Способ культивирования одноклеточной зеленой водоросли haematococcus pluvialis для получения астаксантина

Иллюстрации

Показать все

Изобретение относится к способу культивирования одноклеточной зеленой водоросли Haematococcus pluvialis для получения астаксантина, предусматривающему индукцию биосинтеза астаксантина в монадных вегетативных клетках причем культуру, выращенную на питательной среде МОНМ-1, в состоянии субстратного насыщения клеток по биогенным элементам (инокулят) вносят в количестве 0,3-0,35107кл.л-1 в питательную среду МОНМ-2, отличающуюся от среды МОНМ-1 30-кратно сниженным содержанием азота (0,2 мМл-1) и фосфора (0,12 ммл-1), однократно вносят 15 мМ ацетата натрия и дальнейшее выращивание на протяжении 20 суток осуществляют в полу проточном режиме (0,1-0,3 сут-1), поддерживая в среде МОНМ-2 заданный уровень азота и фосфора, при круглосуточном освещении люминесцентными лампами дневного света с интенсивностью светового потока 120 µЕг-2·с-1 непрерывной продувке воздухом (0,3 л мин-1) и температуре 22-26°С. Разработан экономичный и эффективный способ, который может быть положен в основу промышленного культивирования одноклеточной зеленой водоросли Haematococcus pluvialis, как сырья для получения естественного астаксантина в чистом виде и БАД с повышенной биодоступностью каротиноида. Способ исключает трансформацию вегетативных клеток в апланоспоры, обеспечивает преимущество в культурах клеток монадной структуры (>80%) на протяжении не менее 20 суток и содержание астаксантина в биомассе не менее 2 % сухого вещества.

Реферат

Предполагаемое изобретение относится к биотехнологии микроводорослей и может быть использовано для промышленного получения природного астаксантина из микроводоросли Haematococcus pluvialis.

Кетокаротиноид астаксантин (3,3'-дигидрокси-4,4'-дикето-β-каротин) является высоко ценным биологически активным соединением, проявляющим свойства иммуностимулятора, УФ- и радиопротектора, антиканцерогена, регулятора деятельности нервной, сердечно-сосудистой и эндокринной систем человека и животных. Полифункциональность физиологического действия астаксантина определяется его высокой антиоксидантной (АО) активностью, превышающей в системах in vivo АО-активность β-каротина и α-токоферола на порядок. Наиболее перспективным промышленным источником природного астаксантина является зеленая микроводоросль Haematococcus pluvialis, в клетках которой содержание пигмента может достигать 2-3% сухого вещества (СВ). При этом АО-активность астаксантина, продуцируемого водорослью, существенно выше активности синтетического аналога, благодаря преобладанию в составе изомеров природной формы 3S,3'S-изомера.

Использующиеся в настоящее время двухстадийные промышленные технологии получения астаксантина из Н. pluvialis предусматривают такой способ культивирования водоросли, при котором процессы роста и биосинтеза вторичных каротиноидов приурочены к разным стадиям клеточного цикла (вегетативной и спорогенеза) [см. Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response // Physiol. Plant. - 2000. - 108. - P. 111-11]. Ha первой («зеленой») стадии технологического процесса водоросль выращивают в контролируемых условиях, обеспечивающих максимальную скорость деления вегетативных клеток. На второй («красной») стадии, начинающейся с момента достижения культурами стационарной фазы роста, полученную биомассу переносят в условия, инициирующие образование апланоспор и накопление в них астаксантина. Трансформацию вегетативных клеток в апланоспоры и индукцию в последних вторичного каротиногенеза вызывают различными видами стресс-воздействия на культуры: увеличением освещенности, и температуры, дефицитом биогенных элементов или добавлением в среду различных химических соединений - активаторов свободно-радикального окисления [см. WO 97/28274, WO 2005/116238, ЕР 1760157, JP 3163127; ЕР 1724357]. В результате стресс-воздействия монадные эллипсоидные клетки приобретают сначала пальмеллевидную структуру (теряют жгутики, округляются и увеличиваются в размерах), а затем образуют апланоспоры, окруженные многослойной, устойчивой к химическому воздействию (щелочному и кислотному гидролизу), трудно разрушаемой механическими методами оболочкой, образованной целлюлозой и биополимером, аналогичным по структуре спорополленину, получившим название «альгенан». Созревание апланоспор сопровождается интенсивным накоплением моно- и диэфиров астаксантина в липидных включениях цитоплазмы. Продолжительность второй стадии культивирования, выход астаксантина из литра культуры и его содержание в биомассе варьируют в зависимости от методов индукции вторичного каротиногенеза.

Известные двухстадийные технологии культивирования H pluvialis, характеризуются рядом недостатков, определяющих высокую себестоимость получения астаксантина из H. pluvialis и ограничивающих непосредственное применение получаемой биомассы для производства БАД, продуктов питания и кормовых добавок. Наиболее существенные из них состоят в следующем:

1. Наличие у апланоспор прочных оболочек существенно затрудняет экстракцию астаксантина из биомассы при его получении в чистом виде, и обусловливает низкую биодоступность каротиноида для человека и млекопитающих при непосредственном употреблении биомассы в пищу из-за отсутствия в их желудочно-кишечном тракте ферментов, гидролизующих клетчатку и альгенан. Эти обстоятельства требуют применения комбинаций специальных энергоемких методов дезинтеграции клеток (измельчения биомассы до частиц размером менее 5-8 мкм) и приводят к использованию дорогостоящего и энергоемкого оборудования (шаровые мельницы, ультразвуковые дезинтеграторы, прессы и т.п.).

2. Индукция образования апланоспор и накопления в них астаксантина при помощи используемых в настоящее время методов стресс-воздействия на культуры вызывает значительные потери биомассы, полученной на I этапе, из-за массовой гибели вегетативных клеток (до 40-60%), что приводит к непроизводительным затратам на минеральные соли, электроэнергию и техническое обслуживание культиваторов.

3. Еще одним недостатком, требующим дополнительных капиталовложений, является агрегация пальмеллевидных клеток на начальном этапе второй стадии и оседание их на стенках культиваторов, приводящее к снижению интенсивности светового потока, проникающего во внутренний слой культуры. Это явление требует использования эрлифтов или мощных мембранных насосов для увеличения скорости турбулентного потока в культиваторах, а также обязательной чистки культиваторов перед каждым технологическим циклом (обработкой горячим паром под высоким давлением).

Известен способ одностадийного культивирования Н. pluvialis, при котором деление клеток и накопление в них астаксантина происходят на одной (вегетативной) стадии клеточного цикла [см. Del Rio Ε., Acien F.G., Garcia-Malea M.C., Rivas J., Molina- Grima E., Guerrero M.G. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture // Biotechnol. and Bioeng. - 2005. - 91, №. 7. - P. 808-815]. Преимущество способа состоит в том, что вегетативные монадные клетки, обогащенные астаксантином, не имеют альгенановой трудноразрушаемой оболочки, благодаря чему повышается биодоступность каротиноида, снижаются затраты на измельчение биомассы и увеличивается выход астаксантина при его получении в чистом виде. Водоросль выращивают автотрофно методом непрерывной культуры на питательной среде с пониженным содержанием азота (1,7 мМ) при искусственном освещении люминесцентными лампами с интенсивностью светового потока в 1220 μЕ·м-2·с-1 и скорости протока среды (ω), равной 0,9·сут-1. Получаемая таким образом биомасса на 95% состоит из монадных и пальмеллевидных вегетативных клеток и на 5% - из апланоспор. Наиболее рациональным методом сбора биомассы в этом случае является центрифугирование. Содержание сухого вещества (СВ) в литре культуры составляет 0,7г, содержание астаксантина в биомассе - 0,8% СВ.

Указанная работа имеет принципиальное значение, так как подтверждает возможность получения биомассы Н. pluvialis, состоящей из вегетативных клеток, обогащенных астаксантином. Однако предложенный режим культивирования имеет существенные ограничения для использования в промышленных масштабах. Наиболее важными из них являются:

а) высокие затраты электроэнергии на создание светового потока интенсивностью 1220 μЕ·м-2·с-1 и ежедневный сбор биомассы путем центрифугирования (90% всего объема культуры);

б) более низкое содержание астаксантина в сухом веществе (0,7% СВ), по сравнению с использующимися в настоящее время вариантами двухстадийного метода культивирования водоросли (2-2,5% СВ);

Кроме того, в работе отсутствуют сведения о продолжительности стационарной фазы роста культур (т.е. продолжительности технологического цикла) и все данные, характеризующие продуктивность культур по биомассе и астаксантину, приведены для 5-х суток культивирования. Отсутствуют также и сведения о соотношении монадных и пальмеллевидных клеток в получаемой биомассе, имеющие важное значение для оценки ее биодоступности, так как оболочки пальмелл, так же как и оболочки апланоспор, содержат альгенан.

В основу изобретения Способ культивирования одноклеточной зеленой водоросли Haematococcus pluvialis поставлена задача повысить эффективность одностадийного способа культивирования Η. pluvialis путем снижения затрат на производство биомассы и повышения ее биологической ценности (биодоступности и содержания астаксантина).

Способ культивирования одноклеточной зеленой водоросли Haematococcus pluvialis для получения астаксантина основан на методе индукции биосинтеза астаксантина в монадных вегетативных клетках, а его модификация и подбор условий культивирования, исключающих образование апланоспор, обеспечивающих преобладание в культурах подвижных клеток над пальмеллевидными (более 80%) на протяжении 20-ти дневного технологического цикла и накопление в них астаксантина до уровня его обычного содержания в апланоспорах (не менее 2%), были выполненными авторами в лабораторных экспериментах.

Поставленная задача достигается тем, что культуру, выращенную на питательной среде МОНМ-1, в состоянии субстратного насыщения клеток по биогенным элементам вносят в количестве 0,3-0,35·107 кл·л-1 в питательную среду. Среда характеризуется 30-кратно пониженным содержанием азота (0,2 мМ·л-1) и фосфора (0,12 мМ·л-1) (среда МОНМ-2). В среду также однократно вносят 15 мМ ацетата натрия. Выращивание в течение 20 сут. осуществляют в полупроточном режиме (0,1-0,3 сут-1), поддерживая в среде МОНМ-2 заданный уровень азота и фосфора, при круглосуточном освещении люминесцентными лампами дневного света с интенсивностью светового потока 120 μЕ·м-2·с-1, непрерывной продувке воздухом (0,3 л·мин-1) и температуре 22-26°С,

Общим для прототипа и заявляемого способа является индукция биосинтеза астаксантина в монадных клетках. В отличие от прототипа, где индукция биосинтеза астаксантина осуществляется снижением концентрации только азота до 1,7 мМ·л-1 и резким увеличением освещенности до 1220 μЕ·м-2·с-1, в заявляемом способе проводится одновременно резкое снижение концентрации азота и фосфора до 0,2 Мм N л-1 и 0,01 мМ Ρ л-1 в сочетании с одноразовым увеличением молярного соотношения C/N в среде без существенного увеличения освещенности. Кроме того, в прототипе используется метод непрерывной культуры со скоростью протока 0,9 сут-1, а в заявляемом - метод полупроточной культуры со скоростью протока 0,1-0,3сут-1

Изобретение поясняется иллюстрациями. Фиг. 1 - Динамика содержания суммарных каротиноидов и астаксантина в культурах и клетках H. pluvialis в зависимости от скорости протока питательной среды. Фиг. 2- Содержание каротиноидов (а) и астаксантина (б, в) в сухой биомассе в зависимости от скорости протока питательной среды. Фиг.3 - Средняя удельная скорость роста культур при различной скорости протока среды. Фиг. 4 - Динамика численности пальмеллевидных клеток в культурах при различной скорости протока среды. Фиг. 5 - Выход суммарных каротиноидов (а) и астаксантина (б) из литра культуры за 20-дневный технологический цикл в условиях одностадийной полупроточной культуры. Фиг.6 - Динамика биомассы в культурах Я. pluvialis (штамм HBSS-18) при различной скорости протока среды. Фиг. 7 - Выход суммарных каратиноидов и астаксантина из литра культуры в условиях двухстадийной культуры.

Способ культивирования одноклеточной зеленой водоросли Haematococcus pluvialis реализуется следующим образом:

Для культивирования может быть использован любой штамм Haematococcus pluvialis, например CALU-79, С ALU 333, CAUP G1002, ССАР 34/1D, ССАР 213/4, SAG 34-1d, SAG 213-4, UTEX 113, IBSS-18 при предпочтительности крупноклеточных штаммов. Их коллекционное хранение осуществляют на агаризованной (1.5%) базовой среде OHM (табл.1) при освещенности 1000-1500 Лк, и температуре 15-18°С с пересевом каждые 1,5-2 месяца.

Примечание: **-[см. Fdbregas J., Domiguez Α., Regueiro Μ, MasedaA., Otero Α. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis // Appl. Microbiol. Biotechnol. - 2000 - 53. - P. 530-535]

Получение инокулята. Для получения инокулята водоросль с агаризованных косяков переносят в жидкую стерильную базовую среду OHM и 5-7 дней выращивают методом накопительной культуры при рассеянном естественном освещении. Затем культуру переносят в среду МОНМ-1 (см. табл.1) и продолжают культивировать при искусственном освещении люминесцентными лампами дневного света (50-60 μЕ·м-2·с-1 16 час свет: 8 час темнота) в накопительном режиме при непрерывном барботаже воздухом со скоростью 0,1-0,2 л·мин-1. Для засева культиваторов используют активно делящуюся культуру, взятую на логарифмической стадии роста, когда все клетки имеют монадную структуру и остаточное содержание азота и фосфора составляет не ниже 40% исходного уровня в среде МОНМ-1. Суспензию клеток концентрируют и вносят в культиваторы из такого расчета, чтобы начальная плотность культур составляла 3-3,5·108 кл·л-1 или 0,3-0,4 г·л-1 сухого вещества.

Процесс культивирования. Питательной средой для предлагаемого способа культивирования служит среда МОНМ-2, в которую однократно сразу после засева культиваторов добавляют ацетат натрия до концентрации 15 мМ·л-1. Выращивание водоросли осуществляют при непрерывном освещении интенсивностью 120 μЕ·м-2·с-1, скорости продувки воздухом 0,2-0,3 л·мин-1 и температуре питательной среды 22-26°С. С интервалом в 24 часа из культиваторов отбирают 10-30% объема культуры, заменяя его равноценным объемом свежей среды и восстанавливая при этом исходный уровень азота (0,2 мМ·л-1) и фосфора (0,01 мМ·л-1).

Создание резкого отрицательного градиента концентраций азота и фосфора (не менее чем 10-кратного) в сочетании с увеличением молярного соотношения C/N в среде до 150 приводит к индукции биосинтеза астаксантина в вегетативных клетках Я. pluvialis при освещенности на порядок более низкой, чем в прототипе (фиг.1).

Содержание астаксантина в сухой биомассе в процессе культивирования увеличивается до 2,2-2,8% сухого вещества (фиг.2б), т.е. до уровня, обычно регистрируемого в биомассе апланоспор при двухстадийном культивировании H. pluvialis -2-3 % СВ. Его доля в суммарных каротиноидах, начиная с 10-х суток составляет 70-80 % (Фиг. 2 в).

Ежедневное восполнение начального уровня нитратов и фосфатов обеспечивает поддержание клеток в культурах в вегетативном состоянии. Средняя за 20 суток удельная скорость роста астаксантин-продуцирующих культур составляет 0,12-0,3 сут-1 (фиг. 3), что сопоставимо со скоростью роста автотрофных накопительных культур на первой («зеленой») стадии 2-х стадийной технологии культивирования (0,1- 0,35 сут-1). При этом 80-90 % астаксантин-содержащих клеток на протяжении периода не менее 20-ти суток сохраняют монадную структуру, а апланоспоры в культурах отсутствуют (фиг.4).

В предлагаемом способе культивирования величина скорости протока (ω) находится в диапазоне 0,1-0,3сут-1 но наиболее предпочтительной является ω=0,2 сут-1 (ежедневный 20% обмен среды). В этом случае общий выход каротиноидов и астаксантина из литра культуры за 20 суток культивирования выше, чем во всех апробированных авторами вариантах, и составляет 50 мг·л-1 и 35 мг·л-1, соответственно (фиг. 5 и 7).

Пример.

Для культивирования использовали штамм IBSS-18, выделенный авторами в окрестностях г. Адлер в 2003 г. Штамм характеризуется крупными размерами клеток (средняя длина монад составляет 33-34 мкм) и более высокой скоростью накопления астаксантина, по сравнению с коллекционными штаммами IPPAS Н-239 и CALU-79.

Для получения инокулята штамм в течение недели выращивали методом накопительной культуры в стеклянных колбах объемом 50 мл при естественном освещении (30-35Е·м-2·с-1) на базовой среде OHM. Затем культуру концентрировали, при помощи центрифугирования (800 об·мин-1, 2 мин), переносили в колбы большего объема (500 мл), содержащие 300 мл среды МОНМ-1, и продолжали выращивать в течение 4-х суток при освещении люминесцентными лампами «Feron» DL 20W Т4 6400К (50-60μЕ·м-2·с-1 с фотопериодом 16 час свет:8 час темнота) при непрерывном барботаже стерильным воздухом со скоростью 0,2 л·мин»-1 и температуре 22-23°С. На 5-е сутки (на логарифмической фазе роста), когда все клетки в культуре имели монадную структуру, а остаточное содержание азота и фосфора в среде составляло 52,14 и 4,64 мг·л-1, соответственно, суспензию клеток концентрировали при помощи центрифугирования (800 об мин»1,2 мин) и использовали в качестве инокулята.

Культивирование Н. pluvialis для получения астаксантина проводили в трех вариантах полупроточного режима в 1-литровых конических колбах на питательной среде МОНМ-2 при круглосуточном боковом освещении с интенсивностью светового потока 120 μЕ·м-2·с-1, скорости продувки воздухом 0,3 л·мин-1 и температуре 22-24°С. Объем культуры в колбах составлял 0,7 л, начальная численность клеток - 3-3.5·108 кл·л-1. Сразу после засева колб инокулятом в культуры внесли по 5,3 мл 2 Μ стерильного раствора ацетата натрия. С интервалом в 24 часа из колб отбирали 10, 20 и 30% объема культуры (ω=0,1-0,3 сут-1) и заменяли его равноценным объемом свежей среды, восстанавливая при этом исходную концентрацию азота (0,2 мМ·л-1) и фосфора (0,01 мМ·л-1). Появление астаксантина в клетках было зарегистрировано уже через сутки после внесения инокулята в среду МОНМ-2 и, начиная с 10-х суток культивирования, его содержание в расчете на одну клетку стабилизировалось и, в зависимости от скорости протока, составляло: а) 27-31 пг·кл-1 при ω=0,1 сут-1; б) 36-40 пг·кл-1 при ω=0,2 сут-1; в) 30-35 пг·кл-1 ω=0,3 сут-1 (фиг. 2). Астаксантин-продуцирующие монадных клетки активно делились на протяжении всего периода культивирования (фиг. 6). Азот и фосфор, ежедневно вносимые в среду во время обмена, полностью утилизировались культурами в течение суток, что являлось необходимым условием накопления астаксантина в клетках и одновременно с этим предотвращало непроизводительные затраты минеральных солей. Общий выход биомассы как сырья для получения астаксантина при полупроточном культивировании складывался из ежедневных 10-30% отборов и биомассы, собираемой из культиваторов по окончании технологического цикла. Данные, характеризующие выход каротиноидов и астаксантина за 20-ти суточный цикл культивирования, содержание каротиноидов в биомассе на заключительной стадии и диапазоны численности монадных клеток в культурах при различных вариантах протока среды представлены в табл. 2.

В условиях двухстадийного культивирования штамма IBSS-18 при индукции биосинтеза астаксантина стресс-комплексом CH3COONa (45 мМ) + NaCl (17 мМ)+t° =30°С его содержание в зрелых апланоспорах штамма IBSS-18 (в расчете на клетку) существенно выше (120-200 пг·кл-1), чем в монадных клетках, получаемых при реализации предлагаемого одностадийного способа культивирования. Однако максимальный выход астаксантина из литра культуры (с такой же начальной численностью клеток и продолжительностью технологического цикла), зарегистрированный авторами в серии экспериментов, при двухстадийном способе у данного штамма не превышает 27,5±1,4 мг·л-1 из-за массовой гибели клеток в постстрессорный период (см. фиг.7).

Предложенный способ обладает рядом преимуществ по сравнению с прототипом. Во-первых, 10-кратная экономия электроэнергии, затрачиваемой на освещение культиваторов, во-вторых, 3-9-кратная (в зависимости от величины ежедневного обмена) экономия электроэнергии, затрачиваемой на сбор биомассы, в-третьих, отсутствие непроизводительных потерь нитратов и фосфатов в процессе полу проточного культивирования, и, наконец, содержание астаксантина в биомассе по прототипу - 0,8% сухого вещества, а в предлагаемом способе - 2,2-2,8% сухого вещества.

Разработан экономичный и эффективный способ, который может быть положен в основу промышленного культивирования одноклеточной зеленой водоросли Haematococcus pluvialis, как сырья для получения природного астаксантина в чистом виде и БАД с повышенной биодоступностью каротиноида. биологически активного соединения. Способ исключает трансформацию вегетативных клеток в апланоспоры, обеспечивает преобладание в культурах клеток монадной структуры (>80%) на протяжении не менее 20 суток и содержание астаксантина в биомассе не менее 2% сухого вещества.

1. Способ культивирования одноклеточной зеленой водоросли Haematococcus pluvialis для получения астаксантина, предусматривающий индукцию биосинтеза астаксантина в монадных вегетативных клетках, отличающийся тем, что культуру, выращенную на питательной среде МОНМ-1, в состоянии субстратного насыщения клеток по биогенным элементам (инокулят) вносят в количестве 0,3-0,35·107 кл·л-1 в питательную среду МОНМ-2, отличающуюся от среды МОНМ-1 30-кратно пониженным содержанием азота (0,2 мМ·л-1) и фосфора (0,12 мМ·л-1), однократно вносят 15 мМ ацетата натрия и дальнейшее выращивание в течение 20 сут осуществляют в полупроточном режиме (0,1-0,3 сут-1), поддерживая в среде МОНМ-2 заданный уровень азота и фосфора, при круглосуточном освещении люминесцентными лампами дневного света с интенсивностью светового потока 120 µЕ·м-2·c-1, непрерывной продувке воздухом (0,3 л·мин-1) и температуре 22-26°С, а модифицированная среда МОНМ-1 имеет следующий состав, мг··л-1:

KNO3 615
СаСl2·2Н2О 55.45
FeC6H5O7·5H2O 2.62
MgSO4·7Н2О 246.5
Na2HPO4 45.0
MnSO4·H2O 0.85
ZnSO4·7H2O 0.07
CuSO4·5H2O 0.012
Na2MoO4·2H2O 0.12
СoСl2·6Н2О 0.011
KCr(SO4)2·12H2O 0.499
Na2SeO3 0.008
Биотин 0.025
Витамин В1 0.0175
Витамин B12 0.015