Способ термообработки крови сельскохозяйственных животных
Иллюстрации
Показать всеИзобретение относится к мясоперерабатывающей отрасли и может быть использовано в кормопроизводстве. Термообработку крови сельскохозяйственных животных осуществляют путем воздействия электромагнитных излучений сверхвысокочастотного и инфракрасного диапазонов в передвижных резонаторных камерах СВЧ-генератора в многократном циклическом режиме. Предусматривают эндогенный нагрев при удельной мощности 1…16 Вт/г, паузу и экзогенный нагрев при мощности ИК-ламп 1 кВт до достижения температуры в продукте 78…80°С. Продолжительность паузы больше, чем продолжительность нагрева. Обеспечивается удлинение сроков хранения сваренной крови и снижение бактериальной обсемененности продукта. 7 ил., 3 табл.
Реферат
Изобретение относится к мясоперерабатывающей отрасли, может быть использовано в комбикормовой промышленности. 10% крови убойных животных используется для производства высокоэффективных белковых добавок, позволяющих значительно повысить продуктивность с.-х. животных.
Технология переработки крови включает сбор и транспортирование сырья; тепловую обработку (коагуляция, варка); отделение жидкой фазы от общей массы; сушку влажного остатка и обработку сухого продукта. Для выполнения этих операций применяют отдельные машины и аппараты. Процессы переработки крови энергоемки и связаны с потреблением большого количества электроэнергии, пара и воды.
Для тепловой обработки крови применяют конвективный и кондуктивный методы подвода теплоты. Конвективный нагрев происходит при непосредственном контакте сырья с горячей водой или острым паром, при кондуктивном - теплота подводится через стенку от глухого пара, горячей воды. При нагревании крови до определенных температур происходит коагуляция, т.е. тепловая денатурация белков, входящих в состав крови. Коагуляция начинается при температуре 56оС и заканчивается при температуре 80оС (денатурация). При производстве кормовой муки кровь коагулируют и частично удаляют влагу. При коагуляции температуру крови доводят до 90…95оС для уничтожения микрофлоры. Но этот процесс периодический, длительный и трудоемкий. Кроме того, на поверхностях нагрева образуется слой коагулированных белков, который ухудшает условия теплообмена и затрудняет очистку оборудования [1, 2].
Кровяная мука является кормовым продуктом для растущих свиней и птицы. Она характеризуется высоким содержанием усваиваемого протеина (не менее 80%).
Известен способ термообработки крови убойных животных паром [3]. Согласно изобретению обработку крови паром осуществляют в магнитном поле.
Техничекский результат изобретения заключается в удлинении сроков хранения сваренной крови и снижении бактериальной обсемененности продукта.
Указанный технический результат достигается тем, что воздействия электромагнитных излучений сверхвысокочастотного и инфракрасного диапазонов в передвижных резонаторных камерах СВЧ-генератора происходят в многократном циклическом режиме, предусматривающем эндогенный нагрев, при удельной мощности 1…16 Вт/г, паузу и экзогенный нагрев, при мощности ИК-ламп 1 кВт до достижения температуры в продукте 78…80оС, причем продолжительность паузы больше, чем продолжительность нагрева.
На фиг. 1 представлена операционно-технологическая схема производства кровяной муки.
На фиг. 2 изображена динамика нагрева крови с.-х. животных при разных удельных мощностях СВЧ-генератора: 1) 16 Вт/г; 2) 8 Вт/г; 3) 7 Вт/г; 4) 3,5 Вт/г ; 5) 2,3 Вт/г; 6) 1 Вт/г .
На фиг. 3 изображена динамика нагрева крови с.-х. животных при воздействии ИК-излучений, мощность ламп 1 кВт.
На фиг. 4 изображена динамика нагрева крови с.-х. животных при комбинированном воздействии ЭМП СВЧ и ИК-излучений: 1) Руд. СВЧ = 9,34 Вт/г; 2) Руд. СВЧ = 6,74 Вт/г; 3)Руд. СВЧ = 5,23 Вт/г; 4) Руд. ИК = 4,5 Вт/г.
На фиг. 5 приведено схематическое изображение динамики нагрева сырья в процессе термообработки в рабочей камере с СВЧ и ИК-энергоподводами.
На фиг. 6 представлен график изменения бактериальной обсемененности крови в процессе термообработки СВЧ и ИК-энергоподводами.
На фиг.7 представлен график изменения бактериальной обсемененности крови в зависимости от температуры нагрева СВЧ и ИК-энергоподводами.
Разработанная операционно-технологическая схема производства кровяной муки представлена на фиг.1. Схема производства кровяной муки предусматривает следующие операции: залив крови в приемную горловину барабанного дозатора; дозирование сырья-крови в резонаторные камеры в процессе их движения, многократный эндо-, экзогенный нагрев сырья последовательно через паузу; выгрузка сваренной крови посредством опрокидывания резонаторных камер; измельчение и фасование вареной крови в специальные мешки; транспортирование в холодильную камеру; транспортирование в животноводческие хозяйства.
Технологическая схема термообработки крови с.-х. животных разработана с учетом нижеприведенных требований к процессу. 1. Термообработка крови происходит за счет многократного последовательного воздействия электромагнитного поля сверхвысокой частоты и инфракрасных излучений через паузу. 2. Установка работает в непрерывном режиме. 3. Кровь животных подается в передвижные резонаторные камеры дозированно, в автоматическом режиме. 4. Выгрузка вареной крови происходит за счет опрокидывания соответствующих резонаторных камер. Непрерывный режим воздействия обеспечивается за счет передвижных резонаторных камер СВЧ-генератора.
Экспериментальные исследования динамики эндогенного нагрева крови животных начальной температурой 15оС (фиг.2) показывают, что приращение температуры на 63…65оС в продукте при удельных мощностях генератора 16 Вт/г, 8 Вт/г, 3,5 Вт/г достигается за промежуток времени 30 с, 60 с, 180 с соответственно. Динамика нагрева крови с.-х. животных при воздействии ИК-излучений приведена на фиг.3. Динамика нагрева крови с.-х. животных при комплексном воздействии ЭМП СВЧ и ИК-излучений приведена на фиг.4.
Эмпирические зависимости температуры нагрева (оС) крови с.-х. животных (далее сырье) от продолжительности эндогенного нагрева при разной удельной мощности СВЧ-генератора:
∆T = 71,95 Ln(τ) +17,37 (16 Вт/г); ∆T = 54, 763 Ln (τ)+ 15,448(8 Вт/г);
∆T = 45,137 Ln (τ)+ 14,341(7 Вт/г); ∆T = 30,704 Ln (τ)+ 16,035 (3,5 Вт/г);
∆T = 25,214 Ln (τ)+ 15,578(2,3 Вт/г); ∆T = 18,852 Ln (τ)+ 15,041(1 Вт/г). (4.1)
Из анализа температурных кривых, представленных на фиг.2 следует, что применение низкой удельной мощности СВЧ-генератора обеспечивает большую равномерность теплового воздействия в течение всего процесса. Заметим, что чрезмерное увеличение температуры в сырье при использовании СВЧ-энергоподвода может привести к возникновению объемного напряженного состояния внутри продукта, связанного с неравномерным распределением влаги, образованием трещин (за счет возникновения большого градиента влагосодержания) и разрушением структуры продукта. Следует отметить, что повышение СВЧ-мощности позволяет в значительной степени интенсифицировать процесс термообработки крови. С повышением температуры происходит уменьшение коэффициента диэлектрических потерь, что, в свою очередь, приводит к снижению количества теплоты, генерируемой в продукте. Однако согласно закону Джоуля-Ленца эффективность преобразования энергии переменного электромагнитного поля в теплоту пропорциональна квадрату напряженности ЭМП, поэтому увеличение подводимой СВЧ-мощности способствует увеличению кпд процесса трансформации СВЧ-энергии.
Пользуясь методикой активного планирования трехфакторного эксперимента и программой «Statistic V5.0», построены поверхность отклика и их двумерные сечения в изолиниях моделей. Эмпирические выражения, описывающие модели энергетических затрат (W), приращение температуры крови (∆Т), производительности установки (Q 1) следующие:
∆Т = -21,769 + 6,045·х1 +29,827 ·х2 - 0,213 ·х2 1 - 6,173 ·х2 (1)
Q = 678, 8 - 77,591 ·х1 - 275,645 ·х2 +1,176 ·х2 1 + 7,741 ·х2 2 + 61, 31·х1 ·х2 (2)
W = 0,024 - 0,0029 ·х1 - 0,0172 ·х2 + 8,88 ·10-7 ·х2 1 + 4,1 ·10 -14 · х2 2 +0,0288·х1 ·х2 (3)
где х1 - удельная мощность СВЧ-генератора в кодированных единицах; х2 - общая продолжительность воздействия электромагнитных излучений в кодированных единицах; х3 - мощность ИК-излучений. Значение фактора х1 на нулевом уровне равно 8,5 Вт/г, х2 - 108 с; х3 - 2 кВт; интервал варьирования фактора х1 = 7,5 Вт/г, х2 = 0,9 мин, х3 = 0,4 кВт.
В ФБУ «Государственный региональный центр стандартизации, метрологии и испытаний в Чувашской Республике» проведена оценка вареной крови опытного и контрольного образцов на основе органолептических, фи-зико-химических и микробио-логических по-каза-телей (протокол испытаний №1097 от 15.08.2013 г.). Испытано 4 образца в 4-кратной повторности: исходная кровь - 1 образец; кровь подвергали воздействию эндо-, экзогенного нагрева по предложенной технологии с помощью разработанной установки: в течение 45 с до 69оС - 2 образец; в течение 60 с до температуры 76оС - 3 образец; в течение 75 с до температуры 81оС - 4 образец. По результатам исследований микробиологических показателей (КМАФАнМ) по ГОСТ 10444.15.94 построены графики зависимости ОМЧ (КОЕ/см3) от продолжительности воздействия ЭМИ (фиг.6) и температуры нагрева продукта (фиг.7).
Основным критерием при обосновании режимов работы установки является изменение бактериальной обсемененности крови в процессе термообработки. Результаты исследований микробиологических показателей крови 4-х образцов приведены в табл. 1 и 2. Первый образец - контрольный вариант, второй - термообработка крови до 40°С, третий - термообработка крови до 60°С, четвертый - термообработка крови до 75°С. Исследование микробиологических параметров крови с исходной бактериальной обсемененностью 4,4 ·106 КОЕ/см3 показало, что при термообработке до 75°С с СВЧ и ИК-энергоподводами, общее микробное число в продукте снизилось до 10 000 КОЕ/см3 (фиг.7).
Таблица 1 - Результаты исследований микробиологических показателей крови контрольного и опытного образцов
Определяемые показатели | Результаты исследований | Единица измерения | НД на метод исследования |
БГКП (колиформы) | 1;2;3;4 - не обн. | в 0,1 см3 | ГОСТ Р 52816 -07 |
Сульфитредуцирующие клостридии | 1;2;3;4 - не обн. | в 1,0 см3 | ГОСТ 29185-91 |
S. aureus | 1;2;3;4 - не обн. | в 1,0 см3 | ГОСТ Р 52815-07 |
Патогенные в т.ч. сальмонеллы | 1;2;3;4 - не обн. | в 25 см3 | ГОСТ Р 52814-07 |
Таблица 2 - Результаты исследований количества мезофильных аэробных и факультативно-анаэробных микроорганизмов (КМАФАнМ) контрольного и опытного образцов
№ образцов | Продолжительность воздействия, с | Температурапродукта, ºС | ОМЧКОЕ/см3 | Норма, КОЕ/см3 |
1 | Контроль | 20 | 4·4·106 | 105 |
2 | 45 | 69 | 1·105 | |
3 | 60 | 76 | 5·104 | |
4 | 75 | 81 | 1·104 |
Зависимость микробиологических параметров крови от температуры нагрева описывается эмпирическим выражением: y = 748,35x2 - 114326x + 4E+06.
Результаты исследований органолептических и физико-химических показателей образцов приведены в табл. 3.
Таблица 3 - Результаты исследований органолептических и физико-химических показателей вареной крови
№ | Показатель | Характеристика и норма | Баллы | |
Опыт | Контроль | |||
1 | Внешний вид | Продукт с чистой сухой поверхностью, без повреждений и серых пятен, крупных пустот, слипов | 9 | 7 |
2 | Консистенция | Плотная, слегка мажущаяся | 5 | 4 |
3 | Вид продукта на разрезе | Продукт некрошливый | 6 | 4 |
4 | Цвет продукта на разрезе | От темно-красного до коричневого | 6 | 4 |
5 | Вкус и запах | Вкус приятный, свойственный изделиям из крови, без постоянного привкуса и запаха | 9 | 7 |
Итого баллов | 35 | 26 | ||
6 | Влага, %, не более | 81 | 75 | 81…85 |
Плотность, кг/м3 | ||||
7 | Наличие патогенных организмов | не допускается | не обнаружено |
При балльной оценке качества продуктов из крови использовали 9 - балльные шкалы, представленные в соответствии с требованиями ГОСТ 9959-91. Из результатов исследований вытекает, что органолептические показатели опытного образца лучше контрольного на 9 баллов.
Схематическое изображение динамики нагрева сырья в процессе термообработки в рабочей камере установки с СВЧ и ИК-энергоподводами представлено на фиг.5. В результате термической обработки крови КРС воздействием СВЧ и ИК-излучений в разработанной установке в течение 288 секунд, получена продукция, влажностью 66%, при начальной влажности 81%. При этом величина сухого остатка крови составила 19%. В процессе эксперимента не наблюдалось коробления и растрескивания продукта. Такой процесс термообработки крови существенно сокращает продолжительность и энергозатраты на получение продукта из крови в виде кровяной муки.
Общая продолжительность обработки 288 с: из них нагрев с СВЧ-энергоподводом 27 с, ИК-энергоподводом 27 с, пауза 216 с, выгрузка 9 с, загрузка 9 с.
Источники информации
1. Ивашов В.И. Технологическое оборудование предприятий мясной промышленности.Ч.1. Оборудование для убоя и первичной обработки. - М.: Колос, 2001. - С. 322…323.
2. Бредихин С.А. Технологическое оборудование мясокомбинатов. - М.: Колос, 2000. - С. 266.
3. Патент РФ 2133574. Способ переработки крови убойных животных.
Способ термообработки крови сельскохозяйственных животных, отличающийся тем, что воздействия электромагнитных излучений сверхвысокочастотного и инфракрасного диапазонов в передвижных резонаторных камерах СВЧ-генератора происходят в многократном циклическом режиме, предусматривающем эндогенный нагрев, при удельной мощности 1…16 Вт/г, паузу и экзогенный нагрев, при мощности ИК-ламп 1 кВт до достижения температуры в продукте 78…80оС, причем продолжительность паузы больше, чем продолжительность нагрева.