Способ регенерации ткани

Изобретение относится к области биотехнологии, конкретно к медикаментам на основе эритропоэтина (ЭПО) для регенерации поврежденных тканей, и может быть использовано в медицине. ЭПО используют для производства медикамента для структурной регенерации травмированной кожи пациента. При ране от ожоговых повреждений ЭПО местно наносят на ожоговую рану посредством трансплантата кожи, предназначенного для нанесения на указанную рану, обрабатываемую ЭПО. При кожных болезнях ЭПО путем местного введения включают в коагулят крови раневого ложа, которое предварительно механически обработано перед нанесением ЭПО, либо ЭПО вводят в составе медленно растворяющегося гидрогеля на основе фибрина, полимера или альгината путем местного нанесения указанного гидрогеля. Изобретение позволяет ускорить формирование грануляционной ткани при структурной регенерации травмированной кожи пациента и обеспечить заживление кожи после ожога без образования рубцов. 11 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способу индукции структурного роста ткани, более конкретно - при регенерации печени, и притязает на приоритеты Заявки на патент Германии №10361813.9-41 и европейской Заявки на патент №03029961.4, содержание которых включено в данную заявку посредством ссылки.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В онтогенезе экспрессируются факторы роста, которые могут запускать основополагающие структурные и, относительно числа клеток, количественные процессы синтеза тканей. Однако в растущем и зрелом организме способность образовывать или - в случае повреждений тканей - регенерировать структурно и функционально неповрежденные ткани в значительной степени утрачивается. Предполагается, что это снижение способности к регенерации обусловлено снижением экспрессии факторов роста, которые, в свою очередь, контролируют экспрессию белков, необходимых для синтеза тканей.

Тем не менее, по меньшей мере, относительно некоторых органов известно, что они даже во взрослом организме сохраняют способность к саморегенерации, которая может индуцироваться процессами повреждения. Так, например, регенерационная способность печени известна еще с древних времен. Почти все остальные органы не могут самостоятельно устранять структурные дефекты с восстановлением оригинальной ткани.

Печень во взрослом организме, как правило, находится в состоянии покоя, которое называется непролиферирующим состоянием и в котором орган должен выполнять сложное многообразие различных метаболических функций. Однако in vivo печень все же может снова получить стимулы к росту при потере клеточной массы, например, из-за повреждения клеток печени или из-за хирургического вмешательства.

Тем не менее, пролиферация ткани печени не восстанавливает функциональные и анатомические структуры органа желательным образом, а, как правило, приводит к увеличению и гипертрофии оставшейся ткани печени до тех пор, пока не будет восстановлена исходная масса клеток печени. Интенсивность реакции роста зависит от объема потери ткани. Ход регенерации печени во времени подчиняется обратно пропорциональной зависимости, то есть небольшие потери клеток печени восстанавливаются медленно, большие потери клеток печени - значительно быстрее.

Таким образом, само по себе восстановление массы органа за счет пролиферации клеток не обеспечивает достаточной базы для лечения пациентов со значительным повреждением органа. Поэтому известны различные подходы к индукции структурного роста - то есть формообразующего роста - тканей, но ни один из них еще не привел к удовлетворительному успеху. Однако такой структурный рост клеток имел бы большое значение, особенно для терапевтических или биотехнологических способов.

В прошлом были предприняты попытки индуцировать рост клеток посредством введения факторов роста, например, таких как «эпидермальный фактор роста» (EGF, ЭФР), «сосудисто-эндотелиальный фактор роста» (VEGF, СЭФР) или «фактор роста гепатоцитов» (HGF, ФРГ). Однако влияние этих факторов на размножение первичных клеток in vitro ограничено. Напротив, их применение in vivo не лишено проблем из-за возможных побочных эффектов, например активации онкогенов.

Другой подход базируется на применении комплексных гетерологичных экстрактов тканей, например экстрактов из гипофиза или гипоталамуса, для индукции размножения клеток, например гепатоцитов в культуре (см., например, патент US 6,008,047). Однако применение экстрактов из тканей животных или человека в лаборатории или в клинике проблематично из-за возможности передачи вирусных заболеваний, например, таких как BSE (губчатая энцефалопатия крупного рогатого скота), вирусов свиней или овец, и подтверждает, скорее, недостаток знаний о процессах, которые участвуют в построении сложных структур органов, а также о действительно важных факторах и возможности их использования, и о механизме действия. Кроме того, трудно определить качество экстрактов, так как оно, среди прочего, зависит от источника и условий культивирования.

Тем не менее, даже небольшие сведения, полученные из классических применений первичных культур тканей, нельзя прямо применить к вопросам тканевого инжиниринга. Так, тканевый инжиниринг, как правило, начинается с пациент-специфических зрелых клеточных систем, которые уже дифференцированы в гораздо большей степени, чем фетальные или эмбриональные клетки. Кроме того, в случае тканевого инжиниринга, как in situ, так и in vitro, речь идет о ситуациях совместного культивирования, которые не рассматриваются в классическом применении. В самом деле, при культивировании паренхиматозных клеток печени, напротив, стараются избежать совместных культур эндотелиальных клеток, макрофагов и фибробластов, существующих в печени, так как они нежелательны.

В публикации международной заявки WO 02/092013 А2 описано введение пациенту терапевтически эффективного количества гормона роста (Growth Hormone, GH, ГР) для лечения повреждений печени с тем, чтобы стимулировать естественную способность печени к регенерации. Согласно этому документу ГР обладает способностью усиливать экспрессию фактора роста Fox M1B гепатоцитами, и за счет этого повторно инициировать рост печени.

Тем не менее, гормон роста оказывает очень широкое и поэтому неспецифическое действие на рост тканей. Поэтому в результате введения ГР возникают и нежелательные побочные действия или гиперреакции, например в форме так называемой акромегалии, то есть избыточной оссификации с патологическими состояниями костей. Кроме того, было установлено, что Fox1M активирован в базально-клеточных карциномах. Fox-протеины играют важную роль в регуляции генов роста при размножении, дифференцировке и трансформации, в том числе и при активации так называемых Sonic Hedgehog (Shh) сигнальных путей. Они, в свою очередь, участвуют в активации базально-клеточных карцином в коже человека. Так, Teh et al. показали (Cancer research 2002, 15 августа; 62 (16): 4773-80), что активация Fox1M в базально-клеточных карциномах является одним из основных механизмов инициации, посредством которого SONIC HEDGEHOG сигнальные пути оказывают митогенные воздействия на базальные кератиноциты, что приводит к развитию распространенной раковой язвы у человека. Этот опухолегенный потенциал агонистов Fox1 M и низкая специфичность и повсеместное присутствие во всех тканях препятствуют применению фактора роста (ГР) для стимуляции регенерации печени.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Поэтому задачей настоящего изобретения является обеспечение способа, которым можно было вызвать индукцию преимущественно структурного роста ткани. Этот рост предпочтительно должен приводить к восстановлению функциональных возможностей и структуры соответствующей ткани.

Эта задача была достигнута согласно настоящему изобретению посредством применения гематопоэтических цитокинов, их производных, аналогов или фрагментов для структурной и функциональной регенерации печени. В особо предпочтительной форме осуществления изобретения вводили эритропоэтин (ЭПО) или его производное, фрагменты или аналог. Однако воздействие согласно настоящему изобретению на соответствующую ткань может быть достигнуто и при введении тромбопоэтина (ТПО) или его фрагментов.

Неожиданно было показано, что при введении гематопоэтических факторов роста, таких как ЭПО и ТПО, происходит не только размножение клеток, но и структурный рост. Этот рост происходит, прежде всего, в предварительно травмированных тканях. Вызванный таким образом рост приводит in vivo к регенерации ткани в истинном смысле, то есть имеет место не только пролиферативный рост, но и направленный, дифференцированный рост, ведущий к образованию сложных структур.

В своей основе применение согласно настоящему изобретению гематопоэтических факторов для регенерации ткани, в основном, базируется на двух до сих пор неизвестных эффектах, вызываемых ЭПО, а именно: с одной стороны, на стимуляции структурного роста различных типов клеток в синхронной и координированной форме (например фибробластов, гладкомышечных клеток и эндотелиальных клеток в области сосудов совместно с новообразованием архитектуры законченного сосуда с учетом внеклеточного матрикса (коллагена, эластина, фибронектина, энтактина) и завершением истинной ассоциации паренхиматозной ткани. Это включает в себя, например, образование гепатоцитов со связанными с ними клетками Купфера, ямочными (Pit-клетками), стеллатными (Ito-клетками) и эндотелиальными клетками (так называемыми непаренхиматозными клетками печени). Кроме образования реального сосудистого дерева и его взаимосвязей, при этом согласно настоящему изобретению индуцируется регенерация тканей в смысле restitutio ad integrum (полного восстановления).

В печени это приводит к образованию смеси синусоидальных капилляров в области микроциркуляторного русла и подводящих и отводящих сосудов рядом с фактической паренхиматозной ассоциацией гепатоцитов в виде упорядоченной трехмерной структуры.

Как уже было указано, действие гематопоэтических факторов роста проявляется, прежде всего, в травмированных тканях и клетках. Термин «травма» в контексте настоящего изобретения является противоположным процессу гистогенеза (образования тканей). Соответственно, травма представляет собой процесс, который действует противоположно гистогенезу как процессу образования тканей в отдельном организме в тех положениях, о которых идет речь, или аннулирует результат гистогенеза. Травма как повреждение тканей может быть вызвана многочисленными событиями, например ранениями, воспалениями или аутоиммунными заболеваниями с саморазрушением. Эти повреждения или разрушения тканей, в свою очередь вызывают множество реакций, например активацию макрофагов, тучных клеток и иммунокомпетентных клеток, которые секретируют хемотактические, вазоактивные и способствующие заживлению ран факторы, и за счет этого регулируют системные и региоселективные механизмы.

Преимущества применения гематопоэтических факторов роста согласно настоящему изобретению, прежде всего - ЭПО, распространяются на регенерацию тканей всех четырех основных типов тканей, а именно - соединительной ткани, мышечной ткани, эпителиальной ткани и нервной ткани. Эти ткани в онтогенезе образуются из мезодермы (соединительная ткань, мышцы, эндотелий (как особая форма эпителия)), эндодермы (эпителий, выстилающий желудочно-кишечный тракт) или эктодермы (нервная ткань). Ранее было показано, что ЭПО-рецептор может экспрессироваться как на клетках мезодермального, так и на клетках эндодермального происхождения, а также на нейрональных клетках.

В этих тканях применение ЭПО или ТПО согласно настоящему изобретению приводит к местному рекрутингу (пополнению) специфичных для данной ткани популяций прогениторных клеток (стволовых клеток), миграции клеток и дифференцировке или трансдифференцировке клеток в паренхиматозные или структурные клетки. Во время этого образования ткани и перед ним клетки размножаются благодаря введению ЭПО.

При применении способа согласно настоящему изобретению, например для регенерации печени, может быть достигнуто восстановление ранее поврежденного органа с образованием законченной ассоциации паренхиматозной ткани, включая образование гепатоцитов с купферовскими клетками, Pit-клеток, Ito-клеток и эндотелиальных клеток. Совместно с продолжающимся формированием сосудистого дерева при этом возможна регенерация ткани согласно настоящему изобретению в соответствии с принципом restitutio ad integrum (полного восстановления).

Таким образом, особое преимущество способа согласно настоящему изобретению заключается в том, что стимулируется не только микрокапилляризация регенерирующей ткани за счет развития эндотелия, но и регенерация паренхимы и образование структур стенок печени. Только это приводит к получению желаемого результата координированного трехмерного роста для образования функционирующего органа.

Поэтому применение согласно настоящему изобретению основано на действии ЭПО, которое значительно шире ранее известного действия ЭПО как ангиогенетического фактора на размножение эндотелиальных клеток (Journal of Nephrology, 2002, 15, 97-103). Так как микроваскулярные структуры, такие как капилляры и синусоиды, состоят исключительно из эндотелиальной выстилки и не имеют собственных структур стенок, то до сих пор, исходя из ангиогенетического действия ЭПО можно было только рассуждать о том, может ли ЭПО иметь определенное значение при новообразовании сосудов и заживлении ран (Journal of Nephrology, 2002, 15, 97-103). Однако подтверждения этих предположений до сих пор не было.

Поэтому очень важно, что в данной работе было впервые получено доказательство влияния ЭПО на синхронизированный и координированный рост самих сосудов, включая образование структур стенок и регенерацию паренхимы.

Следующее преимущество способа согласно настоящему изобретению состоит в том, что структурный рост не обязательно требует в качестве исходной точки заранее заданной органической или неорганической трехмерной структуры, а создает структуру органа (фрагменты органа) заново. Поэтому применение гематопоэтических факторов роста может индуцировать заметно ускоренную саморегенерацию поврежденной ткани, что имеет большое значение для клинико-терапевтического применения изобретения.

В особо предпочтительной форме осуществления изобретения гематопоэтические факторы применяют для индуцирования регенерации ткани, в которой имеются травматически поврежденные области. В этих участках ткани может быть простимулировано не только закрытие раны за счет образования грануляционной ткани и начала ангиогенеза, но и новообразование специфической для данной ткани трехмерной структуры, состоящей из внеклеточного матрикса, например из коллагена, эластина, фибронектина и этнактина.

Согласно настоящему изобретению используют гематопоэтические факторы роста. При этом речь идет, прежде всего, о тробопоэтине, эритропоэтине и гормоне роста (ГР), а также об их функционально и структурно гомологичных аналогах, производных и/или фрагментах. Однако более конкретно применяются ЭПО или ТПО, или их фрагменты, производные или аналоги. Также применимы пептиды, имитирующие их действие, (так называемые пептиды-миметики) (см. ниже). Кроме того, гематопоэтические факторы роста включают в себя G-CSF (гранулоцитарный колониестимулирующий фактор) и GM-CSF (гранулоцитарно-макрофагальный колониестимулирующий фактор).

Гематопоэтические факторы роста являются белками с архитектурой «левостороннего четырехспирального пучка» с ориентацией «вверх-вверх-вниз-вниз» с двумя перекрывающимися петлями, которые связывают между собой две первые и две последние спиральные структуры (Livnah О. et al., Science, 1999, 283 (5404): 987-90, и Ultsch M.H. et al., Blood, 1995, 86 (2): 540-7). Соответствующие RBD-домены (рецепторсвязывающие домены) обладают выраженной гомологией с ЭПО. Тромбопоэтин, эритропоэтин и гормон роста связываются с MPL-рецепторным комплексом. В публикации Youssoufianh et al. (Blood, 1993, 819, 2223-36, Structure, function and activation of the Erythropoietin receptor) описана продуктивная димеризация. Эритропоэтин и Тромбопоэтин, пептиды-миметики (ЕМР и DMP) и некоторые другие мелкие непептидные молекулы также являются функциональными, однако на более низкой молярной основе (публикации: Wrighton N.C. et al. Small peptides as mimetics of the protein hormone erythropoietin. Science, 1996, 273 (5274), 458-64, Cwirla S.E. et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science, 1997, 27653191696-9, и Qureshi S.A. et al. Mimicry of Erythropoietin by non peptid molecules. Proceedings National Academy of Sciences PNAS USA, 1999, 9621: 12156-61). Связывание ЕМР-1 с рецептором происходит на сайтах связывания, которые гомологичны «горячим пятнам» соединений рецептора гормона роста. Структурные последовательности тромбопоэтина подробно описаны в патентном документе ЕР 1201246 А2. Структурные последовательности эритропоэтина подробно описаны в Заявке на Европейский Патент ЕР 84308654.7.

В особенно полезной форме осуществления изобретения используется ЭПО, который стимулирует in vivo образование эритроцитов, деление и дифференцировку клеток-предшественников эритроцитов. ЭПО можно выделить из мочи или получить рекомбинантными способами. Получение рекомбинантного ЭПО человека подробно описано в публикации международной заявки WO 86/03520. Кроме того, ЭПО описан в следующих патентных документах: ЕР 0148605, ЕР 0205564, ЕР 0209539, ЕР 0267678 и ЕР 0411678.

Тем не менее, можно также использовать производные нативного или рекомбинантного ЭПО. Так, например, известно производное ЭПО (ЕР 0640619 В1), которое содержит дополнительные сайты гликозилирования и поэтому имеет более высокое содержание углеводов с 22 остатками сиаловой кислоты. Преимуществом этой модификации является то, что с увеличением содержания сиаловой кислоты увеличивается период полужизни ЭПО в плазме, так как только не сиалированный ЭПО способен связываться с рецептом галактозы в печени, участвующим в разрушении ЭПО. Хотя это производное ЭПО - известное под аббревиатурой NESP (novel erythropoiesis stimulating protein or darbepoetin, новый белок, стимулирующий эритропоэз, или дарбопоэтин) - имеет последовательность аминокислот, модифицированную в пяти положениях по сравнению с рекомбинантным ЭПО, оно по своему действию в отношении стимуляции образования эритроцитов соответствует нативному или рекомбинантному ЭПО (Fisher, J.W.: Erythropoietin: Physiology and Pharmacology Update. Erythropoietin, 2003, 1-14). Содержание патентного документа ЕР 0640619 В1 в полном объеме включено в данную работу посредством ссылки в отношении структуры и получения NESP.

Полезно также химически конъюгировать NESP с полиэтиленгликолем (ПЭГ) для еще большего увеличения периода полужизни in vivo без изменения биологической активности. Модифицированный таким образом NESP известен из патентного документа WO 01/76640, который в полном объеме включен в данную работу посредством ссылки в отношении структуры и получения этого производного ЭПО.

Из публикаций международных заявок WO 02/49673 А2 и WO 01/02017 известны также пегилированные производные ЭПО, которые, кроме увеличенного периода полужизни в плазме, обнаруживают также повышенную клиническую эффективность. Для этого, например, посредством направленного мутагенеза в аминокислотную последовательность ЭПО вводят 1-6 дополнительных сайтов гликозилирования. Это производное также можно использовать согласно настоящему изобретению.

Наряду с ЭПО и производными ЭПО с соответствующей биологической функцией можно также использовать согласно настоящему изобретению другие гематопоэтические факторы роста, например ТПО или его фрагменты.

ТПО (также известный под названием c-Mpl-лиганда, mpi-лиганда, мегапоэтина или фактора роста и развития мегакариоцитов) - это гематопоэтический фактор роста с комплексным биологическим действием, который, среди прочего, регулирует развитие и пролиферацию мегакариоцитов и тромбоцитов. Зрелый ТПО состоит из последовательности, содержащей 332 аминокислоты, при этом N-терминальная область (RBD-домен), содержащая 154 аминокислоты, обнаруживает значительную гомологию последовательности и структуры по отношению к ЭПО (20%-ная идентичность и дополнительно 25%-ное сходство). Более конкретно, ТПО содержит два в высокой степени «консервированных» цистеиновых мостика, которые также обнаруживаются в положениях, гомологичных ЭПО.

Ранее было показано, что N-терминальная область ТПО ответственна за связывание рецептора цитокина и индуцируемый этим связыванием сигнальный каскад по JAK/STAT-пути (Geddis A.E., Linden H.M., Kaushansky К.: Thrombopoietin: a pan-hematopoietic cytokine. Cytokine & Growth Factor Reviews, 13 (2002), 61-73). Поэтому, также можно использовать согласно настоящему изобретению только фрагмент ТПО, более конкретно - N-терминальный фрагмент.

Получение и характеристики ТПО и его вариантов были описаны, например, в патентных документах ЕР 1201246, WO95/21919, WO95/21920 и WO95/26746. Эти документы в полном объеме включены в данную работу посредством ссылок с целью раскрытия содержания изобретения. Действие ТПО на фетальные гепатоциты известно из исследований Е.Шмельцера (Е.Schmelzer: Optimierung der Kultur und Charakterisierung primarer embryonaler Hepatozyten der Ratte; диссертация, Геттинген, 2002).

В качестве вариантов ТПО можно использовать, например, описанные в публикации международной заявки WO95/21919 производные ТПО, или описанные в публикации международной заявки WO95/21920 аллельные варианты или видовые гомологи, или описанные в патентных документах WO95/26746 и ЕР 1201246 пегилированные ТПО, но не ограничиваясь этими вариантами. В качестве пегилированного ТПО в контексте настоящего изобретения понимают производные ТПО, которые связаны с органическим полимером, например полиэтиленгликолем, полипропиленгликолем или полиоксиалкиленом. Под другими вариантами ТПО понимают также такие производные ТПО, которые обладают идентичностью последовательности менее 100%, но, несмотря на это, сохраняют активность ТПО, предпочтительно - описанные в патентном документе ЕР 1201246. Обычно производные ТПО имеют последовательность, идентичную ТПО человека, по меньшей мере, на 70%, предпочтительно - по меньшей мере, на 75%, более предпочтительно - по меньшей мере, на 80%, и наиболее предпочтительно - по меньшей мере, на 85%, включая фрагменты, обладающие ТПО-активностью. Особо предпочтительной для задач настоящего изобретения ТПО-активностью является ускорение ТПО или его вариантами пролиферации, дифференцировки и/или созревания мегакариоцитов или предшественников мегакариоцитов в тромбоцитпродуцирующих формах этих клеток.

Согласно настоящему изобретению могут быть применены ЭПО и ТПО человека и животных. Так, например, ТПО человека гомологичен ТПО свиньи или мыши более чем на 70%.

В альтернативной форме осуществления изобретения можно вводить пациенту не сами гематопоэтические факторы роста, а факторы, которые индуцируют экспрессию факторов роста в травмированных тканях.

Так, например, в работе Nughton B.A. et al. (Age-related variations in hepatic regeneration and erythropoietin production in the rat. Am. J. Anat, июль 1977 г., 149(3):431-8) описано, что эритропоэтин образуется преимущественно в печени и селезенке в течение неонатальных фаз, и что при нефрэктомии феномен образования ЭПО в печени может снова усиливаться после гепатэктомии. Эта способность снижается с возрастом. Позже было установлено (Hepatic regeneration and erythropoietin production in the rat. Naughton B.A., Kaplan S.M., Roy M., Burdowski A.J., Gordon A.S., Piliero S.J. Science, 1977, Apr. 15; 196 (4287):301-2), что регенерирующая печень продуцирует эритропоэтин в ответ на гипоксию. Было обнаружено, что продукция ЭПО зависит от стадии регенерации печени, причем наибольшие концентрации были обнаружены в фазе наиболее интенсивного роста печени.

Dornfest et al. в 1981 г.описали (Recovery of an erythropoietin inducing factor from the regenerating rat liver. Dornfest B.S., Naughton B.A., Kolks G.A., Liu P., Piliero s.J., Gordon A.S. Ann. Clin. Lab. Sci., 1981 Jan-Feb, 1191):37-46), что печень является основным источником образования ЭПО-индуцирующего фактора. В случае нефрэктомии образование этого фактора в печени усиливается. Таким образом, можно обеспечить действие ЭПО согласно настоящему изобретению также опосредованно путем введения фактора, индуцирующего экспрессию ЭПО.

Эндогенную экспрессию ЭПО можно также обеспечить, например, посредством стимуляции секреции ЭПО среднедлительным или длительным введением гормона роста (ГР) (Sohmiya, M., Y. Kato. Effect of long-term administration of recombinant human growth hormone (rhGH) on the plasma erythropoietin (THJ) and haemoglobin levels in anaemic patients with adult GH deficiency. Clinical Endocrinology (2001)55, 749-754).

Конкретные концентрации факторов роста в растворе могут быть равны от приблизительно 1 нг/мл до приблизительно 100 нг/мл, предпочтительно от приблизительно 10 нг/мл до приблизительно 50 нг/мл, особо предпочтительно от приблизительно 10 нг/мл до приблизительно 20 нг/мл. Однако в случае локального нанесения (местного применения) концентрации факторов роста могут также быть в несколько раз выше.

Гематопоэтические факторы роста можно успешно применять для культивирования культур тканей in vitro. При этом клетки культивируют в устройствах, специально предназначенных для культивирования тканей, с применением соответствующих способов, например на сетке с размером ячеек, равным 500 меш, которая обеспечивает постоянное образование новых дочерних агрегатов гепатоцитов. Особо предпочтительными in vitro являются комбинации ЭПО и гормона роста.

Более конкретно, можно использовать бесконтактные, управляемые автоматически или вручную насосные системы, которые представляют собой, например, плунжерные насосы, или создавать направленные потоки за счет сжатия шлангов магнитным полем или сжатым воздухом. В присутствии эндотелиальных клеток напряжение сдвига в перфузируемом биореакторе может привести к спонтанному образованию скоплений эндотелиальных клеток на поверхностях агрегата, что может быть полезным для дальнейшего применения.

Для инкапсулирования подходят известные специалисту в данной области материалы, в которые, например, встроены структурированные формы или пространства, которые обеспечивают возможность структурного роста или увеличения in situ. Альтернативно, капсулы могут быть устранены, и эндотелизация, а за счет этого - оптимальная гемосовместимость, могут быть обеспечены, например, в присутствии эндотелиальных клеток.

Введение ЭПО или ТПО согласно настоящему изобретению приводит, либо отдельно, либо, при больших структурных дефектах, в сочетании с опорными материалами, к биологическому замещению ткани. Эти материалы-носители могут быть заселены клетками in vitro или экстракорпорально, могут быть биологически моделируемыми (биодеградиеруемыми), и, в идеальном случае, микро- и макроструктурно и биохимически они должны быть как можно более сходными с замещаемой структурой. Биохимическая близость или идентичность включает в себя реконструкцию in vivo состава с применением коллагенов и белков матрикса (эластина, фибронектина и всех компонентов матрикса организма в известной форме, специфической для данной ткани).

Стволовые клетки могут быть получены из различных источников, имеющихся в организме пациента: из костного мозга, периферической крови, жировой ткани, самой ткани, пуповинной крови или ткани. Соответственно, могут быть получены аллогенные стволовые клетки, но они обладают иммунологическими недостатками. Можно использовать эмбриональные клетки, но они также обладают соответствующими недостатками.

В особо предпочтительной форме осуществления изобретения процесс структурированного роста культивируемых клеток можно индуцировать с помощью матрикса, покрытого факторами роста согласно настоящему изобретению. Для этого матрикс можно последовательно обработать одним или несколькими вышеназванными факторами роста.

Если речь идет о биологическом матриксе, то он обычно является имплантатом (стентом, пластырем или катетером), трансплантатом (например трансплантатом кожи), материалом-носителем для роста клеток, например так называемым медленно растворяющимся материалом (например гидрогелем на основе фибрина, и/или полимеров, например таких, как полилактиды или полигидроксиалканоаты, и/или альгинаты), материалом, заменяющим кость (например, трикальцийфосфатом) аллогенной, аутологичной или ксеногенной лишенной клеток или не лишенной клеток тканью (например, сердечным клапаном, венозным клапаном, артериальным клапаном, кожей, сосудом, аортой, сухожилием, роговицей, хрящом, костью, трахеей, нервом, мениском, межпозвоночным диском, мочеточником, уретрой или мочевым пузырем (см., например, ЕР 0989867 или ЕР 1172120)), или матриксом (например, матриксом из ламинина, коллагена IV и/или матригеля), или, предпочтительно, подпитывающим слоем, например, таким как подпитывающий слой коллагена I, 3T3 и/или MRC-5, или коллагеновым флисом.

Биологический матрикс предпочтительно заранее заселяют специфичными для данной ткани клетками, клетками-предшественниками, клетками костного мозга, периферической крови, жировой ткани и/или фиброзной ткани, например зрелыми клетками-предшественниками из костного мозга взрослых людей. Предварительное заселение приводит к тому, что процесс регенерации начинается уже in vitro, a после имплантации матрикса в организм время регенерации in vivo сокращается.

Используемые матриксы можно также дополнительно активировать. Активацию биологического матрикса или структуры-носителя можно осуществить, например, посредством плазменной ионизации, например с помощью перекиси водорода, или посредством лазерной активации.

Альтернативно, можно нанести покрытие из слоя биодеградирующего (био)полимерного материала, который содержит один или несколько вышеуказанных факторов роста. Подходящими для этого являются, например, фибрин, плазма, кровь, коллаген и/или полилактиды.

Способ согласно настоящему изобретению особенно хорошо подходит для зрелых клеток, то есть первично дифференцированных клеток, которые больше не имеют эмбрионального или фетального фенотипа. Он особенно хорошо подходит для зрелых клеток человека, например для зрелых прогениторных клеток, тканеспецифических клеток, предпочтительно - остеобластов, фибробластов, гепатоцитов и/или гладкомышечных клеток.

Кроме прекращения или снижения добавления вышеописанных факторов роста к культуре, для завершения процесса роста согласно настоящему изобретению также пригодны соматостатин, и/или TGF-бета (трансформирующий фактор роста бета), и/или простагландины.

Особенным преимуществом является то, что способы согласно настоящему изобретению можно использовать местно in vivo. Для этого можно нанести факторы роста, например, на поверхность резекции органа (например, печени). Их можно нанести на поверхность или локально или системно с помощью катетера. В случае резекции печени их можно альтернативно или дополнительно ввести до, во время или после вмешательства. Также можно инъецировать факторы роста (например, для стимуляции регенерации хряща) непосредственно в пораженную ткань или сустав. При этом факторы роста через синовиальную жидкость могут непосредственно воздействовать на образование новой структуры хряща.

В конкретной форме осуществления изобретения дополнительно к гематопоэтическим факторам роста можно вводить один или более из следующих факторов роста: «трансформирующий фактор роста бета» (TGF-бета), простагландины, гранулоцитарный (макрофагальный) колониестимулирующий фактор (G(M)-CSF), «рилизинг-фактор гормона роста» (GHRH), «тиреотропин-рилизинг-гормон» (TRH), «гонадотропин-рилизинг-гормон» (GnRH), «кортикотропин-рилизинг-гормон» (CRH), допамин, «антидиуретический гормон» (ADH), окситоцин, пролактин, адренокортикотропин, тропин бета-клеток, лутротропин и/или вазопрессин, или дополнительно вводить один или несколько факторов регенерации нервов, предпочтительно - «фактор роста нервов» (NGF), и/или один или несколько факторов регенерации сосудов, предпочтительно - «фактор роста сосудистого эндотелия» (VEGF) и/или «тромбоцитарный фактор роста» (PDGF).

Гематопоэтические факторы роста вводят парентерально в виде инъецируемых микросфер, распадающихся частиц, полимерных соединений (с полипептидом, полигликолевой кислотой), липосом и мелких частиц. Также можно использовать инъецируемые или имплантируемые устройства для введения лекарственных средств. Вещества можно также ввести посредством ингаляции, подкожной и внутримышечной инъекции или - в случае местного применения - ввести с помощью накожного пластыря.

Кроме того, можно смешать с пластырями вещества, которые вызывают местную гиперемию и за счет этого повышают проницаемость кожи (например, пчелиный яд). Гиперионные структуры с прямым соединением с ЭПО или без него или с покрытием из солей могут лучше транспортироваться через кожные барьеры и могут связываться с преимущественно положительно ионизированными структурами. Возможна также отрицательная ионизация. Факторы можно применять совместно с миндальным маслом или маслом жожоба для улучшения транспорта через слизистые оболочки в области кишечника или через кожу.

Для преодоления барьеров для транспорта (слизистой ротовой полости, желудка, кишечника, других слизистых оболочек, роговицы) возможно также связывание с полиэтиленгликолем (ПЭГ).

Известно, что из белков можно приготовить смешанные препараты. Возможны суспензии, гелевые эмульсии, твердые соединения, дегидратированные или лиофилизированные порошки. Факторы роста можно абсорбировать на частицах или инкапсулировать.

Особенно полезным может быть применение для регенерации тканей стволовых клеток (клеток-предшественников, в прямом смысле этих слов) совместно с ЭПО/ТПО, чтобы заметно ускорить пополнение клеток из 4 основных типов тканей для процесса регенерации. ЭПО/ТПО и другие вышеуказанные факторы можно наносить в виде смеси со стволовыми клетками и, например, фибриновым клеем в виде опорного матрикса. При необходимости можно устранить опорный матрикс или заменить его более структурированным и оформленным матриксом. Факторы можно также вводить системно или местно без какого-либо биологического опорного матрикса, например в виде водной суспензии.

Введение ЭПО согласно настоящему изобретению улучшает регенерацию тканей за счет тканеспецифического формирования стволовых клеток и дифференцировки после их размножения и интеграции и координирует рост основных типов тканей.

СВЕДЕНИЯ. ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

I. Области применения

1. Плоский эпителий

ЭПО применяется согласно настоящему изобретению для поддержки образования базальных мембран (внеклеточного опорного слоя, находящегося под эпителием). ЭПО поддерживает образование краевых областей сосочков.

ЭПО применяется согласно настоящему изобретению для поддержки образования железистого эпителия. ЭПО приводит к регенерации плоского кубического или цилиндрического эпителия (плоский эпителий пищевода, высокоцилиндрический эпителий семенных протоков, переходный эпителий мочевого пузыря).

Благодаря ЭПО в процессе структурного роста происходит повторное формирование десмосом, то есть «соединительных мостиков» между клетками и прилежащими структурами. Также происходит образование на эпителии так называемых микровилл, например в тонком кишечнике (придатках яичек, трахее).

ЭПО оказывает прямое воздействие на регенерацию однослойного плоского эпителия, эндотелиальной выстилки сосудов сердца, кровеносных и лимфатических сосудов и высокопризматического эпителия (желудок, тонкий и толстый кишечник, желчный пузырь, яйцеводы, матка). ЭПО применяется согласно настоящему изобретению для образования двуслойного эпителия (слюнные железы ротовой полости, носослезный канал, проток придатка яичка, семенные протоки). Также ЭПО применяется согласно настоящему изобретению для образования высокопризматического эпителия (полость носа, носоглотка, гортань, трахеобронхиальное дерево, уретра, евстахиева труба) и для образования неороговевающего и ороговевающего плоского эпителия. Структурирующий аспект регенерации паренхимы под действием ЭПО способствует образованию экзокринных желез. Сюда относятся, среди прочего, поджелудочная железа, железы эпителия тонкого кишечника (бокаловидные клетки, подчелюстная слюнная железа, островковые клетки, продуцирующие инсулин). ЭПО способствует также регенерации эндокринных желез.

2. Соединительная ткань

ЭПО может восстанавливать основные компоненты соединительной ткани в координации с окружающими структурами паренхимальных желез. Компонентами, на которые оказывается влияние, являются основное вещество (глюкозаминогликаны), координация с так называемыми плазматическими клетками, жировыми клетками, кровеносными сосудами и окружающими их гладкомышечными клетками, а также с клетками соединительной ткани, фибробластами, тучными клетками, коллагеновыми и эластиновыми волокнами и расположенными между ними макрофагами (а также с купферовскими клетками, Pit- и lto-клетками в печени) и клетками эндотелия капилляров. Капилляры содержат только выстилку, состоящую из эндотелиальных клеток.

Однако ЭПО оказывает и более широкое координирующее влияние на описываемую микросреду. Она при травматических повреждениях переходит в инициаторное состояние. ЭПО согласно настоящему изобретению можно вводить с терапевтической целью, если необходимо активировать эти инициаторные каскады после травматических повреждений. При этом ЭПО, как катализатор и системный и местный стимулятор регене