Ультразвуковой иммерсионный многосекционный пьезоэлектрический преобразователь
Иллюстрации
Показать всеИспользование: для дефектоскопии и толщинометрии различных материалов. Сущность изобретения заключается в том, что ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, расположенную со стороны излучающей поверхности пьезоэлементов, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, причем линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, при этом пьезоэлементы расположены с образованием вогнутой или выпуклой относительно линзы поверхности, все пьезоэлементы выполнены с общим для них положительным и отрицательным электродами, перекрывающими заполненные полимерным компаундом промежутки между пьезоэлементами и подключенными к электрическому герметичному разъему, при этом линза и демпфирующее вещество поверхностями, обращенными к образованным пьезоэлементами и полимерным компаундом поверхностям, каждая со своей стороны, плотно прилегает к расположенным на этих поверхностях электродам, причем линза приклеена к расположенному на пьезоэлементах электроду или плотно прилегает к электроду через слой акустически проводящей жидкости. Технический результат: обеспечение возможности увеличения длины рабочей зоны и расширения диаграммы направленности пьезоэлектрического преобразователя при упрощении конструкции преобразователя. 5 з.п. ф-лы, 3 ил.
Реферат
Изобретение относится к ультразвуковой измерительной технике, а именно к пьезоэлектрическим преобразователям, и может быть использовано при дефектоскопии и толщинометрии при исследовании различного рода материалов, в частности труб, металлического проката, пластиков и неоднородных материалов, таких например, как сварные конструкции.
Известен ультразвуковой преобразователь, содержащий корпус с протектором в виде усеченного конуса, пьезоэлемент и демпфер, размещенный в корпусе (см. заявку GB №2091520, кл. G01N 29/00, 28.07.1982).
Данный преобразователь создает в исследуемом материале только продольную волну и может быть использован только в области высоких частот, что сужает область его использования. Кроме того, для установки преобразователя на исследуемое изделие необходима смачивающая жидкость.
Известен раздельно-совмещенный преобразователь, в корпусе которого установлены под углом 45 градусов излучатель поперечной волны и приемный элемент (см. патент FR №2499248, кл. G01N 29/00, 06.08.1982).
Данный преобразователь работает в высокочастотной области и требует значительных усилий для обеспечения хорошего акустического контакта, что сужает область его использования.
Кроме того, общим недостатком описанных выше преобразователей является то, что они не могут работать в иммерсионном режиме.
Наиболее близким к изобретению по технической сущности и достигаемому результату является ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь, содержащий герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, сопряженную с пьезоэлементами со стороны излучающей поверхности пьезоэлементов, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя в направлении излучения преобразователя, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, причем линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом (см. патент на полезную модель RU №114786, кл. G01N 29/00, 10.04.2012).
Данный преобразователь выполнен с возможностью его использования для контроля объектов с шероховатой, неподготовленной и криволинейной поверхностью. Однако данный преобразователь имеет сравнительно сложную конструкцию, что снижает его надежность и ограничивает диапазон возможных конфигураций диаграммы излучения.
Задачей, на решение которой направлено изобретение, является повышение достоверности контроля целостности контролируемого материала за счет увеличения длины рабочей зоны и расширения диаграммы направленности пьезоэлектрического преобразователя при упрощении конструкции преобразователя.
Технический результат заключается в том, что достигается повышение достоверности контроля целостности контролируемого материала.
Задача решается, а технический результат достигается за счет того, что ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, расположенную со стороны излучающей поверхности пьезоэлементов, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, причем линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом, пьезоэлементы расположены с образованием вогнутой или выпуклой относительно линзы поверхности, промежутки между пьезоэлементами заполнены полимерным компаундом с образованием плавно изогнутых, общих с пьезоэлементами поверхностей, одна из которых обращена в сторону линзы, а другая - в сторону демпфирующего вещества, все пьезоэлементы выполнены с общим для них положительным и отрицательным электродами, перекрывающими заполненные полимерным компаундом промежутки между пьезоэлементами и подключенными к электрическому герметичному разъему, при этом линза и демпфирующее вещество поверхностями, обращенными к образованным пьезоэлементами и полимерным компаундом поверхностям, каждая со своей стороны, плотно прилегает к расположенным на этих поверхностях электродам, причем линза приклеена к расположенному на пьезоэлементах электроду или плотно прилегает к электроду через слой акустически проводящей жидкости толщиной меньше чем δ 4 , где δ - длина волны ультразвука в жидкости, прилегающие поверхности линзы и демпфирующего вещества повторяют поверхности электродов к которым они прилегают, а линейный размер излучающей поверхности каждого пьезоэлемента равен или меньше h=C/2F, где C - скорость звука в материале пьезоэлемента; F - резонансная частота пьезоэлемента.
Пьезоэлементы предпочтительно имеют относительно продольной оси преобразователя попарно одинаковую форму.
Пьезоэлементы стороной, обращенной к контролируемому материалу, могут быть расположены под острым или тупым углом к акустической оси пьезоэлектрического преобразователя, соответственно, в случае расположения пьезоэлементов с образованием вогнутой или выпуклой поверхности.
Линза, предпочтительно, выполненная в виде слоя акустически проводящего твердого материала, имеет толщину S напротив каждого из пьезоэлементов, равную
λ 4 = c 4 f ,
где λ - длина волны ультразвука в материале линзы;
c - скорость звука в материале линзы;
f - рабочая частота пьезоэлемента.
Линза может иметь клиновидную форму напротив каждого пьезоэлемента в плоскости продольного сечения, проходящей через акустические оси пьезоэлементов, а толщина линзы в месте прохождения через нее акустической оси пьезоэлемента равна λ 4 .
Линза может быть выполнена с цилиндрической наружной поверхностью, обращенной вогнутой частью в сторону контролируемого материала и выполненной напротив каждого из пьезоэлементов, причем образующая цилиндрической поверхности перпендикулярна плоскости, в которой лежат акустические оси пьезоэлементов, линза имеет наименьшую толщину, равную λ/4, а образующая цилиндрической поверхности в точке наименьшей толщины цилиндрической поверхности пересекается с акустической осью соответствующего пьезоэлемента с увеличением толщины линзы в направлении от этой акустической оси.
Выполнение пьезоэлементов расположенными с образованием вогнутой или выпуклой относительно линзы поверхности с промежутками между пьезоэлементами, заполненными полимерным компаундом с образованием плавно изогнутых, общих с пьезоэлементами поверхностей, одна из которых обращена в сторону линзы, а другая - в сторону демпфирующего вещества в сочетании с тем, что все пьезоэлементы выполнены с общим для них положительным и отрицательным электродами, перекрывающими заполненные полимерным компаундом промежутки между пьезоэлементами и подключенными к электрическому герметичному разъему, при этом линза и демпфирующее вещество поверхностями, обращенными к образованным пьезоэлементами и полимерным компаундом поверхностям, каждая со своей стороны, плотно прилегает к расположенным на этих поверхностях электродам, причем прилегающие поверхности линзы и демпфирующего вещества повторяют поверхности электродов, к которым они прилегают, а линейный размер излучающей поверхности каждого пьезоэлемента равен или меньше h=C/2F, где C - скорость звука в материале пьезоэлемента; F - резонансная частота пьезоэлемента, позволяет добиться упрощения конструкции преобразователя за счет возможности выполнения пьезоэлементов скомпонованными с электродами в виде отдельного блока, который легко вставить в преобразователь при сборке или легко заменить в случае необходимости, например при ремонте. Таким образом, преобразователь может состоять из отдельных конструктивно простых элементов: блока пьезоэлементов, линзы и демпфирующего вещества, из которых легко собирается преобразователь практически любой необходимой конфигурации. Кроме того, представляется возможность создавать блоки из пьезоэлементов с обращенной к линзе поверхностью, которая может быть двухмерной, например близкой к цилиндрической, или трехмерной, например близкой к сферической, что в свою очередь позволяет создавать преобразователи практически с любой требуемой длиной рабочей зоны пьезоэлектрического преобразователя, что позволяет повысить достоверность контроля целостности контролируемого материала
Выполнение толщины линзы равной λ 4 позволяет добиться максимальной чувствительности пьезоэлектрического преобразователя за счет эффекта просветления.
Выполнение линзы с описанными выше клиновидными поверхностями позволяет сократить длительность эхо-импульса и увеличить соотношение сигнал/шум.
Выполнение линзы с цилиндрическими поверхностями позволяет, помимо приведенных выше качеств, обеспечить концентрацию энергии акустического поля в заданной области.
На фиг.1 представлен продольный разрез ультразвукового иммерсионного многоэлементного пьезоэлектрического преобразователя с двумя пьезоэлементами и линзой с цилиндрическими поверхностями.
На фиг.2 представлен продольный разрез ультразвукового иммерсионного многоэлементного пьезоэлектрического преобразователя с пьезоэлементами и линзой с клиновидной формой напротив каждого пьезоэлемента.
На фиг.3 представлен продольный разрез ультразвукового иммерсионного многоэлементного пьезоэлектрического преобразователя с образованной пьезоэлементами выпуклой поверхностью, обращенной к контролируемому материалу.
Ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь содержит герметичный корпус 1 с демпфирующим веществом 2, пьезоэлементы 3, установленные внутри корпуса 1 и расположенные в корпусе 1 симметрично относительно акустической оси 4 преобразователя, и линзу 5, расположенную со стороны излучающей поверхности пьезоэлементов 3.
Пьезоэлементы 3 могут быть выполнены в виде круглых, сегментных или прямоугольных пластин и расположены со стороны, обращенной к контролируемому материалу под острым α или тупым β углом к акустической оси 4 пьезоэлектрического преобразователя, соответственно, в случае расположения пьезоэлементов 3 с образованием вогнутой или выпуклой поверхности, при этом пьезоэлементы 3, предпочтительно, имеют относительно продольной оси (совпадающей с акустической осью 4) преобразователя попарно одинаковую форму и выполнены с электродами 6 и 7 на их противоположных поверхностях, подключенными к электрическому герметичному разъему 8. Акустические оси 9 пьезоэлементов 3 пересекаются между собой на продольной оси преобразователя.
Вектор поляризации всех пьезоэлементов 3 направлен либо в сторону излучения, либо в сторону демпфирующего вещества 2, причем линза 5 выполнена общей для всех пьезоэлементов 3 или состоит из отдельных секций 10, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом.
Пьезоэлементы 3 расположены с образованием вогнутой (фиг.1 и 2) или выпуклой (фиг.3) относительно линзы 5 поверхности. Промежутки между пьезоэлементами 3 заполнены полимерным компаундом 11 с образованием плавно изогнутых, общих с пьезоэлементами 3 поверхностей, одна из которых обращена в сторону линзы 5, а другая - в сторону демпфирующего вещества 2.
Все пьезоэлементы 3 выполнены с общим для них положительным 7 и отрицательным 6 электродами, перекрывающими заполненные полимерным компаундом 11 промежутки между пьезоэлементами 3 и подключенными к электрическому герметичному разъему 8, при этом линза 5 и демпфирующее вещество 2 поверхностями, обращенными к образованным пьезоэлементами 3 и полимерным компаундом 11 поверхностям, каждая со своей стороны, плотно прилегает к расположенным на этих поверхностях электродам 6 и 7, причем линза 5 приклеена к расположенному на пьезоэлементах 3 электроду 7 или плотно прилегает к электроду 7 через слой акустически проводящей жидкости (не показано на чертеже) толщиной меньше чем δ 4 , где δ - длина волны ультразвука в жидкости, прилегающие поверхности линзы 5 и демпфирующего вещества 2 повторяют поверхности электродов 6 и 7, к которым они прилегают, а линейный размер излучающей поверхности каждого пьезоэлемента 3 равен или меньше h=C/2F, где C - скорость звука в материале пьезоэлемента 3; F - резонансная частота пьезоэлемента 3.
Линза 5, предпочтительно, выполненная в виде слоя акустически проводящего твердого материала, имеет толщину S напротив каждого из пьезоэлементов (на чертеже не показано), равную
λ 4 = c 4 f ,
где λ - длина волны ультразвука в материале линзы;
c - скорость звука в материале линзы;
f - рабочая частота пьезоэлемента.
Линза 5 может иметь клиновидную форму напротив каждого пьезоэлемента 3 в плоскости продольного сечения проходящей через акустические оси 9 пьезоэлементов, а толщина линзы в месте прохождения через нее акустической оси 9 пьезоэлемента равна λ 4 .
Линза 5 может быть выполнена с цилиндрической наружной поверхностью, обращенной вогнутой частью в сторону контролируемого материала и выполненной напротив каждого из пьезоэлементов 3 (фиг.1), причем образующая цилиндрической поверхности перпендикулярна плоскости, в которой лежат акустические оси 9 пьезоэлементов, линза 5 имеет наименьшую толщину, равную λ/4, а образующая цилиндрической поверхности в точке наименьшей толщины цилиндрической поверхности пересекается с акустической осью 9 соответствующего пьезоэлемента с увеличением толщины линзы в направлении от этой акустической оси 9.
Ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь работает следующим образом.
После установки преобразователя в жидкости линзой 5 над поверхностью контролируемого материала к выводам электрического герметичного разъема 8 подводят возбуждающее напряжение или в случае приема ультразвуковых колебаний снимают с этих выводов принятый сигнал. В режиме излучения, благодаря подключению электродов пьезоэлементов 3 к соответствующим выводом разъема 8, пьезоэлементы 3 колеблются синфазно, излучая в жидкость продольные волны. Волновой фронт достигает поверхности контролируемого объекта и, в зависимости от угла падения, формирует в нем фронт продольных или поперечных волн. При встрече этого фронта с неоднородностью материала или дефектом, формируется отраженный эхо-импульс.
В режиме приема отраженные волны принимаются всеми пьезоэлементами 3 или их частью и образуют выходной электрический сигнал на выводах разъема 8.
Размещение пьезоэлементов 3 описанным выше способом в сочетании с выполнением их с попарно одинаковой формой позволяет увеличить длину рабочей зоны пьезоэлектрического преобразователя и расширить его диаграмму направленности, что в конечном итоге позволяет добиться повышения достоверности контроля целостности контролируемого материала.
Иммерсионный тип контакта преобразователя с контролируемым объектом дает возможность контролировать материалы с шероховатой поверхностью (например, отливки) и длинномерные изделия, а также увеличить срок службы преобразователя.
Возможность концентрации энергии акустического поля в заранее определенной рабочей зоне обеспечивает повышение достоверности контроля в массивных изделиях.
Расширение диаграммы направленности обеспечивает возможность обнаружения произвольно ориентированных дефектов.
Настоящее изобретение может быть использовано для дефектоскопии и толщинометрии материала конструкций в машиностроении, трубопроводном и железнодорожном транспорте.
1. Ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь, содержащий герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, расположенную со стороны излучающей поверхности пьезоэлементов, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, причем линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, соединенных между собой в местах сопряжения связующим веществом, например клеем или полимерным компаундом, отличающийся тем, что пьезоэлементы расположены с образованием вогнутой или выпуклой относительно линзы поверхности, промежутки между пьезоэлементами заполнены полимерным компаундом с образованием плавно изогнутых, общих с пьезоэлементами поверхностей, одна из которых обращена в сторону линзы, а другая - в сторону демпфирующего вещества, все пьезоэлементы выполнены с общим для них положительным и отрицательным электродами, перекрывающими заполненные полимерным компаундом промежутки между пьезоэлементами и подключенными к электрическому герметичному разъему, при этом линза и демпфирующее вещество поверхностями, обращенными к образованным пьезоэлементами и полимерным компаундом поверхностям, каждая со своей стороны, плотно прилегает к расположенным на этих поверхностях электродам, причем линза приклеена к расположенному на пьезоэлементах электроду или плотно прилегает к электроду через слой акустически проводящей жидкости толщиной меньше чем δ 4 , где δ - длина волны ультразвука в жидкости, прилегающие поверхности линзы и демпфирующего вещества повторяют поверхности электродов, к которым они прилегают, а линейный размер излучающей поверхности каждого пьезоэлемента равен или меньше h=C/2F, гдеC - скорость звука в материале пьезоэлемента;F - резонансная частота пьезоэлемента.
2. Преобразователь по п.1, отличающийся тем, что пьезоэлементы имеют относительно продольной оси преобразователя попарно одинаковую форму.
3. Преобразователь по п.1, отличающийся тем, что пьезоэлементы стороной, обращенной к контролируемому материалу, расположены под острым или тупым углом к акустической оси пьезоэлектрического преобразователя, соответственно в случае расположения пьезоэлементов с образованием вогнутой или выпуклой поверхности.
4. Преобразователь по п.1, отличающийся тем, что линза, выполненная в виде слоя акустически проводящего твердого материала, имеет толщину S напротив каждого из пьезоэлементов, равную λ 4 = c 4 f , где λ - длина волны ультразвука в материале линзы;c - скорость звука в материале линзы;f - рабочая частота пьезоэлемента.
5. Преобразователь по п.1, отличающийся тем, что линза имеет клиновидную форму в плоскости продольного сечения, проходящей через акустические оси пьезоэлементов, а толщина линзы в месте прохождения через нее акустической оси пьезоэлемента равна λ 4 .
6. Преобразователь по п.1, отличающийся тем, что линза выполнена с цилиндрической наружной поверхностью, обращенной вогнутой частью в сторону контролируемого материала и выполненной напротив каждого из пьезоэлементов, причем образующая цилиндрической поверхности перпендикулярна плоскости, в которой лежат акустические оси пьезоэлементов, линза имеет наименьшую толщину, равную λ/4, а образующая цилиндрической поверхности в точке наименьшей толщины линзы с цилиндрической поверхностью пересекается с акустической осью соответствующего пьезоэлемента с увеличением толщины линзы в направлении от этой акустической оси.