логическая блок-схема примерных операций и способов, которые могут выполняться сетью радиодоступа для предоставления информации синхронизации;

Фиг. 15 - иллюстративная логическая блок-схема примерных операций и способов, которые могут выполняться терминалом (UE) для обеспечения синхронизации.

Подробное описание изобретения

[0041] Далее изобретение будет описываться более полно со ссылкой на сопровождающие чертежи, на которых показаны варианты осуществления изобретения. В то же время настоящее изобретение может быть воплощено во многих других формах и его не следует считать ограниченным вариантами осуществления, изложенными здесь; скорее, эти варианты осуществления предоставлены с тем, чтобы данное раскрытие было подробным и полным, и они в полной мере отражают объем настоящего изобретения для специалистов в данной области техники.

[0042] Исключительно в целях иллюстрации и пояснения, различные варианты осуществления настоящего изобретения описываются здесь в контексте работы в RAN LTE, такой как RAN 100 по Фиг. 1. Следует в то же время понимать, что настоящее изобретение не ограничивается такими вариантами осуществления и в общем может быть воплощено в любом типе RAN, которая сконфигурирована для осуществления передачи и/или приема согласно одной или более технологиям радиодоступа (RAT).

[0043] Для решения одной или более из проблем, обсужденных выше, LTE Rel-10 поддерживает активацию компонентных несущих (CC) в дополнение к конфигурации компонентных несущих. Терминал отслеживает только PDCCH и PDSCH для сконфигурированных и активированных CC. Поскольку активация основывается на элементах управления уровня управления доступом к коммуникационной среде (MAC), которые быстрее, чем сигнализация RRC, активация/деактивация может следовать за количеством CC, которое требуется для удовлетворения текущих нужд в скорости передачи данных. По поступлению больших объемов данных множество CC активируются, используются для передачи данных и деактивируются, если они больше не нужны. Могут быть деактивированы все CC, кроме одной - основной СС DL (DL PCC). Таким образом, активация обеспечивает возможность конфигурировать множество CC, но при этом активировать их только по принципу "когда потребуется". Большую часть времени у терминала будет одна или очень малое количество активированных CC, что в результате дает более малую полосу частот приема и, следовательно, более низкий уровень расхода аккумуляторной батареи.

[0044] Следует понимать, что настоящее изобретение не ограничено конкретной технологией, используемой здесь. Например, настоящее изобретение не ограничено различными понятиями, которые использовались для описания агрегирования несущих LTE, таких как "компонентные несущие" (сокращенно "CC") и другие термины, которые использованы в вышеприведенном описании и в 3GPP для определения стандарта LTE. Настоящее изобретение дополнительно применимо, например, к RAN, которые определяются/описываются с использованием понятий, относящихся к работе в множестве сот или в двух сотах, таких как "основная обслуживающая сота" и потенциально множественные "неосновные обслуживающие соты" и т.п.

[0045] Планировщик ресурсов выполняет планирование компонентной несущей на PDCCH посредством назначений нисходящей линии связи. Управляющая информация в PDCCH форматируется как сообщение управляющей информации нисходящей линии связи (DCI). В Rel-8 терминал работает лишь с одной компонентной несущей нисходящей линии связи и одной компонентной несущей восходящей линии связи и поэтому связь между назначением DL, предоставлениями UL и соответствующими компонентными несущими нисходящей и восходящей линий связи ясна. В Rel-10 необходимо проводить различие между двумя режимами агрегирования несущих. Первый режим работы очень похож на работу множества терминалов Rel-8 в том, что назначение DL или предоставление UL, содержащееся в сообщении DCI, передаваемом по CC, является действительным либо для самой компонентной несущей нисходящей линии связи, либо для ассоциированной (посредством привязки, зависящей либо от соты, либо от UE) компонентной несущей восходящей линии связи. Второй режим работы расширяет сообщение DCI полем индикатора несущей (CIF). DCI, содержащая назначение DL с CIF, является действительной для той компонентной несущей нисходящей линии связи, что указывается полем CIF, и DCI, содержащая предоставление UL с CIF, является действительной для указываемой компонентной несущей восходящей линии связи.

[0046] Агрегирование несущих в реализациях гетерогенных сетей:

[0047] Некоторые варианты осуществления настоящего изобретения направлены на синхронизацию несущих для сетей, в которых предусмотрено агрегирование несущих. Эти варианты осуществления описываются в контексте гетерогенной сети, имеющей два уровня сот, упоминаемых здесь как "макроуровень" и "пикоуровень" соответственно, притом что изобретение не ограничивается этой иллюстративной гетерогенной сетью, и другие варианты осуществления могут быть реализованы в других сетях (таких, как гомогенные сети). Не делается никаких специальных допущений касаемо характеристик этих разных уровней сот. В некоторых вариантах осуществления разные уровни сот могут соответствовать сотам, имеющим существенно отличающиеся размеры зоны радиопокрытия (которые фундаментально определяются зоной радиопокрытия основных сигналов/каналов управления, таких как основной канал синхронизации (PSS), неосновной канал синхронизации (SSS), физический широковещательный канал (PBCH), зависящие от соты опорные сигналы (CRS), PDCCH и т.п.). В иллюстративной гетерогенной сети упоминаемый "пикоуровень" может быть микроуровнем, традиционным пикоуровнем внутри или вне помещения, уровнем, состоящим из ретрансляторов, или уровнем домашнего eNB (HeNB).

[0048] Различные сценарии межсотовых помех могут иметь место для реализаций неоднородных по каналам сетей. Фиг. 5A иллюстрирует, как HeNB may может создать помехи в направлении пользователя макросоты, который не имеет доступа к фемтосоте (случай (a)), и как пользователь на краю макросоты может создать помехи в направлении HeNB вследствие отсутствия доступа к фемтосоте (случай (b)). Фиг.5B иллюстрирует, как помехи от макроeNB в направлении пользователя на краю пикосоты (или фемтосоты) могут повыситься (максимум на Δ), если используется выбор обслуживающей соты на основе потерь на тракте передачи вместо выбора на основе наиболее сильного принятого сигнала нисходящей линии связи.

[0049] Основные проблемы и заботы, обуславливаемые реализациями неоднородных по каналам сетей в LTE, относятся к помехам в отношении ресурсов, которые не могут основываться на координации межсотовых помех. Для планируемых передач данных, таких как PDSCH и физический совместно используемый канал восходящей линии связи (PUSCH), межсотовые помехи могут координироваться посредством мягкого или жесткого разделения физических ресурсов, например посредством обмена координационной информацией между уровнями/сотами через X2 интерфейсы.

[0050] Для устаревших UE желательно обладать способностью функционировать и получать выгоду от реализаций гетерогенных сетей, например, посредством осуществления доступа к пикоуровням для улучшения рабочих характеристик восходящей линии связи, даже если мощность сигнала, принятого с макроуровня, значительно выше. Достичь такого выбора соты можно, например, путем использования сдвига в измерениях принимаемой мощности опорного сигнала (RSRP), выполняемых пользовательским устройством (соответствует Δ на Фиг. 5B). Текущая спецификация допускает сдвиг вплоть до 24 дБ, что должно быть достаточным для большинства сценариев гетерогенной сети.

[0051] Для снижения сильных межсотовых помех на нисходящей линии связи от узлов макроeNB в отношении областей управления пикоподкадров, функционирование уровней на различных несущих может понадобиться, чтобы гарантировать надежную связь для устаревших UE в реализациях гетерогенной сети. Однако такая конфигурация подразумевает, что вся полоса частот системы целиком не всегда будет доступна для устаревших UE и может привести к снижению пропускной способности для пользователей. Одним примером снижения пропускной способности является разбиение непрерывной полосы частот шириной 20 МГц на две несущие, например, с шириной полосы в 10 МГц на каждую несущую.

[0052] Как пояснялось выше, функционирование разных уровней на разных неперекрывающихся частотах несущих может привести к неэффективности в использовании ресурсов. Ссылаясь на иллюстрацию, изображенную на Фиг. 6, это будет подразумевать, что совокупный доступный спектр состоит из двух несущих f1 и f2, где f1 и f2 используются исключительно на макро- и пикоуровне соответственно. При дополнительном пояснении, приводимом ниже, подразумевается, что уровни синхронизируются с выровненными по времени передачами eNB и что f1 и f2 имеют неперекрывающиеся полосы частот.

[0053] Во многих случаях подразумевается, что пикоуровень развертывается для переноса основной части трафика и, соответственно, обеспечения самых высоких скоростей передачи данных, тогда как макроуровень обеспечивает полную область радиопокрытия для заполнения любых дыр в радиопокрытии на пикоуровне. В таковом случае, желательным является, чтобы вся полоса частот, соответствующая несущей f1 и f2, была доступна для передачи данных в пределах пикоуровня. Также может оказаться желательным, чтобы вся полоса частот (f1 и f2) была также доступна для передачи данных в пределах макроуровня, хотя важность этого может быть и меньше, чем гарантирование доступности всей полосы частот на пикоуровне.

[0054] Как пояснялось выше, совместное использование ресурсов (функционирование на одном и том же наборе несущих) между уровнями сот для передачи данных может быть осуществлено посредством методов и операций координации межсотовых помех (ICIC), которые могут быть в большей или меньшей степени динамическими, в зависимости от функциональных возможностей координации между уровнями и базовыми радиостанциями. Потенциально ключевым вопросом является обеспечение передачи сигналов/каналов, которые не могут основываться на традиционных методах ICIC, но должны передаваться на конкретных хорошо определенных ресурсах, включая:

1) сигналы синхронизации (основной канал синхронизации (PSS)/неосновной канал синхронизации (SSS));

2) физический широковещательный канал (PBCH); и

3) каналы управления L1/L2 (физический нисходящий канал управления (PDCCH), физический канал индикатора формата управления (PCFICH) и физический канал индикатора гибридного автоматического запроса повторной передачи (ARQ) (PHICH)).

[0055] Все эти сигналы должны передаваться по, по меньшей мере, одной несущей нисходящей линии связи в пределах каждого уровня сот. Подразумевается, что эта основная несущая соответствует несущей f1 на макроуровне и несущей f2 на пикоуровне.

[0056] Для нисходящей линии связи три случая показаны на Фиг. 7A и 7B. Случай 1 отличается от Случая 2 (оба показаны на Фиг. 7A) в отношении открытой группы абонентов (OSG). В Случае 3 (показан на Фиг. 7C) обе несущие - f1 и f2 доступны также на макроуровне. Эти три случая, а также иллюстративные операции и способы, выполняемые ассоциированной RAN (например, размещенным в ней планировщиком ресурсов или т.п.) и пользовательскими устройствами (UE), дополнительно поясняются ниже.

[0057] Случай 1 агрегирования несущих в реализациях гетерогенных сетей:

[0058] Несущая f1 (макроPCC) должна быть доступна для передачи PDSCH также и на пикоуровне. Выполняется управление пользовательским устройством для доступа к макроуровню, когда потери на тракте передачи для макроуровня того же порядка или меньше по сравнению с потерями на тракте передачи для пикоуровня.

[0059] В этом случае основные сигналы/каналы управления нисходящей линии связи могут передаваться по f1 также и на пикоуровне без сильных помех в отношении пользовательских устройств, осуществляющих доступ к макроуровню. Таким образом, как f1, так и f2 могут быть реализованы в качестве "нормальных" (совместимых с Версией 8 (Rel-8)) несущих на пикоуровне. Однако устаревшее UE может осуществить доступ к f1 лишь вблизи площадки пикосоты, где потери на тракте передачи для пикосоты значительно меньше, чем потери на тракте передачи для макросоты, чтобы избежать сильных помех от каналов управления из макросоты. Ближе к границе пикосоты пользовательские устройства Rel-10 осуществляют доступ на f2, чтобы избежать сильных помех в отношении PSS/SSS и PBCH из макросоты, но они могут быть запланированы с использованием передачи PDSCH на f1, используя планирование между несущими с PDCCH на f2. Следует отметить, что во избежание помех от макроопорных сигналов, зависящих от соты (CRS), передача физического нисходящего совместно используемого канала (PDSCH) пикосоты на f1 должна основываться на опорных сигналах (RS), зависящих от UE, для оценки каналов, по меньшей мере когда UE близко к границе пикосоты. Можно учитывать использование частотных сдвигов CRS по уровням, но макроCRS тогда будут создавать помехи в отношении элементов ресурсов данных пикосоты.

[0060] Случай 2 агрегирования несущих в реализациях гетерогенных сетей:

[0061] Аналогично случаю 1 несущая f1 должна быть доступна для передачи PDSCH также на пикоуровне. Однако UE должно быть сконфигурировано для доступа к макросоте даже при нахождении вблизи пикосоты.

[0062] Данный сценарий может иметь место, когда пикоуровень состоит из HeNB, принадлежащих закрытым группам абонентов (CSG), и где UE, не принадлежащее CSG, приближается к HeNB. В этом случае пикоуровень не должен передавать вышеперечисленные каналы (PSS/SSS, физический широковещательный канал (PBCH), CRS, PDCCH и т.д.) по f1 во избежание помех в отношении UE, которые осуществляют доступ к макроуровню вблизи пикоплощадки. Напротив, соответствующие ресурсные элементы должны быть пустыми. Таким образом, устаревшие UE могут только осуществлять доступ к пикоуровню на f2, тогда как UE, соответствующие Версии 10 (Rel-10) LTE, могут быть запланированы как на f1, так и на f2 таким же образом, как и в случае 1.

[0063] Случай 3 агрегирования несущих в реализациях гетерогенных сетей:

[0064] В дополнение к доступности несущей f1 для передачи PDSCH на пикоуровне, несущая f2 должна быть доступна для передачи PDSCH на макроуровне.

[0065] В этом случае макроуровень не должен передавать основные сигналы/каналы нисходящей линии связи, указанные выше (PSS/SSS, PBCH, CRS, PDCCH и т.д.) по f2 во избежание помех в отношении UE, которые осуществляют доступ к пикоуровню и которые могут находиться в местоположении, где сигналы с макроуровня принимаются со значительно более высокой мощностью, хотя потери на тракте передачи для пикоуровня и существенно ниже. Напротив, аналогично случаю 2 соответствующие ресурсные элементы должны быть пустыми. Таким образом, устаревшие UE могут только осуществлять доступ к макроуровню на f1, тогда как UE, соответствующие Rel-10, могут быть запланированы для макроуровня как на f1, так и на f2. Следует отметить, что UE может быть только запланировано на макроуровне на f2 таким образом, чтобы оно не вызывало значительных помех в отношении пикосоты, либо вследствие отсутствия какого-либо UE, запланированного на соответствующий ресурс в любой пикосоте, находящейся в зоне радиопокрытия макросоты, либо посредством использования низкой мощности для передачи в макросоте.

[0066] Следует отметить, что в случае, когда все пикосоты находятся относительно далеко от площадки макросоты, макросота может быть также сконфигурирована передавать основные сигналы/каналы управления (со сниженной мощностью на f2). Однако это привело бы к тому, что макросота на f2 будет казаться как отдельная пикосота (расположенная в том же месте, что и макросота на f1).

[0067] Синхронизация в системах с агрегированием несущих:

[0068] Агрегирование несущих в LTE Rel-10 ограничено агрегированием обратно совместимых компонентных несущих, т.е. каждая компонентная несущая переносит основные сигналы, такие как PSS/SSS, CRS и т.п. В то же время, как пояснено в предшествующем разделе, даже, хотя эти сигналы могут присутствовать, они могут передаваться с нулевой/сниженной мощностью. Передача с нулевой мощностью означает, что ресурсные элементы для синхронизации, например, PSS/SSS, CRS и т.п., зарезервированы, но модулируются с нулевой мощностью.

[0069] В будущих версиях даже компонентные несущие, не являющиеся обратно совместимыми, могут быть агрегированы и такие несущие могут не передавать PSS/SSS, CRS и т.п. вообще. Иными словами, ресурсные элементы для сигналов синхронизации могут быть исключены из некоторых компонентных несущих согласно некоторым вариантам осуществления настоящего изобретения.

[0070] PSSS/SSS и CRS могут использоваться на терминале для получения синхронизации.

[0071] Выравнивание по времени:

[0072] В зависимости от того, передаются ли все компонентные несущие с одной и той же площадки, принимаемые несущие могут быть или могут не быть выровнены по времени. Наприм