Бутиловые ионсодержащие полимеры для применения в целях уменьшения популяции и/ или предотвращения накопления организмов, и изгтовленные из них покрытия

Иллюстрации

Показать все

Изобретение относится к применению бутиловых ионсодержащих полимеров или частично галогенированных бутиловых ионсодержащих полимеров для снижения популяции и/или предотвращения накопления организмов, по меньшей мере на поверхности изделий, в композитном материале, в формованном изделии. Организмы могут представлять собой бактерии, водоросли, грибы, моллюски или членистоногие. Бутиловый ионсодержащий полимер получают из, по меньшей мере, одного изоолефинового мономера и по меньшей мере одного мультиолефинового мономера. Бутиловый ионсодержащий полимер содержит катионную азотсодержащую функциональную группу или катионную фосфорсодержащую функциональную группу. Изобретение также касается поверхностного покрытия для изделий, содержащих указанные бутиловые ионсодержащие полимеры. Изобретение обеспечивает эффективное снижение численности популяции и/или предотвращений накопления организмов на изделиях. 4 н.и 24 з.п. ф-лы, 1 ил., 33 пр.

Реферат

Область изобретения

Настоящее изобретение касается применения бутиловых ионсодержащих полимеров или частично галогенированных бутиловых ионсодержащих полимеров, демонстрирующих эффективность в снижении популяции и/или предотвращения накопления организмов. Указанные организмы могут представлять собой бактерии, водоросли, грибы, моллюски или членистоногие. Настоящее изобретение также касается покрытий для формованных изделий, содержащих указанные бутиловые ионсодержащие полимеры.

Уровень техники

Поли(изобутилен-со-изопрен), или IIR, представляет собой синтетический эластомер, общеизвестный как бутилкаучук, который с 1940-х годов получают статистической катионной сополимеризацией изобутилена с небольшими количествами изопрена (1-2 мол.%). Благодаря своей молекулярной структуре, изобутилен-изопреновый каучук обладает высокой непроницаемостью для воздуха, высокой податливостью, устойчивостью к окислению и повышенной устойчивостью к усталости.

Бутилкаучук понимают как сополимер изоолефина и одного или более, предпочтительно сопряженных, мультиолефинов в качестве со-мономеров. Выпускаемый промышленностью бутилкаучук содержит главным образом изоолефин и небольшое количество, не более 2.5 мол.%, сопряженного мультиолефина. Бутилкаучук или бутиловый полимер обычно получают по суспензионной технологии с использованием метилхлорида в качестве разбавителя и катализатора Фриделя-Крафтса как части инициатора полимеризации. Данный способ подробнее описывается в патенте США №2,356,128 и Ullmann's Encyclopedia of Industrial Chemistry, volume A 23, 1993, стр.288-295.

Галогенирование бутилкаучука приводит к образованию реакционно-способных аллильных галогенидных функциональных групп в составе эластомера. Общепринятые способы галогенирования бутилкаучука описаны, например, в Ullmann's Encyclopedia of Industrial Chemistry (Fifth, Completely Revised Edition, Volume A231 Editors Elvers, et al.) и/или "Rubber Technology" (Third Edition) by Maurice Morton, Chapter 10 (Van Nostrand Reinhold Company © 1987), в частности на стр.297-300.

Наличие аллильных галогенидных функциональных групп позволяет проводить реакции нуклеофильного алкилирования. Недавно было показано, что обработка бромированного бутилкаучука (BIIR) азот- и/или фосфорсодержащими нуклеофилами, в твердом состоянии, приводит к формированию ионсодержащих полимеров на основе IIR, обладающих интересными физическими и химическими свойствами (см: Parent, J. S.; Liskova, A.; Whitney, R. A; Resendes, R.Joumal of Polymer Science, Part A: Polymer Chemistry 43, 5671- 5679, 2005; Parent, J. S.; Liskova, A.; Resendes, R. Polymer 45, 8091-8096, 2004; Parent, J. S.; Penciu, A.; Guillen-Castellanos, S. A.; Liskova, A.; Whitney, R. A. Macromolecules 37, 7477-7483, 2004). Функциональная группа ионсодержащего полимера образуется при реакции азот- или фосфор-содержащего нуклеофила и аллильных галогенидных фрагментов в составе BIIR, приводящей к формированию заряженной аммониевой или фосфониевой группы, соответственно. Физические характеристики получаемых ионсодержащих полимеров на основе BIIR (прочность неспеченного материала, эластичность, взаимодействие с наполнителями и т.д.) превосходят характеристики их неионсодержащих полимерных эквивалентов.

Ранее было обнаружено, что добавление пара-метил стирола к смеси сырья для бутильной полимеризации (смесь MeCI, изобутилена и изопрена, АlСl32O в качестве инициатора) приводит к получению полимера с высокой молекулярной массой, содержащего до 10 мол.% стирольных групп, случайных образом включенных в состав полимерной цепи (Kaszas, US 6,960,632; Kaszas et al. Rubber Chemistry and Technology, 2001, 75, 155). Было обнаружено, что внедрение пара-метилстирола происходит однородно по всему спектру распределения молекулярных масс, благодаря его близкой реакционной способности с изобутиленом. Фрагменты изопрена в составе бутил-терполимеров можно галогенировать обычными способами, что приводит к получению аллильных галогенидных структур, аналогичных нынешним галогенбутильным маркам Type II и Type III фирмы Lanxess.

В СА 2,418,884 и 2,458,741 описано получение пероксид-отверждаемых соединений на основе бутилкаучука, имеющих высокое содержание мультиолефина. В частности, в СА 2,418,884 описано непрерывное получение IIR с содержанием изопрена от 3 до 8 мол.%. Галогенирование данного бутилкаучука с высоким содержанием мультиолефина приводит к получению реакционноспособных аллильных галогенидных функциональных групп в составе эластомера. Поскольку в настоящее время можно достигать такого высокого содержания изопрена, в принципе становится возможным генерировать BIIR аналоги с содержанием аллильных бромидных функциональных групп от 3 до 8 мол.%. Общепринятые способы галогенирования бутилкаучука описаны, например, в Ullmann's Encyclopedia of Industrial Chemistry (Fifth, Completely Revised Edition, Volume A231 Editors Elvers, et al.) и/или "Rubber Technology" (Third Edition) by Maurice Morton, Chapter 10 (Van Nostrand Reinhold Company © 1987), в частности на стр.297-300.

Альтернативно, бутил-сополимер может содержать С47 изомоноолефин, такой как изобутилен, и сомономер, такой как параалкил стирол, предпочтительно пара-метилстирол. После галогенирования некоторые из алкильных групп, присутствующие в стирольных мономерных фрагментах, содержат бензильный галоген. Дополнительные функциональные группы могут быть введены нуклеофильным замещением бензильного галогена различными нуклеофилами, как описано в патенте США 5,162,445. Применение третичных аминов и фосфинов приводит к образованию бутиловых ионсодержащих полимеров на основе данных сополимеров, обладающих улучшенными физическими свойствами.

На протяжении нескольких последних десятилетий непрерывно предпринимались попытки разработать полимеры, которые по своей природе обладают антибактериальными, противогрибковыми свойствами и/или могут препятствовать размножению водорослей, путем импрегнирования антибактериальными, противогрибковыми и/или противоводорослевыми средствами. Такие средства обычно представляют собой низкомолекулярные соединения, такие как антибиотики, фенолы, иод, четвертичные аммониевые соединения или тяжелые металлы, такие как серебро, олово и ртуть. Данные средства могут быть привлекательны, но обеспечивают ограниченную защиту из-за трудностей с контролем скорости диффузии добавки из полимерной матрицы. Такое вымывание, в конечном счете, делает материал неэффективным, представляет собой потенциальную угрозу для окружающей среды и потенциально делает возможными реакции вымываемого материала с другими органическими веществами. Кроме того, вымывание данных средств в окружающую среду повышает устойчивость микроорганизмов к этим средствам.

Органические антибактериальные, противогрибковые или противоводорослевые средства обладают ограниченными возможностями введения в состав полимерных композиций, поскольку, будучи органическими, они обычно имеют температуру кипения ниже, чем температуры, при которых происходит формирование полимерных композиций. В предшествующих исследованиях было показано, что полимерные соединения, содержащие прочно связанные антибактериальные, противогрибковые или противоводорослевые средства, обладают преимуществами по сравнению с полимерными соединениями, которые содержат их несвязанные обычные низкомолекулярные эквиваленты. Соединения с общеизвестными средствами обладают большей долговечностью при низком выделении токсичных продуктов в окружающую среду, тем самым уменьшая потери, связанные с испарением, фотолитическим разложением и транспортировкой. Кроме того, потенциальными дополнительными преимуществами являются повышенная эффективность, селективность и безопасность при обращении.

Для других полимерных систем, в которых антибактериальные, противогрибковые или противоводорослевые средства связаны с полимером, введение активного вещества в полимер часто является частью процесса полимеризации, что может приводить к проблемам в производственном процессе и/или потере свойств полимера. Кроме того, модификация полимера в целях введения антибактериального, противогрибкового или противоводорослевого средства может оказывать отрицательное влияние на физические свойства полимера, делая полимер менее подходящим для предполагаемой области применения.

Хотя полимерные соединения, содержащие антибактериальное средство, были получены и протестированы, было найдено очень мало примеров, обладающих необходимыми антибактериальными свойствами. В частности, ряд соединений проявляет активность в отношении грамотрицательных бактерий, таких как Escherichia coli и Salmonella, но очень мало соединений проявляют также активность в отношении грамположительных бактерий, таких как Staphylococcus, Bacillus, Listeria и Streptococcus.

По существу, настоящее изобретение касается применения бутиловых ионсодержащих полимеров для уменьшения численности популяции и/или предотвращения накопления организмов, а также покрытий для изделий, изготовленных из таких бутиловых ионсодержащих полимеров.

Краткое описание изобретения

Согласно одному объекту настоящего изобретения раскрывается применение бутиловых ионсодержащих полимеров для уменьшения численности популяции и/или предотвращения накопления организмов, по меньшей мере, на поверхности изделия.

Согласно другому объекту настоящего изобретения раскрывается способ уменьшения численности популяции и/или предотвращения накопления организмов, по меньшей мере на поверхности изделия, при этом данный способ включает нанесение бутилового ионсодержащего полимера по меньшей мере на поверхность изделия.

Согласно другому объекту настоящего изобретения раскрывается покрытие на поверхности изделия, где данное покрытие содержит бутиловый ионсодержащий полимер, эффективно снижающий численность популяции и/или предотвращающий накопление организмов на поверхности изделия.

Бутиловый ионсодержащий полимер может уменьшать численность популяции и/или предотвращать накопление организмов, связанных с биообрастанием, например бактерий, грибов, водорослей, моллюсков или членистоногих. В частности, ионсодержащий полимер может применяться для предотвращения роста биопленки, по меньшей мере на поверхности изделия, содержащей ионсодержащий полимер. Предотвращение роста биопленки может включать предотвращение образования непрерывного слоя организмов, связанных с биообрастанием, более чем на 25%, 50% или 75% поверхности изделия. Ионсодержащий полимер может предотвращать накопление организмов, предотвращая увеличение численности организмов. Ионсодержащий полимер может предотвращать накопление организмов, затрудняя присоединение организмов к изделию, в частности к части или частям изделия, содержащим ионсодержащий полимер. Ионсодержащий полимер может уменьшать численность организмов, убивая отдельные организмы (например, посредством разрушения клеточных мембран) или подавляя размножение организмов (например, поражая ДНК клеток). Одновременно может реализовываться комбинация упомянутых выше механизмов.

Организмы могут представлять собой бактерии, например грамотрицательные бактерии, такие как Escherichia coli, Pseudomonas aeruginosa, или грамположительные бактерии, такие как Staphylococcus aureus или Micrococcus luteus.

Организмы могут представлять собой грибы, например Aspergillus Niger, Penicillium pinophilum, Aureobasidium pullulan или Chaetomium globosum.

Организмы могут представлять собой водоросли, например Ulothrix gigas, Calothrix membranacea, Scenedesmus obliquus или Chlorella sp.

Организмы могут представлять собой моллюски, например двустворчатые моллюски, такие как Dreissena polymorpha (полосатая мидия) или Dreissena rostriformis bugensis (квагга).

Организмы могут представлять собой членистоногие, например Crustacea sp., такие как усоногие раки.

Ионсодержащий полимер может присутствовать в количестве, достаточном для обеспечения одного из следующих условий: предотвращение роста численности грамположительных бактерий на изделии при инкубировании в присутствии грамположительных бактерий при 30°С в течение 7 дней; предотвращение роста численности грамотрицательных бактерий на изделии при инкубировании в присутствии грамотрицательных бактерий при 30°С в течение 7 дней; предотвращение роста численности грибов на изделии при инкубировании в присутствии грибов при 30°С в течение 28 дней; или предотвращение роста численности водорослей на изделии при инкубировании в присутствии водорослей при 30°С в течение 28 дней. Альтернативно или дополнительно, ионсодержащий полимер может присутствовать в количестве, достаточном для уменьшения численности грамотрицательных бактерий по меньшей мере на 50%, 60%, 70%, 80% или 90% при инкубировании при 30°С в течение 24 часов.

Ионсодержащий полимер может содержать катионную азотсодержащую функциональную группу, полученную из азотсодержащего нуклеофила. Азотсодержащий нуклеофил может представлять собой амин. Ионсодержащий полимер может содержать катионную фосфорсодержащую функциональную группу, полученную из фосфорсодержащего нуклеофила. Фосфорсодержащий нуклеофил может представлять собой фосфин. Ионсодержащий полимер может иметь содержание ионов по меньшей мере 0.2 мол.%, 0.4 мол.%, 0.6 мол.%, 0.8 мол.% или 1.0 мол.%.

Краткое описание чертежей

Суммируя содержание настоящего изобретения, его предпочтительные варианты выполнения далее будут описаны с использованием прилагающихся фигур, в которых:

Фиг.1 представляет собой диаграмму плотности клеток в зависимости от времени, иллюстрирующую снижение численности организмов на поверхности бутилового ионсодержащего полимера.

Подробное описание изобретения

В настоящем изобретении описана полимерная композиция, содержащая, в целом, бутиловый ионсодержащий полимер или частично галогенированный бутиловый ионсодержащий полимер, полученный реакцией галогенированных бутил-сополимеров с, по меньшей мере, одним азот- или фосфорсодержащим нуклеофилом. Термины бутилкаучуковый ионсодержащий полимер, бутиловый ионсодержащий полимер или частично галогенированный бутиловый ионсодержащий полимер в настоящем тексте могут, в общем, обозначаться термином «ионсодержащий полимер».

Ионсодержащий полимер по настоящему изобретению можно получить из галогенированных бутил-сополимеров, в частности из бутилкаучуковых сополимеров. Бутил-сополимеры в целом получают из, по меньшей мере, одного изоолефинового мономера, по меньшей мере одного мультиолефинового мономера и, необязательно, дополнительных сополимеризующихся мономеров.

В одном варианте выполнения, ионсодержащий полимер может содержать повторяющиеся фрагменты, являющиеся остатками изоолефинового мономера и сопряженного диенового мономера. В другом варианте выполнения, бутиловый ионсодержащий полимер может содержать повторяющиеся фрагменты, являющиеся остатками изоолефинового мономера и стирольного мономера. В другом варианте выполнения, бутиловый ионсодержащий полимер может содержать повторяющиеся фрагменты, являющиеся остатками изоолефинового мономера, сопряженного диенового мономера и стирольного мономера. В вариантах выполнения, включающих повторяющиеся фрагменты, являющиеся остатками сопряженного диенового мономера, количество олефиновых связей, образующихся из таких фрагментов, может быть повышенным и составлять по меньшей мере 2.2 мол.%, 3.0 мол.%, 4.1 мол.%, 5.0 мол.%, 6.0 мол.%, 7.0 мол.%, 7.5 мол.% или 8.0 мол.%.

Бутиловый полимер не ограничен конкретным изоолефином. Настоящее изобретение охватывает любой изоолефин, известный квалифицированным специалистам в данной области техники, включая изоолефины, содержащие, например, от 4 до 16 атомов углерода. В одном варианте выполнения настоящего изобретения, охватываются изоолефины, содержащие от 4 до 7 атомов углерода. Примеры изоолефинов для использования в настоящем изобретении включают изобутен, 2-метил-1-бутен, 3-метил-1-бутен, 2-метил-2-бутен, 4-метил-1-пентен и смеси. Предпочтительным изоолефином является изобутен (изобутилен).

Аналогично, бутиловый полимер не ограничен конкретным мультиолефином. В практическом воплощении настоящего изобретения могут использоваться мультиолефины, сополимеризующиеся с изоолефинами, как известно квалифицированным специалистам в данной области техники. Предпочтительны сопряженные диеновые мультиолефиновые мономеры. Примеры таких мультиолефинов включают, например, мультиолефины, содержащие от 4 до 14 атомов углерода. Примеры подходящих мультиолефинов включают изопрен, бутадиен, 2-метил бутадиен, 2,4-диметилбутадиен, пиперилин, 3-метил-1,3-пентадиен, 2,4-гексадиен, 2-неопентил бутадиен, 2-метил-1,5-гексадиен, 2,5-диметил-2,4-гексадиен, 2-метил-1,4-пентадиен, 2-метил-1,6-гептадиен, циклопентадиен, метилциклопентадиен, циклогексадиен, 1-винил-циклогексадиен и их смеси. Предпочтительный мультиолефин представляет собой изопрен.

В другом варианте выполнения настоящего изобретения бутил-сополимер может дополнительно включать дополнительный со-мономер, как известно квалифицированным специалистам в данной области техники, отличающийся от упомянутых выше мультиолефинов. Co-мономеры включают мономеры, сополимеризующиеся с изоолефинами и/или диенами. Со-мономеры, подходящие для использования в настоящем изобретении, включают, например, стирольные мономеры, такие как алкил-замещенные винилароматические со-мономеры, включая (но не ограничиваясь только им) C1-C4 алкил-замещенный стирол. Частные примеры таких со-мономеров включают, например, α-метилстирол, n-метилстирол, хлорстирол, циклопентадиен и метилциклопентадиен. В данном варианте выполнения настоящего изобретения, бутиловый полимер может включать, например, статистические сополимеры изобутилена, изопрена и пара-метилстирола.

В другом варианте выполнения настоящего изобретения, изоолефиновый мономер, описанный выше, полимеризуют со стирольным мономером, например алкил-замещенным винилароматическим со-мономером, включая (но не ограничиваясь только им) С14 алкил замещенный стирол. Частные примеры стирольных мономеров включают, например, α-метилстирол, n-метилстирол, хлорстирол, циклопентадиен и метилциклопентадиен. В данном варианте выполнения настоящего изобретения, бутиловый полимер может включать, например, статистические сополимеры изобутилена и пара-метилстирола.

Описанные выше бутиловые полимеры образуются из смеси мономеров, описанных в настоящем тексте. В одном варианте выполнения, смесь мономеров содержит от около 80% до около 99 мас.% изоолефинового мономера и от около 1% до 20 мас.% мультиолефинового мономера. В другом варианте выполнения, смесь мономеров содержит от около 85% до около 99 мас.% изоолефинового мономера и от около 1% до 15 мас.% мультиолефинового мономера. В некоторых вариантах выполнения настоящего изобретения могут применяться три мономера. В данных вариантах выполнения, смесь мономеров содержит от около 80% до около 99 мас.% изоолефинового мономера, от около 0.5% до около 5 мас.% мультиолефинового мономера, и от около 0.5% до около 15 мас.% третьего мономера, сополимеризующегося с изоолефиновым или мультиолефиновым мономером. В одном варианте выполнения, смесь мономеров содержит от около 85% до около 99 мас.% изоолефинового мономера, от около 0.5% до около 5 мас.% мультиолефинового мономера, и от около 0.5% до около 10 мас.% третьего мономера, сополимеризующегося с изоолефиновым или мультиолефиновым мономерами. В другом варианте выполнения, смесь мономеров содержит от около 80% до около 99 мас.% изоолефинового мономера, и от около 1% до около 20 мас.% стирольного мономера.

После образования бутилового полимера из смеси мономеров, полученный бутиловый полимер может быть подвергнут галогенированию для образования галогенированного бутилового полимера или галобутилового полимера. Бромирование или хлорирование можно проводить согласно способам, известным квалифицированным специалистам в данной области техники, например по методикам, описанным в Rubber Technology, 3rd Ed., Edited by Maurice Morton, Kluwer Academic Publishers, стр.297 - 300, и в процитированных там документах.

В одном варианте выполнения настоящего изобретения, ионсодержащие полимеры можно получать из галогенированного бутилового полимера, содержащего от 0.5 до 2.2 мол.% мультиолефинового мономера. Например, галогенированный бутиловый полимер для использования в настоящем изобретении включает галогенированный бутиловый полимер, содержащий изобутилен и менее 2.2 мол.% изопрена, который коммерчески доступен от LANXESS Deutschland GmbH и продается под торговым наименованием ВВ2030. В другом варианте выполнения настоящего изобретения, ионсодержащие полимеры можно получать из галогенированного бутилового полимера, имеющего более высокое содержание мультиолефина, например выше 2.5 мол.%. В другом варианте выполнения, ионсодержащие полимеры можно получать из галогенированного бутилового полимера, имеющего содержание мультиолефина выше 3.5 мол.%. В другом варианте выполнения, содержание мультиолефина в галогенированном бутиловом полимере составляет более 4.0 мол.%. В другом варианте выполнения, содержание мультиолефина в галогенированном бутиловом полимере составляет более 7.0 мол.%. Получение подходящего бутилового полимера с высоким содержанием мультиолефина для использования в настоящем изобретении описано в находящейся в процессе совместного рассмотрения заявке СА 2,418,884, которая включена в настоящий текст посредством ссылки.

При галогенировании бутилового полимера, содержащего сопряженные диены, такие как изопрен, фрагменты мультиолефина в бутиловом полимере частично или полностью превращаются в аллильные галогенидные фрагменты. Общее содержание аллильного галогенида в галобутиловом полимере не может превышать исходное содержание мультиолефина в бутиловом полимере, служащем исходным материалом. Аллильные галогенидные фрагменты позволяют вступать в реакцию с нуклеофилами и присоединять их к галобутиловому полимеру. В случае галобутиловых полимеров, не содержащих аллильного галогенида, например галобутиловых полимеров, полученных из изобутиленовых и стирольных мономеров, в реакцию с образованием ионсодержащего полимера могут вступать не аллильные галогенидные, а бензильные галогенидные фрагменты, полученные галогенированием стирольного мономера. К бензильным галогенидам применимы те же логические выводы, что и для аллильных галогенидов; общее количество иономерных фрагментов не может превышать имеющееся количество бензильных галогенидов.

В одном варианте выполнения настоящего изобретения, аллильные галогенидные или бензильные галогенидные фрагменты галобутилового полимера реагируют с по меньшей мере одним азот- или фосфорсодержащим нуклеофилом, имеющим следующую формулу:

где

А представляет собой азот или фосфор; и

Rl, R2 и R3 выбраны из группы, состоящей из линейных или разветвленных C1-C1 алкильных заместителей, арильного заместителя, который является моноциклическим или состоит из конденсированных С48-колец, и/или гетероатома, выбранного из, например, В, N, О, Si, Р и S.

Нуклеофилы для использования по настоящему изобретению включают, например, нуклеофилы, содержащие по меньшей мере один нейтральный азотный или фосфорный центр, имеющий неподеленную пару электронов, которые электронно и стерически доступны для участия в реакциях нуклеофильного замещения. Подходящие нуклеофилы для использования в настоящем изобретении включают, например, триметиламин, триэтиламин, триизопропиламин, три-н-бутиламин, триметилфосфин, триэтилфосфин, триизопропилфосфин, три-н-бутилфосфин, трифенилфосфин, 2-диметиламиноэтанол, 1-диметиламино-2-пропанол, 2-(изопропиламино)этанол, 3-диметиламино-1-пропанол, N-метилдиэтаноламин, 2-(диэтиламино)этанол, 2-диметиламино-2-метил-1 -пропанол, 2-[2-(диметиламино)этокси]этанол, 4-(диметиламино)-1-бутанол, N-этилдиэтаноламин, триэтаноламин, 3-диэтиламино-1-пропанол, 3-(диэтиламино)-1,2-пропандиол, 2-{[2-(диметиламино)этил]метил-амино}этанол, 4-диэтиламино-2-бутин-1-ол, 2-(диизопропиламино)этанол, N-бутилдиэтаноламин, N-трет-бутилдиэтаноламин, 2-(метилфениламино)этанол, 3-(диметиламино)бензиловый спирт, 2-[4-(диметиламино)фенил]этанол, 2-(N-этиланилино)этанол, N-бензил-N-метилэтаноламин, N-фенилдиэтаноламин, 2-(дибутиламино)этанол, 2-(N-этил-N-мета-толуидино)этанол, 2,2'-(4-метилфенилимино)диэтанол, трис[2-(2-метоксиэтокси)этил]амин, 3-(дибензиламино)-1-пропанол и их смеси.

В одном варианте выполнения настоящего изобретения, количество нуклеофила, реагирующего с бутиловым полимером, может находиться в диапазоне от 0.05 до 5 мольных эквивалентов. В другом варианте выполнения, количество нуклеофила, реагирующего с бутиловым полимером, может находиться в диапазоне от 0.5 до 4 мольных эквивалентов. В другом варианте выполнения, количество нуклеофила, реагирующего с бутиловым полимером, составляет от 1 до 3 мольных эквивалентов. Соотношения нуклеофила к бутиловому полимеру рассчитывают исходя из общего мольного количества аллильного галогенида или бензильного галогенида, имеющегося в галобутиловом полимере.

Как указано выше, нуклеофил реагирует с аллильной галогенидной или бензильной галогенидной функциональной группой галобутилового полимера, что приводит к образованию иономерных фрагментов в местах, где в галобутиловом полимере имелись аллильные галогенидные или бензильные галогенидные фрагменты. Общее содержание иономерных фрагментов в бутиловом ионсодержащем полимере не может превышать начальное количество аллильного галогенида или бензильного галогенида в галобутиловом полимере; однако могут присутствовать остаточные количества аллильных галогенидов, бензильных галогенидов и/или остаточные количества мультиолефинов. В вариантах выполнения настоящего изобретения, в которых практически все количество аллильных галогенидных или бензильных галогенидных фрагментов прореагировало с нуклеофилом, образуется бутиловый ионсодержащий полимер. В вариантах выполнения, в которых не все аллильные галогенидные или бензильные галогенидные фрагменты прореагировали с нуклеофилом, образуется частично галогенированный бутиловый ионсодержащий полимер.

В одном варианте выполнения настоящего изобретения, образующийся ионсодержащий полимер имеет содержание ионов по меньшей мере 0.5 мол.% иономерных фрагментов. В другом варианте выполнения, ионсодержащий полимер имеет содержание ионов по меньшей мере 0.75 мол.% иономерных фрагментов. В другом варианте выполнения, ионсодержащий полимер имеет содержание ионов по меньшей мере 1.0 мол.% иономерных фрагментов. В другом варианте выполнения, ионсодержащий полимер имеет содержание ионов по меньшей мере 1.5 мол.% иономерных фрагментов.

В некоторых случаях, остаточные аллильные галогенидные фрагменты могут присутствовать в количестве от 0.1 мол.% до количества, не превышающего изначальное содержание аллильного галогенида в галобутиловом полимере, использующемся для получения бутилового ионсодержащего полимера. В других вариантах выполнения, остаточный мультиолефин может присутствовать в количестве от 0.1 мол.% до количества, не превышающего изначальное содержание мультиолефина в бутиловом полимере, использующемся для получения галобутилового полимера. В одном варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 0.2 мол.%. В другом варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 0.6 мол.%. В другом варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 0.8 мол.%. В другом варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 1.0 мол.%. В другом варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 2.0 мол.%. В другом варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 3.0 мол.%. В другом варианте выполнения, содержание остаточного мультиолефина в ионсодержащем полимере составляет по меньшей мере 4.0 мол.%.

В одном варианте выполнения настоящего изобретения, ионсодержащий полимер может содержать повторяющиеся фрагменты, полученные из по меньшей мере одного изоолефинового мономера, по меньшей мере 0.5 мол.% повторяющихся фрагментов, полученных из по меньшей мере одного мультиолефинового мономера, и по меньшей мере один азотный или фосфорный нуклеофил, где бутиловый ионсодержащий полимер или частично галогенированный бутиловый ионсодержащий полимер формируют путем приготовления смеси мономеров, содержащей изоолефин и мультиолефин, взаимодействия смеси мономеров с образованием полимера, галогенирования полимера с образованием галогенсодержащих функциональных групп в полимере, и взаимодействия галогенсодержащих функциональных групп с нуклеофилом.

Полимерная композиция по настоящему изобретению может включать один или более наполнителей. Подходящие наполнители для использования в настоящем изобретении состоят из частиц неорганических материалов, таких как, например, оксид кремния, силикаты, глины (такие как бентонит), гипс, оксид алюминия, диоксид титана, тальк и т.п., а также их смеси.

Другие примеры подходящих наполнителей включают:

- Высокодиспергированные оксиды кремния, полученные, например, высаживанием из растворов силикатов или гидролизом в пламени галогенидов кремния, имеющие удельную поверхность от 5 до 1000, предпочтительно от 20 до 400 м2/г (удельная поверхность по методу БЭТ), и размер первичных частиц от 10 до 400 нм; оксиды кремния могут при необходимости также присутствовать в виде смешанных оксидов с оксидами других металлов, таких как Al, Mg, Са, Ва, Zn, Zr и Ti;

- синтетические силикаты, такие как силикат алюминия и силикат щелочноземельного металла;

- силикат магния или силикат кальция, имеющие удельную поверхность по методу БЭТ от 20 до 400 м2/г и размер первичных частиц от 10 до 400 нм;

- природные силикаты, такие как каолин и другие встречающиеся в природе силикаты;

- природные глины, такие как монтмориллонит и другие встречающиеся в природе глины;

- органофильно модифицированные глины, такие как органофильно модифицированные монтмориллонитовые глины (например, Cloisite® Nanoclays от Southern Clay Products) и другие органофильно модифицированные встречающиеся в природе глины;

- стекловолокно и изделия из стекловолокна (покрытия, экструдаты) или стеклянные микросферы;

- оксиды металлов, такие как оксид цинка, оксид кальция, оксид магния и оксид алюминия;

- карбонаты металлов, такие как карбонат магния, карбонат кальция и карбонат цинка;

- гидроксиды металлов, например гидроксид алюминия и гидроксид магния или их комбинации.

В одном варианте выполнения настоящего изобретения, неорганический наполнитель представляет собой диоксид кремния. В другом варианте выполнения, неорганический наполнитель представляет собой диоксид кремния, полученный высаживанием силиката натрия диоксидом углерода.

Высушенные частицы аморфного диоксида кремния, подходящие для использования в качестве неорганических наполнителей по настоящему изобретению, могут иметь средний размер частицы агломератов в диапазоне от 1 до 100 микрон. В одном варианте выполнения настоящего изобретения, высушенные частицы аморфного диоксида кремния имеют средний размер частицы агломератов в диапазоне от 10 до 50 микрон. В другом варианте выполнения настоящего изобретения, высушенные частицы аморфного диоксида кремния имеют средний размер частицы агломератов в диапазоне от 10 до 25 микрон. В одном варианте выполнения настоящего изобретения, предусматривается, что менее 10 об.% агломератов частиц имеют размер менее 5 микрон или более 50 микрон. Подходящий высушенный аморфный диоксид кремния имеет, например, удельную поверхность по методу БЭТ, измеренную в соответствии с DIN (Deutsche Industrie Norm) 66131, от 50 до 450 квадратных метров на грамм, и адсорбцию дибутилфталата, измеренную в соответствии с DIN 53601, от 150 до 400 грамм на 100 грамм диоксида кремния, и усушку, измеренную в соответствии с DIN ISO 787/11, от 0 до 10 мас.%. Подходящие кремнийоксидные наполнители коммерчески доступны под марками HiSil 210, HiSil 233 и HiSil 243 от PPG Industries Inc. Подходят также Vulkasil S и Vulkasil N, коммерчески доступные от Bayer AG.

Неорганические наполнители, применяемые в настоящем изобретении, могут также использоваться по отдельности или в комбинации с известными наполнителями неминерального происхождения, такими как:

- углеродная сажа; подходящую углеродную сажу предпочтительно получают по методу пламенной сажи, печной сажи или газовой сажи, и она имеет удельную поверхность по методу БЭТ от 20 до 200 м2/г, например углеродная сажа SAF, ISAF, HAF, FEF или GPF;

или

- резиновые гели, предпочтительно на основе полибутадиена, бутадиен/стирольных сополимеров, бутадиен/акрилонитрильных сополимеров и полихлоропрена.

Наполнители с высоким аспектным отношением, которые могут применяться в настоящем изобретении, включают глины, тальки, слюду и т.д. с аспектным отношением по меньшей мере 1:3. Наполнители могут включать округлые или неизометрические материалы, имеющие пластинчатую или игловидную структуру. Аспектное отношение определяется как соотношение среднего диаметра окружности «лицевой» части пластинки к средней толщине пластинки. Аспектное отношение для наполнителей игловидной и волокнистой формы представляет собой соотношение длины к диаметру. В одном варианте выполнения настоящего изобретения, наполнители с высоким аспектным отношением имеют аспектное отношение по меньшей мере 1:7. В другом варианте выполнения настоящего изобретения, наполнители с высоким аспектным отношением имеют аспектное отношение от 1:7 до 1:200. Наполнители по настоящему изобретению могут иметь, например, средний размер частиц в диапазоне от 0.001 до 100 микрон. В другом варианте выполнения, наполнители имеют средний размер частиц в диапазоне от 0.005 до 50 микрон. В другом варианте выполнения, наполнители имеют средний размер частиц в диапазоне от 0.01 до 10 микрон. Подходящий наполнитель может иметь площадь поверхности по методу БЭТ, измеренную согласно DIN (Deutsche Industrie Norm) 66131, между 5 и 200 квадратных метров на грамм.

В одном варианте выполнения настоящего изобретения, наполнители с высоким аспектным отношением содержат наноглину, такую как, например, органически модифицированная наноглина. Настоящее изобретение не ограничивается конкретной наноглиной; однако природные порошкообразные смектиты, такие как натрий- или кальций-монтмориллонит, или синтетические глины, такие как гидротальцит и лапонит, представляют собой подходящие примеры исходных материалов. В одном варианте выполнения, наполнители с высоким аспектным отношением включают органически модифицированные монтмориллонитовые наноглины. Глины можно модифицировать замещением переходного металла на ониевый ион, как известно в данной области техники, придавая глине поверхностную активность, которая помогает диспергировать глину в полимерном окружении, в целом, имеющем гидрофобный характер. В одном варианте выполнения настоящего изобретения, ониевые ионы имеют в своей основе фосфор (например, фосфониевые ионы) и азот (например, аммониевые ионы), и содержат функциональные группы, имеющие от 2 до 20 атомов углерода (например, NR4+-ММТ).

Глины можно использовать, например, в виде частиц с размерами нанометрового диапазона, такими как <25 мкм. В одном варианте выполнения, размер частиц находится в диапазоне от 1 до 50 мкм. В другом варианте выполнения, размер частиц находится в диапазоне от 1 до 30 мкм. В другом варианте выполнения, размер частиц находится в диапазоне от 2 до 20 мкм.

Помимо силикатов, наноглины могут также содержать некоторую долю оксида алюминия. В одном варианте выполнения, наноглины могут содержать от 0.1 до 10 мас.% оксида алюминия. В другом варианте выполнения, наноглины могут содержать от 0.5 до 5 мас.% оксида алюминия. В другом варианте выполнения, наноглины могут содержать от 1 до 3 мас.% оксида алюминия.

Примеры коммерчески доступных органически модифицированных наноглин, подходящих для использования в настоящем изобретении в качестве наполнителей с высоким аспектным отношением, включают, например, глины, продающиеся под торговой маркой Cloisite® 10А, 20А, 6А, 15А, 30В или 25А. В одном варианте выполнения, наполнители с высоким аспектным отношением можно добавлять в заранее сформированный бутило