Способы определения особенностей пластов, осуществления навигации траекторий бурения и размещения скважин применительно к подземным буровым скважинам

Иллюстрации

Показать все

Изобретение относится к области бурения подземных буровых скважин и измерения в них. Техническим результатом является расширение функциональных возможностей и повышение информативности исследований. Предложен способ направления бурения буровой скважины в целевом подземном пласте, включающий этапы подготовки бурового оборудования, имеющего компоновку низа бурильной колонны, которая включает в себя управляемую подсистему наклонно-направленного бурения и направленный измерительный прибор каротажа во время бурения с возможностью кругового просмотра и упреждающего просмотра; определения наличия заданного типа особенности пласта в целевом пласте; и навигации траектории бурения в целевом пласте буровым оборудованием, включающей в себя прием сигналов измерений с направленного измерительного прибора, получение на основании принимаемых сигналов измерений показателей параметров пласта относительно особенности пласта в целевом пласте и управление подсистемой наклонно-направленного бурения для бурения в направлении, определяемом в зависимости от получаемых показателей параметров пласта. 3 н. и 20 з.п. ф-лы, 56 ил.

Реферат

ПРИТЯЗАНИЕ НА ПРИОРИТЕТ

Испрашивается приоритет предварительной заявки №61/253248 на патент США, поданной 20 октября 2009 года, которая включена в эту заявку путем ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Это изобретение относится к области бурения подземных буровых скважин и измерения в них и, более конкретно, к способам определения особенностей целевых подземных пластов и точного размещения скважин, например, во время наклонно-направленного бурения буровых скважин.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Появление наклонно-направленного бурения и способов каротажа во время бурения и измерений во время бурения в корне улучшило процесс выбора мест заложения и размещения скважин для добычи углеводородных ресурсов. Наклонно-направленное бурение включает в себя бурение ствола скважины по изменяющемуся курсу для решения различных задач, включая достижение проектной глубины в конкретной намеченной области. Наклонно-направленное бурение используют, например, для получения надлежащей траектории ствола скважины в нефтеносный слой пласта (или продуктивную зону) и затем бурения по существу в пределах продуктивной зоны. Горизонтально пробуренные скважины могут значительно увеличивать объем ствола скважины в продуктивной зоне при сопутствующем повышении добычи нефти.

Каротажем во время бурения обычно называют измерение свойств пласта приборами, которые расположены в утяжеленных бурильных трубах над буровым долотом. Измерения выполняют сразу после бурения скважины до того, как на ней отрицательно сказывается продолжающееся бурение или операции взятия пробы. Вторжение флюидов сквозь стенку буровой скважины также является относительно низким при каротаже спускаемым на кабеле прибором вследствие небольшого промежутка времени между бурением и измерением. Иногда проводят различие между каротажем во время бурения и измерениями во время бурения, заключающееся в том, что если данные каротажа во время бурения регистрируются в запоминающем устройстве и выгружаются после достижения прибором поверхности, то данные измерений во время бурения передаются на поверхность (например, по гидроимпульсному каналу связи или проводной бурильной трубе) и обрабатываются в реальном времени. Однако термин «каротаж во время бурения» также используют в более общем смысле для охвата каротажа во время бурения и измерений во время бурения, и он будет использоваться в этой заявке подобным образом, если не будет указываться иное.

До начала наклонно-направленного бурения разрабатывают план строительства скважины, при этом группа бурения часто обладает важными априорными сведениями относительно геологических атрибутов локальных пластов. Исходные сведения можно получать, например, из разведочных и/или продуктивных скважин на локальном участке. Сейсмические исследования обычно используют при определении положения траектории скважины в пласте благодаря возможности глубокого зондирования в пласт. Однако сейсмические исследования обычно не могут обеспечивать желаемого разрешения и точности, достаточных для определения особенностей целевого пласта и прогнозирования места, необходимого для успешного размещения скважины.

Другие измерения, такие как измерения удельного сопротивления, часто выполняют электромагнитными приборами. В некоторых приборах электромагнитного каротажа используют связанные с распространением волн способы для измерения удельного сопротивления пласта. Волновым прибором измеряют амплитуды, фазовые сдвиги и затухание электромагнитных сигналов в пласте, чтобы определять удельное сопротивление пласта, которое может быть важным аспектом определения его особенностей.

Прибор каротажа удельного сопротивления, который обеспечивает относительно большую глубину исследования, раскрыт в патенте США №6188222, переуступленном правопреемнику настоящего изобретения. Этот прибор, который может быть составной частью группы приборов каротажа во время бурения, имеет относительно большое расстояние между излучателем и приемником и может использоваться для определения удельного сопротивления пласта и для получения указаний относительно границ пласта, что позволяет определять местоположение скважины во время наклонно-направленного бурения. Последующие разработки приборов каротажа во время бурения, некоторые из которых кратко описаны в этой заявке ниже, обеспечивают проведение управляемого наклонно-направленного бурения с повышенной точностью и облегчают размещение скважины. Однако все еще имеется много возможностей для улучшения этих функций и определения особенностей целевых подземных пластов и их коллекторов, и одной из ряда задач является достижение такого улучшения.

КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ

В соответствии с формой изобретения предложен способ направления бурения буровой скважины в целевом подземном пласте, включающий в себя следующие этапы: подготовка бурового оборудования, имеющего компоновку низа бурильной колонны, которая включает в себя управляемую подсистему наклонно-направленного бурения и направленный измерительный прибор каротажа во время бурения с возможностью кругового просмотра и упреждающего просмотра; определение наличия заданного типа особенности пласта в целевом пласте; и осуществление навигации траектории бурения в целевом пласте указанным буровым оборудованием, включающей в себя прием сигналов измерений с указанного направленного измерительного прибора, получение на основании принимаемых сигналов измерений показателей параметров пласта относительно указанной особенности пласта в целевом пласте и управление указанной подсистемой наклонно-направленного бурения для бурения в направлении, определяемом в зависимости от указанного получаемого показателя параметров пласта. В осуществлении этой формы изобретения этап подготовки направленного измерительного прибора каротажа во время бурения содержит подготовку направленного измерительного прибора каротажа удельного сопротивления во время бурения с возможностью кругового просмотра и упреждающего просмотра. В этом осуществлении возможность кругового просмотра продолжается до около 100 футов (30,48 м) и возможность упреждающего просмотра продолжается до около 60 футов (18,288 м).

В осуществлении этой описанной формы изобретения этап определения наличия заданного типа особенности пласта в целевом пласте содержит: сохранение в запоминающем устройстве базы знаний, содержащей несколько представлений примеров моделей особенностей подземного пласта; получение первоначальных данных о параметрах для указанного целевого пласта; и сравнение указанных первоначальных данных о параметрах с моделями в указанной базе знаний для выбора модели особенности пласта, при этом указанный заданный тип особенности пласта в целевом пласте получают на основании выбираемой модели особенности пласта. В этом осуществлении этап сохранения в запоминающем устройстве базы знаний, содержащей несколько представлений примеров моделей особенностей подземного пласта, содержит сохранение моделей, которые содержат наборы геометрий пласта и физических параметров пласта. Кроме того, в этом осуществлении параметры пласта включают в себя пространственное расположение бурового долота относительно указанной особенности пласта в целевом пласте или включают в себя пространственное расположение бурового долота относительно выбираемой границы указанной особенности пласта в целевом пласте. Заданные типы особенностей пласта включают в себя некоторое количество характерных признаков, выбираемых из группы, включающей в себя, но без ограничения ими, сброс пласта, пластовый коллектор в сочетании с границей глинистого сланца, хребет, соляное тело, соляной купол и пластовый водонефтяной контакт.

В соответствии с другой формой изобретения предложен способ динамического определения особенностей целевого подземного пласта, включающий в себя следующие этапы: подготовка бурового оборудования, имеющего компоновку низа бурильной колонны, которая включает в себя управляемую подсистему наклонно-направленного бурения и направленный измерительный прибор каротажа удельного сопротивления во время бурения с возможностью кругового просмотра и упреждающего просмотра; определение наличия заданного типа особенности пласта в целевом пласте; и осуществление бурения в целевом пласте указанным буровым оборудованием, прием сигналов измерений с указанного направленного измерительного прибора и дополнительная характеризация заданного типа особенности пласта в целевом пласте на основании принимаемых сигналов измерений. В осуществлении этой формы изобретения указанная дополнительная характеризация заданного типа особенности пласта в целевом пласте содержит дополнительно характеризацию геометрии пласта и физических параметров пласта в целевом пласте.

В соответствии с дальнейшей формой изобретения предложен способ выработки плана бурения буровой скважины в целевом подземном пласте, включающий в себя следующие этапы: подготовка запоминающего устройства; сохранение в указанном запоминающем устройстве базы знаний, содержащей несколько представлений примеров моделей особенностей подземного пласта; получение первоначальных данных о параметрах для указанного подземного целевого пласта; сравнение указанных первоначальных данных о параметрах с моделями в указанной базе знаний и выбор модели на основании указанного сравнения; и получение плана бурения буровой скважины в зависимости от выбираемой модели. В осуществлении этой формы изобретения этап получения плана бурения буровой скважины содержит получение графика в зависимости от выбираемой модели и указанных первоначальных данных о параметрах. В этом осуществлении этап сравнения указанных первоначальных данных о параметрах с указанными моделями содержит инвертирование первоначальных данных о параметрах и сравнение результатов указанной инверсии с указанными моделями. В другом осуществлении указанный этап сравнения указанных первоначальных данных о параметрах с указанными моделями содержит прямое моделирование указанных наборов параметров пласта и сравнение результатов указанных прямых моделирований с указанными первоначальными данными о параметрах.

Дополнительные признаки и преимущества изобретения легко станут более понятными из нижеследующего подробного описания в сочетании с сопровождающими чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На чертежах:

фигура 1 - вид приводимой в качестве примера буровой системы, в сочетании с которой настоящее изобретение может быть применено на практике; частично показана структурная схема;

фигура 2 - упрощенный вид прибора каротажа удельного сопротивления для измерений во время бурения;

фигура 3 - упрощенный вид еще одного прибора каротажа удельного сопротивления для измерений во время бурения, обладающего возможностью кругового просмотра;

фигура 4 - упрощенный вид еще одного прибора каротажа удельного сопротивления для измерений во время бурения, обладающего возможностью кругового просмотра и упреждающего просмотра;

фигура 5 - блок-схема последовательности действий процедуры управления процессором при практическом применении осуществления изобретения;

фигура 6 - блок-схема последовательности действий процедуры, представленной блоком 510 из фигуры 5, для компиляции представлений в базе знаний, в которой представлены примеры моделей особенностей подземного пласта;

фигура 7 - блок-схема последовательности действий при выполнении процедуры, представленной блоком 530 из фигуры 5, для выбора и подтверждения достоверности модели особенности пласта;

фигура 8А - модель или обстановка, включающая в себя площадку в коллекторе с большим углом наклона;

фигура 8В - модель или обстановка, включающая в себя навигацию в пласте с выклиниванием коллектора;

фигура 8С - модель или обстановка, включающая в себя пребывание в коллекторе при большом угле наклона пласта;

фигура 8D - модель или обстановка, включающая в себя навигацию для пересечения с остаточными нефтяными карманами;

фигура 8Е - модель или обстановка, включающая в себя навигацию в коллекторе с уклонением от глинистого сланца;

фигура 8F - модель или обстановка, включающая в себя навигацию в песчаном, образованном внедрением крыле;

фигура 8G - модель или обстановка, включающая в себя обнаружение аномалии коллектора и языков и осуществление навигации относительно них;

фигура 8Н - модель или обстановка, включающая в себя обнаружение и оконтуривание подошвенных глинистых нерегулярностей;

фигура 8I - модель или обстановка, включающая в себя навигацию относительно несогласия;

фигура 8J - модель или обстановка, включающая в себя осуществление навигации на вершине хребта;

фигура 8K - модель или обстановка, включающая в себя обнаружение глинистого прожилка в горизонтальной скважине и осуществление навигации для уклонения от глинистого сланца;

фигура 8L - модель или обстановка, включающая в себя мониторинг водяного конуса в горизонтальном продуктивном коллекторе;

фигура 8М - модель или обстановка, включающая в себя геоуправление, обнаружение зоны разрыва и геоуправление в нее, и оптимизацию бурения разрывов с учетом ориентации разрывов;

фигура 8N - модель или обстановка, включающая в себя обнаружение и оконтуривание неоднородностей вокруг буровой скважины;

фигура 9А - модель или обстановка, включающая в себя прекращение бурения на основании геологических данных в вертикальной скважине до входа в коллектор;

фигура 9В - модель или обстановка, включающая в себя прекращение бурения на основании геологических данных в вертикальной скважине для оптимального отбора керна;

фигура 9С - модель или обстановка, включающая в себя обнаружение слоя-предшественника над коллектором перед долотом в вертикальной скважине;

фигура 9D - модель или обстановка, включающая в себя обнаружение мощности коллектора перед долотом в вертикальной скважине;

фигура 9Е - модель или обстановка, включающая в себя прекращение бурения на основании геологических данных перед водонефтяным контактом (ВНК) в вертикальной скважине;

фигура 9F - модель или обстановка, включающая в себя дистанционное обнаружение контактов флюидов в вертикальной скважине;

фигура 9G - модель или обстановка, включающая в себя дистанционное обнаружение контакта флюидов в песчаном столбе в вертикальной скважине;

фигура 9Н - модель или обстановка, включающая в себя определение характеристик песчаной интрузии в вертикальной скважине;

фигура 10А - модель или обстановка, включающая в себя обнаружение кровли соляного пласта;

фигура 10В - модель или обстановка, включающая в себя обнаружение подошвы соляного пласта;

фигура 10С - модель или обстановка, включающая в себя обнаружение включения соли;

фигура 10D - модель или обстановка, включающая в себя оконтуривание соляного купола возле глинистого сланца и продуктивной зоны;

фигура 10Е - модель или обстановка, включающая в себя навигацию за пределами соляного купола;

фигура 10F - модель или обстановка, включающая в себя навигацию внутри соляного купола;

фигура 10G - модель или обстановка, включающая в себя площадку на подошве области соли над коллектором;

фигура 10Н - модель или обстановка, включающая в себя геоуправление для входа и остановки в пределах карбонатного слоя в соли;

фигура 11А - модель или обстановка, включающая в себя обнаружение на долоте вертикального перемещения сброса;

фигура 11В - модель или обстановка, включающая в себя определение характеристики сброса;

фигура 11С - модель или обстановка, включающая в себя оконтуривание многочисленных водонефтяных контактов (ВНК) в пласте со сбросом;

фигура 11D - модель или обстановка, включающая в себя поворот от сброса для исключения притока воды;

фигура 11Е - модель или обстановка, включающая в себя идентификацию и оконтуривание разделителей между сбросами;

фигура 11F - модель или обстановка, включающая в себя обнаружение наклона слоя перед долотом;

фигура 12А - модель или обстановка, включающая в себя обнаружение слоя сланцевой нефти перед долотом;

фигура 12В - модель или обстановка, включающая в себя обнаружение слоя сланцевой нефти под соляным пластом;

фигура 12С - модель или обстановка, включающая в себя обнаружение сброса, заполненного сланцевой нефтью;

фигура 13А - модель или обстановка, включающая в себя скачкообразный переход между областями руслового песка;

фигура 13В - модель или обстановка, включающая в себя оконтуривание песчаного русла и наведение;

фигура 13С - модель или обстановка, включающая в себя управление направлением в песчаном русле перед долотом;

фигура 14А - модель или обстановка, включающая в себя измерение глубинного объемного удельного сопротивления при бурении сквозь верхний разрез глинистого сланца;

фигура 14В - модель или обстановка, включающая в себя оконтуривание глубокого внедрения в коллектор с низкой проницаемостью;

фигура 14С - модель или обстановка, включающая в себя определение характеристик трещин;

фигура 14D - модель или обстановка, включающая в себя обнаружение и мониторинг потери бурового раствора перед долотом или вокруг компоновки низа бурильной колонны;

фигура 14Е - модель или обстановка, включающая в себя прогнозирование порового давления и обнаружение зоны давления перед долотом;

фигура 14F - модель или обстановка, включающая в себя обнаружение литологии перед долотом; и

фигура 14G - модель или обстановка, включающая в себя обнаружение обсадной колонны и пересечения с ней.

ПОДРОБНОЕ ОПИСАНИЕ

На фигуре 1 показана буровая площадка, на которой настоящее изобретение может быть применено на практике. Буровая площадка может быть на суше или в море. В этом примере осуществления площадки буровую скважину 11 образуют в подземных пластах 30 вращательным наклонно-направленным бурением.

Бурильная колонна 12 подвешена в буровой скважине 11 и имеет компоновку 100 низа бурильной колонны, которая на нижнем конце включает в себя буровое долото 105. Наземная система включает в себя платформу и узел 10 буровой вышки, расположенный над буровой скважиной 11, при этом узел 10 включает в себя роторный стол 16, ведущую бурильную трубу 17, крюк 18 и вертлюг 19. Бурильная колонна 12 приводится во вращение роторным столом 16, снабжаемым энергией не показанным средством, который находится в зацеплении с ведущей бурильной трубой 17 на верхнем конце бурильной колонны. Бурильная колонна 12 подвешена на крюке 18, прикрепленном к подвижному блоку (также непоказанному), через посредство ведущей бурильной трубы 17 и вертлюга 19, который дает возможность бурильной колонне вращаться относительно крюка. Как хорошо известно, в качестве варианта можно использовать систему верхнего привода.

В примере этого осуществления наземная система также включает в себя буровой раствор или промывочную жидкость 26, сохраняемую в емкости 27, образованной на месте расположения скважины. Насос 29 подводит буровой раствор 26 во внутреннюю часть бурильной колонны 12 через отверстие в вертлюге 19, заставляя буровой раствор протекать, как показано направленной стрелкой 8, вниз по бурильной колонне 12. Буровой раствор выходит из бурильной колонны 12 через отверстия в буровом долоте 105 и затем прокачивается по замкнутой системе, как показано направленными стрелками 9, вверх через область кольцевого пространства между наружной стороной бурильной колонны и стенкой буровой скважины. Таким хорошо известным способом буровой раствор смазывает буровое долото 15 и переносит буровой шлам на поверхность, где он возвращается в емкость 27 для рециркуляции в замкнутой системе.

Как известно в данной области техники, датчики могут быть предусмотрены вокруг места расположения скважины для сбора данных, предпочтительно в реальном времени, имеющих отношение к работе буровой системы, а также к условиям на месте расположения скважины. Например, такие наземные датчики могут быть предусмотрены для измерения параметров, таких как давление в стояке, нагрузка на крюк, глубина, крутящий момент на поверхности, число оборотов в минуту, наряду с другими.

Компоновка 100 низа бурильной колонны показанного осуществления включает в себя интерфейсный переводник 110, модуль 120 каротажа во время бурения, модуль 130 измерений во время бурения, модуль 150 роторной управляемой системы и двигателя для наклонно-направленного бурения и буровое долото 105.

Модуль 120 каротажа во время бурения размещен в утяжеленной бурильной трубе особого вида, известной в данной области техники, и может содержать один или множество каротажных приборов известных видов. Также должно быть понятно, что можно использовать не один модуль каротажа во время бурения и/или измерений во время бурения, а большее количество. На представлении из фигуры 1 показаны дополнительные модули 102А и 120В по противоположным сторонам модуля 150 (роторной управляющей системы и двигателя). Как так же будет описано ниже, эти модули могут содержать антенны, которые являются частью разработанного недавно направленного измерительного прибора каротажа удельного сопротивления во время бурения с возможностью кругового просмотра и упреждающего просмотра. Модуль каротажа во время бурения обладает возможностью выполнения измерений, обработки и сохранения информации, а также связи с наземным оборудованием. В частности, в настоящем осуществлении модуль каротажа во время бурения включает в себя только что указанный направленный прибор для измерения удельного сопротивления с обозначенной возможностью кругового просмотра и упреждающего просмотра, дополнительно описываемый ниже и описанный подробно в Международной заявке WO 2009/029517, переуступленной правопреемнику настоящей заявки. Кроме того, модули каротажа во время бурения могут включать в себя одно или несколько каротажных устройств, которые измеряют характеристики пласта: устройство акустического каротажа, устройство ядерного каротажа, устройство ядерно-магнитного каротажа, устройство измерения давления, устройство сейсмического каротажа, устройство формирования изображений и устройства отбора образцов пород, наряду с другими.

Модуль 130 измерений во время бурения также размещен в утяжеленной бурильной трубе особого вида, известной в данной области техники, и может содержать одно или несколько устройств для измерения характеристик бурильной колонны и бурового долота. Кроме того, в типичном случае прибор измерений во время бурения может включать в себя установку для выработки электрической энергии для скважинной системы. Обычно она включает в себя забойный турбогенератор, приводимый в движение потоком бурового раствора, при этом понятно, что могут использоваться другие энергетические и/или батарейные системы. Модуль измерений во время бурения может включать в себя одно или несколько измерительных устройств: устройство измерения нагрузки на долото, устройство измерения крутящего момента, устройство измерения вибраций, устройство измерения ударной нагрузки, устройство измерения прихвата-проскальзывания, устройство измерения направления и устройство измерения уклона, наряду с другими.

В сочетании с настоящим изобретением используется телеметрическая система с каналом связи по бурильной колонне, которая в показанном осуществлении содержит систему индуктивно связанных проводных бурильных труб 180, которые продолжаются от поверхностного переводника 185 до интерфейсного переводника 110 в компоновке низа бурильной колонны. Вследствие относительно широкой полосы пропускания и сопутствующей относительно высокой скорости передачи данных система проводных бурильных труб является предпочтительной для использования в осуществлениях изобретения, но должно быть понятно, что осуществления изобретения также могут функционировать в сочетании с любой подходящей технологией связи, например, с известными способами связи по гидроимпульсному каналу связи. В зависимости от факторов, включающих в себя длину бурильной колонны, ретрансляционные переводники или повторители могут быть расположены регулярно в колонне проводных бурильных труб, пример которых представлен позицией 182. Ретрансляционные переводники, которые также могут быть снабжены датчиками, дополнительно описаны в совместно рассматриваемой заявке №2009-0173493 на патент США, переуступленной правопреемнику настоящей заявки.

Интерфейсный переводник 110 обеспечивает сопряжение между схемами связи модулей каротажа во время бурения и измерений во время бурения и телеметрической системой с каналом связи по бурильной колонне, которая в примере осуществления содержит проводные бурильные трубы с индуктивными элементами связи. Интерфейсный переводник 110, который так же может быть снабжен датчиками, дополнительно описан в указанной совместно рассматриваемой заявке №2009-0173493 на патент США.

В верхней части проводной бурильной колонны находится наземный переводник или наземный интерфейс 185. При использовании системы проводных бурильных труб линию связи создают между самой верхней проводной бурильной трубой и наземным процессором 200. Для связи сигналов с процессором можно использовать технологию поворотного вертлюга, описанную, например, в патенте США №7040415. В настоящее время беспроводный способ является более предпочтительным, например, типа дополнительно описанного в заявке №2007-0030167 на патент США, переуступленной правопреемнику настоящей заявки. Как описано в ней, находящийся возле устья скважины интерфейс в виде наземного переводника 185 связан с электроникой 35, которая вращается вместе с ведущей бурильной трубой 17 и включает в себя приемопередатчик и антенну, которые находятся в двусторонней связи с антенной и приемопередатчиком блока управления, который в настоящем осуществлении может быть интерфейсом для находящейся возле устья скважины процессорной системы 200. Линия 175 связи схематично показана между электроникой 35 и антенной находящегося возле устья скважины интерфейса процессорной системы 200. Соответственно, в конфигурации этого осуществления образована линия связи от находящегося возле устья скважины процессора 200 по линии 175 связи к наземному переводнику 185, далее с помощью телеметрической связи по проводным бурильным трубам к скважинному интерфейсу 110 и компонентам компоновки низа бурильной колонны и также в обратном направлении для двунаправленной работы и управления.

В примере настоящего осуществления предусмотрена роторная управляемая подсистема 150 (фигура 1), и она выполнена с возможностью осуществления управления через телеметрическую систему с каналом связи по бурильной колонне. Наклонно-направленное бурение включает в себя намеренное отклонение ствола скважины от траектории, которую она имела с самого начала. Иначе говоря, наклонно-направленное бурение заключается в направлении бурильной колонны таким образом, чтобы она перемещалась в заданном направлении. Кроме того, наклонно-направленное бурение позволяет осуществлять горизонтальное бурение на протяжении коллектора и позволяет иметь более значительную длину ствола скважины при пересечении коллектора, что приводит к увеличению объема продукции из скважины. Наклонно-направленное бурение, используемое в осуществлениях настоящего изобретения, позволяет осуществлять относительно точную навигацию и геологическое сопровождение бурения горизонтальных и наклонно-направленных скважин с учетом встречающихся особенностей подземного пласта нескольких или многочисленных различных типов, определяемых с использованием моделирования на основе базы знаний и уточняемых с использованием вводимых данных каротажа во время бурения.

Известный способ наклонно-направленного бурения включает в себя использование роторной управляемой системы (РУС). В случае роторной управляемой системы вращение бурильной колонны осуществляют с поверхности, а забойные устройства заставляют буровое долото бурить в заданном направлении. При вращающейся бурильной колонне значительно уменьшается количество случаев застревания или прихвата во время бурения. Роторные управляемые системы бурения, предназначенные для бурения наклонных скважин в геологической среде, в общем случае можно отнести к категории систем с отклонением долота или систем с прижимом долота. В системе с отклонением долота ось вращения бурового долота отклоняют от локальной оси компоновки низа бурильной колонны в общем направлении нового ствола скважины. Ствол скважины проходят в соответствии с обычной трехточечной геометрией, задаваемой точками касания верхнего и нижнего стабилизаторов и буровым долотом. Угол отклонения оси бурового долота, связанный с конечным расстоянием между буровым долотом и нижним стабилизатором, обуславливает условие неколлинеарности, необходимое для образования кривой. Имеются много способов, которыми можно достигать этого, включая фиксированный изгиб в точке компоновки низа бурильной колонны вблизи нижнего стабилизатора или искривление приводного вала бурового долота между верхним и нижним стабилизаторами. В идеальном случае не требуется, чтобы буровое долото осуществляло резание в боковом направлении, поскольку ось долота непрерывно вращается в направлении криволинейного ствола скважины. Примеры роторных управляемых систем с отклонением долота и принцип их работы описаны в заявках №№2002/0011359 и 2001/0052428 на патенты США и в патентах США №№6394193, 6364034, 6244361, 6158529, 6092610 и 5113953. В роторных управляемых системах с прижимом долота обычно нет точно идентифицируемого механизма для отклонения оси долота от локальной оси компоновки низа бурильной колонны; вместо этого необходимое условие неколлинеарности достигается приложением эксцентричной силы верхним или нижним стабилизатором или обоими или смещением в направлении, которое преимущественно ориентировано относительно направления прохождения ствола скважины. И в этом случае имеются много способов, которыми можно достигать этого, включая использование не вращающихся (относительно ствола скважины) эксцентричных стабилизаторов (в способах, основанных на смещении) и эксцентричных приводов, которые прикладывают силу к буровому долоту в заданном направлении поворота. И в этом случае поворот достигается благодаря созданию неколлинеарности между буровым долотом и по меньшей мере двумя другими точками соприкосновения. В идеальном случае требуется, чтобы буровое долото осуществляло резание в боковом направлении для образования криволинейного ствола скважины. Примеры роторных управляемых систем с прижимом долота и принцип работы их описаны в патентах США №№5265682, 5553678, 5803185, 6089332, 5695015, 5685379, 5706905, 5553679, 5673763, 5520255, 5603385, 5582259, 5778992 и 5971086.

В некоторых осуществлениях настоящего изобретения предпочтительно использовать направленный измерительный прибор каротажа удельного сопротивления во время бурения, обладающий расширенной возможностью кругового просмотра и упреждающего просмотра относительно бурового долота.

Примером ранней модели прибора каротажа удельного сопротивления, который использовался в качестве прибора каротажа во время бурения, является прибор каротажа удельного сопротивления на двух глубинах исследования во время бурения, раскрытый в патенте США №4899112 под названием “Well logging apparatus and method for determining formation resistivity at a shallow and a deep depth”, переуступленный правопреемнику настоящей заявки. Прибор показан на фигуре 2, и видны верхняя и нижняя передающие антенны Т1 и Т2, между которыми имеются верхняя и нижняя приемные антенны R1 и R2. Антенны образованы в выемках модифицированной утяжеленной бурильной трубы и расположены на изолирующем материале. Преимущество этого каротажного прибора обусловлено тем, что глубина исследования при измерении затухания больше, чем при измерениях фазы, выполняемых при одном и том же разнесении антенн. Фазовым сдвигом электромагнитной энергии между приемниками R1 и R2 обеспечивается отсчет удельного сопротивления пласта при относительно небольшой глубине исследования, а затуханием электромагнитной энергии между приемниками R1 и R2 обеспечивается отсчет удельного сопротивления пласта при относительно большой глубине исследования. К указанному выше патенту США №4899112 можно обратиться для получения дополнительных подробностей.

Для получения направленной чувствительности при измерениях прибор каротажа удельного сопротивления во время бурения из фигуры 3 снабжен наклонными и поперечными рамками (См. L. Chou et al., Oilfield Review, 2005, источник включен в настоящую заявку путем ссылки). Группа датчиков включает в себя шесть передающих антенн и четыре приемные антенны. Пять передающих антенн (с Т1 по Т5) расположены в осевом направлении вдоль длины прибора. Шестая передающая антенна (Т6) ориентирована поперек оси прибора. На каждом конце прибора расположена одна приемная антенна. Эта пара приемных антенн (R3 и R4) ограничивает излучатели, и каждый из этих приемников наклонен под углом 45° к оси прибора. Дополнительная пара приемных антенн (R1 и R2), находящаяся в центре группы излучателей, расположена в осевом направлении и может обеспечивать получение измерений удельного сопротивления в процессе обычного каротажа. В описанном устройстве создается преимущественная чувствительность к удельной проводимости на одной стороне прибора. Когда прибор вращается, его датчики могут обнаруживать близлежащие проводящие зоны и регистрировать направление, с которого может быть измерена максимальная удельная проводимость (возможность кругового просмотра). Магнитометрами и акселерометрами могут обеспечиваться опорные данные об ориентации прибора. В дополнение к возможности определения направления прибор обеспечивает получение измерений на большей глубине исследования, чем имевшиеся до него приборы каротажа удельного сопротивления во время бурения.

В Международной заявке WO 2009/029517, переуступленной правопреемнику настоящей заявки, включенной в эту заявку путем ссылки, под названием “Look ahead logging system”, раскрыт прибор каротажа во время бурения (КВБ) с группой датчиков удельного сопротивления, ориентированной для обеспечения чувствительности в заданных направлениях, в том числе перед каротажной системой и перед долотом. Одно из осуществлений прибора показано на фигуре 4. Как видно, система 440 представляет собой систему 444 каротажа во время бурения, объединенную с инструментом, таким как компоновка 446 низа бурильной колонны. Компоновка 446 низа бурильной колонны включает в себя буровое долото (466 на этом чертеже). Система 444 каротажа во время бурения включает в себя передающий модуль 458, имеющий передающую антенну 460, и приемный модуль 462, имеющий приемную антенну 464. В показанном конкретном примере система 444 каротажа во время бурения содержит множество, например два, приемных модулей 462. Передающий модуль 458 и приемный модуль или модули 462 расположены на отдельных местах вдоль 446 компоновки низа бурильной колонны, а разнесение их выбрано из условия обеспечения заданной глубины исследования. Передающий модуль 458 расположен вблизи бурового долота 466 компоновки 446 низа бурильной колонны. В этом примере передающий модуль 458 установлен на переводнике позади бурового долота 466 и перед роторной управляемой системой 480. В такой системе точка измерения (в качестве которой принята срединная точка между передающим модулем 458 и приемным модулем 462) сдвинута к буровому долоту 466 в такой степени, что обеспечивается не только радиальная чувствительность (круговой просмотр), но также и чувствительность перед передающей антенной 460 (упреждающий просмотр). Как описано в опубликованной Международной заявке '517, можно использовать антенны различных конфигураций. Например, передающий модуль 458 может иметь наклонную антенну 460. Использование наклонной антенны означает, что магнитный дипольный момент не находится на одной линии с осью прибора, например осью компоновки низа бурильной колонны, и магнитный дипольный момент не являет