Усовершенствованный процесс фракционирования лигноцеллюлозной биомассы
Иллюстрации
Показать всеИзобретение относится к усовершенствованному процессу фракционирования лигноцеллюлозной биомассы для дальнейшего использования в синтезе химической продукции или получения топлива или топливных добавок на основе растительного сырья. Предложен способ фракционирования лигноцеллюлозных биомасс на фракции целлюлозы, гемицеллюлозы и лигнина, где биомассу обрабатывают парами концентрированной органической кислоты при повышенных температурах и в месторасположении(ях) или рядом с месторасположением(ями) уборки и сбора биомассы с целью по меньшей мере частичной деполимеризации или значительной солюбилизации гемицеллюлоз и лигнинов в биомассе. Обработанную кислотой биомассу сушат и гранулируют для длительного бестарного хранения и/или транспортировки ко второй установке, находящейся на некотором расстоянии. Обработанная кислотой биомасса может быть переработана в целевую химическую продукцию, топлива и/или топливные добавки на местной перерабатывающей площадке или на второй установке, находящейся на удалении от местной перерабатывающей площадки, или гранулированный материал может быть использован на корм скоту по месту производства или на площадке для откорма скота, находящейся на некотором расстоянии от местной перерабатывающей площадки. 2 н. и 34 з.п. ф-лы, 3 ил.
Реферат
[0001] Это изобретение относится к усовершенствованному процессу выполнения фракционирования лигноцеллюлозной биомассы, особенно для дальнейшего использования в синтезе химической продукции или получения топлива или топливных добавок на основе растительного сырья.
[0002] Использование биомассы - материалов, в которых содержащийся в них углерод имеет растительное, а не ископаемое происхождение для обеспечения химических и топливных продуктов, которые в настоящее время получают из ископаемых материалов, таких как нефть, или для обеспечения приемлемых, основанных на биологическом сырье функциональных альтернатив таким химическим и топливным продуктам, стало в последнее время сосредоточением инвестиций и усилий в области исследований и разработок, поскольку добыча ископаемых материалов сократилась или они стали более дорогими и трудными для приобретения и использования.
[0003] Определенные замещающие или альтернативные химические и топливные продукты уже производятся из биомассы на уровне товаров широкого потребления в больших масштабах. В области жидких топливных продуктов этанол и биодизель (сложные алкиловые эфиры жирных кислот) к настоящему времени производятся на уровне товаров широкого потребления из кукурузы и сахарного тростника (для этанола) и из различных растительных масел и жиров. Однако даже данные примеры по-прежнему нуждаются в улучшении использования биомассы.
[0004] Уже давно признано, например, что было бы предпочтительно производить пригодные жидкие топлива и топливные добавки (или интересующую химическую продукцию, также основанную на растительном сырье) из лигноцеллюлозных биомасс, непригодных в качестве пищевых продуктов или которые можно выращивать или поставлять и использовать, не вызывая материальных противоречий, влияющих на землепользование и поведение (например, вырубку леса, чтобы дополнительно производить сою, кукурузу или похожие культуры). Можно рассмотреть некоторое число непищевых лигноцеллюлозных биомасс такого характера, включая, например, специально выращенные непищевые культуры для биомассы (такие, как травы, медвяное сорго, быстрорастущие сорта деревьев) или, более определенно, отходы деревообрабатывающей промышленности (такие, как отходы при обрезке, щепа, опилки) и зеленые отходы (например, листья, скошенная трава, отходы овощей и фруктов). Кроме того, было установлено, что при использовании уже культивированных земель приблизительно три четверти производимой биомассы идет в отходы, так что, если биомасса, о которой идет речь, представляет собой отходы, то различные интересующие химические и топливные продукты, которые могут быть произведены исходя из лигноцеллюлозной биомассы, фактически должны производиться экономически выгодно.
[0005] К сожалению, в действительности существует ряд практических реальных трудностей, которые должны быть преодолены до того, как это утверждение станет справедливым. Первая трудность возникает из-за того, что компоненты лигноцеллюлозной биомассы имеют очень различающиеся характеристики.
[0006] В этом отношении, как и в отношении ископаемых материалов, как, например, нефть, практическая возможность произвести полный набор замещающих или альтернативных химических и топливных продуктов широкого потребления, уже используемых или необходимых в будущем, на уровне и с должным качеством, экономично и эффективно, для лигноцеллюлозных биомасс зависит от того, можно ли эти биомассы полностью и эффективно фракционировать на составляющие их компоненты с тем, чтобы их можно было использовать непосредственно или превратить в другие полезные формы продуктов. В случае нефти такое фракционирование происходит, конечно, на нефтеперерабатывающем заводе, используя различные процессы, однако похожие процессы до настоящего времени не были разработаны для лигноцеллюлозных биомасс.
[0007] Говоря о настоящем изобретении, лигноцеллюлозные биомассы содержат, в основном, фракции целлюлозы, гемицеллюлозы и лигнина, при этом целлюлоза является самым большим из этих трех компонентов. Целлюлоза происходит из структурных тканей растений и состоит из длинных цепей остатков β-глюкозы, связанных в 1,4-гликозидные связи. Эти связи являются причиной высокой кристалличности целлюлозы. В отличие от этого гемицеллюлоза является аморфным гетерополимером, в то время как лигнин является ароматическим трехмерным полимером, размещенным среди целлюлозы и гемицеллюлозы в клетке волокна растения.
[0008] Заметим в отношении фракции лигнина, что материалы, которые объединены термином «лигнин», а также способ, которым соответственно определяли содержание лигнина в биомассе, исторически зависели от контекста, в котором рассматривали содержание лигнина, причем «лигнин», не имеющий определенной молекулярной структуры, таким образом определяли эмпирически для каждой биомассы. В зоотехнии и агрономии при учете пищевой энергетической ценности лигноцеллюлозных биомасс, например, количество лигнина в данной биомассе наиболее традиционно определяют методом с использованием кислотного детергента (Goering и Van Soest, Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications), Agriculture Handbook No. 379, Agricultural Research Service, United States Dept of Agriculture (1970); Van Soest et al., "Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition", J. Dairy Sci., vol. 74, pp 3583-3597 (1991)). В целлюлозно-бумажной промышленности и при получении пульпы, напротив, содержание лигнина в данной биомассе традиционно определяют методом Класона (Kirk Obst, "Lignin Determination", Methods in Enzymology, vol.16, pp.: 89-101 (1988)).
[0009] Для сравнения в качестве точки отсчета в настоящем изобретении содержание нерастворимого в кислотном детергенте лигнина 6% или более (в пересчете на сухой вес) в целом соответствует созревшим травам умеренного климата, имеющим относительно низкую пищевую ценность для жвачного скота и которые, следовательно, в основном направляют другим потребителям. Именно к лигноцеллюлозным биомассам такого общего характера относится напрямую настоящее изобретение, хотя усовершенствования, обеспеченные настоящим изобретением, будут полезны в целом для широкого ряда лигноцеллюлозных биомасс.
[00010] Из-за различий в содержании фракций целлюлозы, гемицеллюлозы и лигнина в биомассе и с учетом меняющегося присутствия других малых фракций в различных биомассах, как указано в Патенте США №5562777, выданном Farone et al. "Method of Producing Sugars Using Strong Acid Hydrolysis of Cellulosic and Hemicellulosic Materials", в последние годы были разработаны или предложены несколько процессов фракционирования лигноцеллюлозных биомасс, большинство из которых состоят в гидролизе целлюлозной и гемицеллюлозной фракций до С6 и С5 сахаров.
[00011] По существу были раскрыты как биологические, так и небиологические процессы, среди которых самые старые и хорошо известные небиологические способы получения сахаров из целлюлозы заключаются в кислотном гидролизе, обычно гидролизе серной кислотой, с использованием разбавленной кислоты, концентрированной кислоты или сочетании обоих подходов. Патент №5562777, выданный Farone et al., описывает преимущества и недостатки различных процессов на основе серной кислоты и известные в то время в данном уровне техники и предлагает дальнейший вариант с использованием гидролиза сильной/серной кислотой и применением одного или нескольких повторений комбинации стадии разрушения кристаллической структуры, где биомассу (и/или твердую фазу, оставшуюся после стадии разрушения кристаллической структуры в предыдущем повторении) смешивают с 25-90%-ным раствором серной кислоты с целью солюбилизировать часть биомассы, затем кислоту разбавляют до 20-30 процентов и смесь нагревают до предпочтительно 80-100 градусов Цельсия с целью солюбилизировать целлюлозную фракцию и любой гемицеллюлозный материал, которые еще не были солюбилизированы.
[00012] Даже в эффективном способе фракционирования дополнительная трудность, связанная с превращением биоцеллюлозных биомасс в химическую продукцию, топлива или топливные добавки, связана с логистикой, а именно а) необходимости сжать или заготовить очень большие количества сельскохозяйственных отходов с большой площади, например, и затем транспортировать их к местам крупномасштабной химической или нефтехимической переработки, обычно расположенным на некотором расстоянии, или b) постройки местной установки для предварительной переработки биомассы в промежуточные продукты, которые лучше переносят условия хранения и транспортировки, чем сама биомасса, и по другим параметрам лучше подходят для транспортировки в центры переработки и доставки химической продукции и топлив, например, С5 и С6 сахара в виде сиропа или С5 и С6 спирты/многоатомные спирты или с) сооружения ряда небольших новых заводов по производству конечной химической продукции, топлив или топливных добавок, расположенных рядом с источником лигноцеллюлозной биомассы. Понятно, что вариант b) предпочтителен по сравнению с вариантом а) или с), но концепции очистки лигноцеллюлозной биомассы, предложенные до настоящего времени, к сожалению, по-прежнему предполагают промежуточные продукты, которые трудно транспортировать экономично.
[00013] Кроме того, еще одна сложность возникает в связи с тем фактом, что эти биомассы образуются из живой материи. В любом процессе преобразования стабильность поступающего сырья является вопросом, требующим решения, а поскольку биомасса образуется из живой материи, качество сырья по своей природе будет представлять определенные проблемы с точки зрения его стабильности для уборки, хранения и транспортировки.
[00014] Настоящее изобретение обеспечивает способы переработки лигноцеллюлозных биомасс таким образом, который позволяет преодолеть некоторые или все из упомянутых проблем.
[00015] Например, настоящее изобретение в первом способе предоставляет эффективное фракционирование лигноцеллюлозной биомассы с получением целлюлозной, гемицеллюлозной и лигниновой фракций, где биомассу обрабатывают парами концентрированной органической кислоты при повышенных температурах в месте(ах) или недалеко от места уборки и сбора с целью по меньшей мере частично деполимеризовать гемицеллюлозы и лигнины в биомассе. Обработанную органической кислотой биомассу затем высушивают до состояния, в котором высушенная твердая фаза может быть гранулирована для длительного бестарного хранения или доставки на вторую установку, расположенную ближе к потребителю или к средствам доставки желаемых химикатов, топлив или топливных добавок или для использования на уже существующих перерабатывающих заводах химикатов или топлив. Альтернативно, материал можно хранить и затем перерабатывать в желаемые химикаты, топлива и/или топливные добавки на местных перерабатывающих заводах, или же вторая установка, о которой идет речь (расположена ли она по соседству, недалеко или далеко), может представлять собой площадку для откорма жвачного скота и гранулированный материал может быть использован как корм для жвачного скота.
[00016] Для производства топлив, топливных добавок и химической продукции на второй установке, хотя бы частично деполимеризованные гемицеллюлозы и соли выделяют в виде одной фракции путем растворения их в подходящем растворителе и фильтрования, причем растворителем обычно является горячая вода, поскольку лигниновая фракция в основном нерастворима в воде, и по меньшей мере частично деполимеризованную фракцию лигнинов в свою очередь выделяют путем растворения в более высококонцентрированной органической кислоте или в другом подходящем растворителе и фильтрования. Оставшаяся твердая фракция содержит в основном чистую целлюлозную пульпу. Полученные гемицеллюлозные, целлюлозные и лигниновые фракции можно затем перерабатывать далее для изготовления топлив, топливных добавок и другой полезной химической продукции, как описано далее.
[00017] В альтернативном осуществлении изобретения гемицеллюлозы и лигнины в лигноцеллюлозной биомассе переводят в основном в растворимое состояние обработкой, обычно парами более концентрированной органической кислоты при повышенной температуре, а затем отделяют от оставшейся преимущественно целлюлозной твердой фракции на местной перерабатывающей установке путем промывания подходящим растворителем и фильтрации. Оставшуюся твердую фракцию затем высушивают и предпочтительно гранулируют с получением сухой компактной целлюлозной фракции, которую можно хранить для переработки на месте или, как и ранее, перевозить на вторую установку, расположенную ближе к потребителю или ближе к средствам доставки для целевой химической продукции, топлив или топливных добавок, или для использования на уже существующих перерабатывающих заводах по производству химической продукции или топлив. Оставшуюся твердую фракцию можно также гранулировать и поставлять на площадку для откорма жвачного скота (в качестве альтернативной второй установки) для использования в виде корма, а не материала для изготовления топлив, химикатов или топливных добавок.
[00018] В варианте второго осуществления изобретения растворенные гемицеллюлозы и лигнины могут быть сами по себе переведены в твердую смесь путем выпаривания, которую можно гранулировать и экономично перевозить на вторую установку или, альтернативно, хранить до последующей переработки на месте, причем последующая переработка в любом случае включает разделение гемицеллюлозных и лигниновых компонентов путем экстракции гемицеллюлозной компоненты растворителем (или смесью растворителей), которая эффективно растворяет гемицеллюлозу, но в которой лигниновая фракция практически нерастворима, таким подходящим растворителем может быть просто вода, а затем перерабатывать некоторые или все фракции гемицеллюлозы, целлюлозы и лигнина с получением целевой химической продукции, топлив или топливных добавок.
Фигура 1 представляет собой схематическое изображение, иллюстрирующее процесс согласно настоящему изобретению в одном его осуществлении.
Фигура 2 представляет собой схематическое изображение процесса согласно настоящему изобретению во втором его осуществлении.
Фигура 3 представляет собой схематическое изображение процесса согласно настоящему изобретению в варианте его второго осуществления.
[00019] Органические кислоты, включая особенно муравьиную, уже давно используют в производстве пульпы и бумаги для переработки лигноцеллюлозных биомасс. В современной технологии приготовления пульпы обычно используют растворы концентрированной муравьиной кислоты в воде (например, 80-90% муравьиной кислоты) при температурах от 90 до 150 градусов Цельсия и при отношении растворитель:биомасса, равном 4:1 или выше, для того, чтобы растворить лигнин и гемицеллюлозы с более низким молекулярным весом в биомассе (путем деполимеризации), чтобы затем их можно было удалить. Целевую твердую целлюлозную пульпу отделяют от варочного раствора, содержащего лигнин и гемицеллюлозы, затем по желанию промывают и отбеливают, в то время как лигнин и гемицеллюлозы могут быть затем разделены путем добавления воды, поскольку лигнин в основном нерастворим в воде, а гемицеллюлозы растворимы.
[00020] В то время как муравьиная кислота эффективно растворяет и отделяет обе компоненты лигнина и гемицеллюлозы от целлюлозной компоненты лигноцеллюлозной биомассы, этот процесс потребляет много энергии на нагрев больших количеств муравьиной кислоты и воды при образовании пульпы, а выделение и рекуперация муравьиной кислоты достаточно высоких концентраций для циркуляции раствора достаточно трудны и дороги из-за образования азеотропных смесей воды, уксусной кислоты и муравьиной кислоты.
[00021] Что касается использования лигноцеллюлозной биомассы в синтезе химической продукции или в получении биологических топлив или топливных добавок, однако потребление энергии и расход растворителя (плюс рекуперация растворителя), ассоциированные с этими известными технологиями фракционирования с использованием органической кислоты, делают стоимость производства химической продукции, биологических топлив или топливных добавок из них на практике слишком высокой по сравнению с производством этих материалов из нефти.
[00022] В противоположность проведению солюбилизации гемицеллюлоз и лигнина с образованием легко экстрагируемых фракций путем использования паров горячей органической кислоты, проникающих сквозь биомассу и находящихся в контакте с ней, в настоящем изобретении нет необходимости перерабатывать такие же большие количества муравьиной кислоты и воды, как это делается в существующих технологиях получения пульпы. Более того, мы обнаружили, что можно использовать более низкие концентрации муравьиной кислоты по сравнению с традиционным жидкостными способами фракционирования муравьиной кислотой. Используемую муравьиную кислоту можно выделять азеотропной дистилляцией, как рассмотрено в применении, связанном с пульпой. Альтернативно, именно благодаря меньшим используемым количествам воды и кислоты муравьиная кислота, предназначенная для рекуперации и повторного использования, может быть выделена просто и без необходимости разрушения азеотропной смеси воды и муравьиной кислоты путем использования органических сорастворителей и простой дистилляцией. И, конечно, благодаря сравнительно гораздо меньшим количествам органической кислоты, используемой в нашем процессе для завершения фракционирования для дальнейшей переработки лигноцеллюлозной биомассы по сравнению с известными процессами получения пульпы, органическая кислота, оставшаяся после завершения фракционирования, может быть (учитывая стоимость рекуперации кислоты) также просто нейтрализована - целиком или частично.
[00023] Настоящее изобретение может быть легче понято, если обратиться к Фигуре 1, которая схематически изображает способ по настоящему изобретению в соответствии с данным предпочтительным вариантом осуществления (10). Лигноцеллюлозную биомассу 12, обычно содержащую 6 процентов или более лигнина, нерастворимого в кислотном детергенте (в пересчете на сухой вес), предпочтительно первоначально собирают и промывают при необходимости для удаления грязи и других загрязнителей в месте (площадка А), которое удобно расположено по отношению к месту производства или образования биомассы, затем, необязательно, предварительно обрабатывают на стадии 14 для удаления компонента, содержащего больше белка, чем может быть желательно для содержания в корме животных или удобрении (путем механического измельчения биомассы и разделения воздухом, в качестве одного примера) и/или для выделения компонента или компонентов 16, имеющих относительно высокое содержание частиц или материалов, которые будет трудно удалить на последующих стадиях процесса или которые будут негативно влиять или делать выполнение преобразований на последующих стадиях процесса более трудным и/или могут иметь нежелательный эффект на целевые продукты последующей переработки (например, соединения азота, соединения серы, компоненты с высоким содержанием золы). Примером компонента перспективной биомассы, который желательно удалить на стадии предварительной обработки 14, будет являться листовая фракция кукурузной соломы, которая содержит больше азота, но имеет примерную питательную ценность сена с точки зрения ее использования как корма для скота.
[00024] После необязательной предварительной обработки биомассы 12 на стадии 14 биомассу 12 (или остаток биомассы 12 после необязательного удаления компонента(ов) 16) предпочтительно дополнительно подготавливают/предварительно обрабатывают на стадии 18 перед последующим контактом с парами горячей концентрированной органической кислоты 22 на стадии 20. Предварительная обработка на стадии 18 включает механическое измельчение биомассы 12 для того, чтобы позволить парам концентрированной кислоты 22 более легко проникать в биомассу 12 и, по меньшей мере, частично деполимеризовать или существенно солюбилизировать лигнин и гемицеллюлозы в биомассе 12 до уровня, который не был достигнут на стадии 14. Также стадия 18 может включать сушку биомассы 12 до содержания в ней влаги предпочтительно 10 процентов или менее, хотя специалисту в данной области будет понятно, что уровень влаги на стадии 20 замачивания в кислоте также можно контролировать другими способами, как, например, концентрацией и количеством подаваемых паров концентрированной горячей органической кислоты 22. Разное количество способов измельчения биомассы на стадии 18 известно специалисту в данной области, например, но без ограничения, размалывание, резка и разбивание, специалист в данной области сможет выбрать способ для измельчения биомассы 12, с помощью которого содержащиеся в ней лигнин и гемицеллюлозы могут быть частично деполимеризованы или значительно солюбилизированы действенным и эффективным контактом с парами горячей концентрированной органической кислоты 22 на стадии 20.
[00025] Как описано ранее, биомасса 12 может представлять собой любую лигноцеллюлозную биомассу, но, как указывалось ранее, предпочтительно не будет широко использоваться в качестве источника пищи для людей и более предпочтительно будет представлять собой легкодоступную биомассу (или которую можно сделать легкодоступной) в местах с высоким спросом на химическую продукцию, биотоплива и топливные добавки, изготовляемые из биомассы. Созревшие травы, остатки злаковых культур отдельно или содержащиеся в злаковом силосе, кукурузная солома, пшеничная солома, ячменная солома, виды мискантуса, просо, гречка заметная, виды сорго, жмых сахарного тростника, ежа сборная, двукисточник тростниковидный и отходы хлопковых волокон представляют собой примеры пригодных для рассмотрения биомасс. Смеси биомасс из различных источников, включая биомассы после сбора урожая и переработки продовольственных культур, также очевидным образом предполагаются и должны рассматриваться как охватываемые терминами «биомасса» и «лигноцеллюлозная биомасса». Силос из целого растения, например целого растения кукурузы, сжатого и хранящегося анаэробно/силосовано для формирования силоса, будет рассматриваться как вид смешанной биомассы и представляет интерес, поскольку большинству установок для получения химической продукции, топлив и топливных добавок из возобновляемых источников будет требоваться круглогодичный доступ к биомассе или сырью из биомассы. В случаях где используют несколько различных биомасс из различных источников, предпочтительно специально выращенная некормовая биомасса или биомасса из отходов сельского хозяйства составляет основную часть этих нескольких биомасс в смеси. Пример сырья из смешанной биомассы будет состоять из кукурузной соломы и кукурузного волокна, где кукурузная солома будет предпочтительно составлять наибольшую часть сырьевого материала по сравнению с кукурузным волокном.
[00026] Заметим, что специалистам в этой области понятно, что некоторые биомассы могут больше подходить для изготовления определенной химической продукции, топлив и топливных добавок (или определенный набор продуктов в желаемых пропорциях), чем другие, но преимуществом данного изобретения является его применимость к фракционированию лигноцеллюлозных биомасс в целом и, как будет показано, особенно к биомассам, которые в противном случае не будут считаться пригодными из-за их удаленности от установки для производства целевой химической продукции топлив и/или топливных добавок.
[00027] Обратимся теперь к Фигуре 1. В зависимости от концентрации используемой кислоты на стадии вымачивания кислотными парами 20 горячая концентрированная органическая кислота 22 по меньшей мере частично деполимеризует гемицеллюлозы и лигнин в биомассе, поступающей со стадии предварительной подготовки 18, или в значительной степени солюбилизирует лигнин и гемицеллюлозы с более низким молекулярным весом и обеспечивает жидкость и остаточную волокнистую твердую фазу, которая включает целлюлозную фракцию биомассы. Предпочтительно, чтобы пары концентрированной кислоты 22 представляли собой пары органической кислоты, такой как уксусная, пропионовая, яблочная, янтарная или муравьиная, или состояли из смеси таких кислот. Особенно предпочтительно применение паров концентрированной муравьиной или уксусной кислоты 22, причем кислота должна иметь концентрацию от 50 до 90 процентов (об.) и более, пары воды составляют остальное.
[00028] Мы обнаружили в этой связи, что пары уксусной кислоты с концентрацией 50% или выше в воде при достаточном нагреве и времени контакта с хорошо измельченной и перемешанной биомассой из кукурузной соломы могут быть достаточны для деполимеризации материалов гемицеллюлозы и лигнина в кукурузной соломе до такой степени, что частично деполимеризованные материалы могут служить связующим в гранулированном материале 24, получаемом на стадиях сушки и гранулирования или уплотнения 26 и 28 соответственно. Предпочтительно не использовать дополнительные связующие для получения гранул, имеющих необходимую износостойкость для длительного бестарного хранения в месте производства или для транспортировки ко второму месторасположению для использования в качестве корма скоту или для дальнейшего фракционирования и переработки на второй или центральной установке (названных таким образом в графических материалах), как обсуждается далее.
[00029] Более высокие концентрации кислотных паров, содержащих от 70% кислоты до свыше 90% кислоты, могут применяться главным образом для солюбилизации гемицеллюлоз, а также лигнинов в биомассе, последняя по большей части нерастворима в растворе с концентрацией 50%. Осуществления изобретения, основанные в основном на солюбилизации гемицеллюлоз и лигнинов в биомассе 12, схематически показаны на Фигурах 2 и 3, где общие для нескольких осуществлений признаки обозначены одними и теми же ссылками. Эти осуществления будут описаны более подробно ниже со ссылкой на Фигуры 2 и 3.
[00030] В каждом из проиллюстрированных осуществлений, однако, сквозь биомассу 12 пропускают пары концентрированной кислоты 22 и осуществляют контакт с парами 22 на стадии вымачивания кислотными парами 20 в течение времени и при соответствующих давлениях и температуре, которые обеспечивают по меньшей мере частичную деполимеризацию или значительную солюбилизацию лигнинов и гемицеллюлоз в биомассе 12 в зависимости от обстоятельств. Биомассу 12 можно нагревать до приведения ее контакта с парами концентрированной кислоты 22, пары концентрированной кислоты 22 могут быть перегреты, а затем использованы для обработки биомассы 12 или пары 22 и биомассу 12 можно нагревать одновременно непосредственно перед или во время стадии вымачивания кислотными парами 20. Кроме того, пары концентрированной кислоты 22 могут быть образованы in situ путем одновременного нагрева биомассы 12 и концентрированного раствора органической кислоты, находящегося в контакте с биомассой 12, или путем контакта концентрированного раствора органической кислоты с горячей биомассой 12.
[00031] Условия давления, температуры и время обработки, необходимые по меньшей мере для частичной деполимеризации или значительной солюбилизации лигнинов и гемицеллюлоз в данной биомассе 12, будут изменяться в зависимости от определенной биомассы, подвергаемой обработке, и ее состава, от степени измельчения биомассы при поступлении на стадию вымачивания кислотными парами, от выбора конкретной органической кислоты или кислот, а также от концентрации используемой кислоты, но в целом ожидается, что стадию вымачивания кислотными парами можно проводить при давлениях в диапазоне от атмосферного до приблизительно 500 фунтов на квадратный дюйм, температурах от приблизительно 50 градусов Цельсия и выше в течение периода времени порядка тридцати минут и дольше. Более низкие концентрации кислоты, менее жесткие условия температуры и давления и более короткое время обработки требуются для осуществления, приведенного на Фигуре 1, по сравнению с осуществлениями, приведенными на Фигурах 2 и 3.
[00032] Вслед за стадией вымачивания кислотными парами 20 материал сушат на стадии 26 для удаления достаточного количества влаги, что позволяет осуществить гранулирование высушенной частично переработанной биомассы на стадии гранулирования или уплотнения 28. Стадия сушки/обезвоживания 26 может быть выполнена с помощью ряда традиционных устройств или комбинаций таких устройств для концентрирования водных суспензий и удаления из них воды до уровня, необходимого для гранулирования оставшейся твердой фазы, например, с помощью центрифуг, гидроциклонов, сушилок с ленточными фильтр-прессами, сушилок с кипящим слоем, обратных или прямых роторных барабанных сушилок, сушилок вихревого типа и т.д. Предпочтительно выходящая со стадии сушки 26 биомасса имеет содержание влаги 10 процентов или менее, более предпочтительно 8 процентов (вес.) или менее и наиболее предпочтительно 6 процентов (вес.) или менее для облегчения гранулирования и снижения транспортных расходов.
[00033] Гранулирование на стадии 28 может также быть выполнено с использованием способов и оборудования, хорошо известных специалистам в этой области, поскольку гранулирование кормов и древесной биомассы уже широко применяется и предпочтительно приводит к материалу с достаточной когезией и целостностью, позволяющими ему удовлетворительно выдерживать перевозку ко второму месторасположению или центральной установке 30 выбранным способом доставки независимо от того, доставляют материал пневматически или конвейерными лентами/системами, грузовым или железнодорожным транспортом, каким-либо другим способом или комбинацией способов. Для удобства доставка гранулированного материала от Площадки А до второго месторасположения будет описана в формуле изобретения ниже и в других разделах данного документа термином «транспортировка» материала с местной Площадки А до второго месторасположения, и термин «транспортировка» не ограничивается судами, самолетами, поездами или грузовиками или подобными видами перевозочного транспорта, но должен пониматься как включающий любой способ, которым такие гранулированные материалы могут быть перевезены с Площадки А ко второму месторасположению.
[00034] В этом смысле необходимая износостойкость гранулированного материала, что в принципе означает, что гранулы не производят излишнего количества мелких частиц при обращении с ними, транспортировке или хранении, будет зависеть более определенно от того, как с материалом обращаются, транспортируют или хранят на данной Площадке А, между Площадкой А и данной центральной установкой/вторым месторасположением, и на центральной установке/втором месторасположении. Кроме того, существует несколько устройств и относящихся к ним методов определения износостойкости гранул, так что точные цифровые значения для износостойкости не могут быть даны априори. Предпочтительно, однако, чтобы гранулированная, частично переработанная биомасса во всех случаях (Фигуры 1-3 и любые из вариации, охватываемые объемом данного изобретения в соответствии с формулой) была достаточно износостойкой и таким образом теряла не более пяти процентов массы, образуя пыль или мелкие частицы, в период от завершения стадии грануляции 28 до конечного размещения гранулированного материала и предпочтительно, чтобы не более трех процентов гранулированной частично переработанной биомассы терялось в виде мелких частиц в этом переходном периоде.
[00035] Гранулированный материал 24 можно транспортировать во второе месторасположение 30, представляющее собой площадку для откорма скота, и использовать для скармливания скоту. В случаях если топлива из возобновляемых источников, топливные добавки и/или химические продукты являются целевыми конечными продуктами, гранулированную частично переработанную биомассу 24 затем удобно транспортировать к центральной установке/второму месторасположению 30 для дальнейшей переработки, причем дальнейшая переработка включает по меньшей мере промывку растворителями или комбинацией растворителей на стадии отмывания растворителем 32, при этом растворитель(и) выбирают для эффективного разделения по меньшей мере частично деполимеризованных гемицеллюлозных материалов в продукте или потоке 34, содержащих пентозы, полученные при гидролизе гемицеллюлозных материалов в биомассе, и в основном целлюлозной твердой фракции 36. На Фигуре 1 на стадии 32 предпочтительно используют горячую воду для отделения в основном нерастворимых в воде фракций лигнина и целлюлозы от гемицеллюлозной фракции, а отмывку более концентрированной органической кислотой (в которой растворимы частично деполимеризованные лигнины) и процесс фильтрации используют при проведении одной или нескольких фильтраций для конечного производства твердой целлюлозной фракции 36 и фракции лигнина 38.
[00036] В определенном сценарии, когда необходима транспортировка гранулированного материала ко второму месторасположению 30 для дальнейшей переработки с получением топлив из возобновляемого сырья, топливных добавок и/или химической продукции, можно рассмотреть распределение совокупности местных перерабатывающих площадок вокруг центрального завода (концепция «ступица и спица»), где обычно местная площадка для переработки (Площадка А) находится в среднем на расстоянии 50 километров и более от центрального завода и часто может быть в среднем удалена от центрального завода на 80 километров и более.
[00037] Специалисты в данной области конечно поймут, что и другие растворители или комбинации растворителей могут быть также с преимуществом использованы для осуществления этих разделений, например, органический сорастворитель, такой как описан ниже в осуществлениях на Фигурах 2 и 3, может быть использован для солюбилизации и удаления остаточных материалов гемицеллюлозы и лигнина из твердой целлюлозной фракции 36.
[00038] Твердая целлюлозная фракция 36, выделенная или фракционированная таким способом, может быть переведена в гексозный продукт или в основном гексозный поток путем гидролиза сильной минеральной кислотой в условиях, подходящих для проведения такого превращения. Гексозный продукт или поток будет предпочтительно состоять в основном из С6 моносахаридов, пригодных для перевода в целевые основанные на биосырье химические и топливные продукты, которые требуют минимальной дополнительной предварительной обработки и очистки. Иллюстративные основанные на биосырье химические и топливные продукты, которые можно получить из С 6 моносахаридов, включают продукты топливных добавок, полученные путем гидрогенизации и гидроочистки, или этанол, лизин, треонин, молочную, глюконовую и другие органические кислоты, полученные путем ферментации.
[00039] Таким же образом, пентозный продукт или поток 34, полученный гидролизом гемицеллюлоз в биомассе 12, будет предпочтительно содержать в основном С5 моносахариды, пригодные для перевода в целевые основанные на биосырье химические и топливные продукты, которые можно получить из таких С5 моносахаридов, например этанол, треонин, лизин, молочную, глюконовую или другие органические кислоты, извлекаемые путем ферментации, фурфурол, фурфуриловый спирт, метилтетрагидрофурфурол, фурфуриловую кислоту и топливные добавки, получаемые путем гидрогенизации и гидроочистки.
[00040] Предпочтительной сильной минеральной кислотой для гидролиза твердой целлюлозной фракции 36 является серная кислота, применяемая в виде водного раствора с концентрацией 1-80, предпочтительно 40-80 процентов, при температуре от 25 градусов Цельсия до 100 градусов Цельсия, давлении от атмосферного до избыточного в 0,7 МПа (100 фунтов на квадратный дюйм) и времени обработки от 15 минут до 2 часов в зависимости, в основном, от используемых температурных условий.
[00041] Фракцию лигнинов 38 можно подобным образом сделать пригодной для использования в практических целях, например, путем озонолиза получать ароматические топливные добавки, основываясь, например, на данных из Патента США №2009/0718498 А1, как сырье для газификации в получении синтетического газа, как топливо для сжигания, или путем озонолиза получать ароматическое сульфонированное сырье для пр