Структура канала для окон без конкуренции и запросов произвольного доступа с конкуренцией

Иллюстрации

Показать все

Изобретение относится к системам беспроводной связи, в которых обеспечиваются запланированные передачи данных, и позволяет уменьшить количество каналов возврата при отслеживании местоположения устройств связи. Описываются способы передачи информации о местоположении от абонента к повторителю. Абонент переключается с рабочего канала на канал возврата данных, передает запрос периодического или разового окна для передачи обновления и из информации о предоставлении в ответном оповещении определяет выделенное окно и кадр перед переключением обратно на рабочий канал. Раньше выделенного времени абонент переключается на канал возврата данных, подтверждает, остается ли он запланированным на передачу обновления, из оповещения повторителя, и если это так, то передает обновление местоположения либо в текущем, либо в зарезервированном окне. Оповещения от повторителя, в дополнение к информации о предоставлении, содержат идентификатор следующего окна, кадра и абонента, зарезервированного для использования этого окна. Абоненты могут быть выравнены или не выравнены по времени, и данные и каналы возврата данных могут быть синхронизированы или не синхронизированы. 15 з.п. ф-лы, 17 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее изобретение относится к способу и системе, в которых обеспечиваются запланированные передачи данных в системе связи.

УРОВЕНЬ ТЕХНИКИ

[0002] Системы беспроводной связи имеют в составе абонентов, которые могут быть мобильными или портативными радиоблоками, и стационарную инфраструктуру, посредством которой абоненты осуществляют связь в транкинговом режиме. Инфраструктура содержит, например, базовые станции и контроллеры. Абоненты являются географически рассредоточенными и обычно осуществляют связь с использованием разных базовых станций.

[0003] Типичные системы связи передают сообщения с речью, видео или другими данными (в дальнейшем называемыми просто "данными") между абонентами и базовыми станциями с использованием рабочих каналов, которые представляют собой заранее установленные частоты и временные интервалы. Рабочие каналы являются каналами с произвольным доступом и отличаются в зависимости от направления сообщений: входящий канал (или канал восходящей линии связи) используется для связи от абонента к базовой станции, а исходящий канал (или канал нисходящей линии связи) используется для связи от базовой станции к абоненту. Когда абонент желает передать данные другим абонентам, абонент сначала определяет состояние канала восходящей линии связи - то есть занят он или не занят. В системах ETSI-DMR (Цифровая мобильная радиосвязь Европейского института телекоммуникационных стандартов) канал нисходящей линии связи периодически передает пакетный сигнал CACH (Общий канал оповещений), который указывает состояние канала.

[0004] Во многих системах абоненту необходимо отслеживать канал восходящей линии связи в течение длительного периода времени перед попыткой передать данные. Как только абонент определяет, что канал восходящей линии связи не занят, абонент может попытаться передать данные сначала путем отправки к базовой станции запроса на передачу. Если большое количество абонентов использует один и тот же рабочий канал, то несколько абонентов могут попытаться передать эти запросы одновременно, вызывая конфликты между запросами. Базовые станции, принимающие несколько конфликтующих сообщений одновременно, обычно не отвечают на эти сообщения, поскольку они мешают друг другу, заставляя повторно передавать каждое сообщение. Вдобавок, системы связи обычно также требуют отправки подтверждающего сообщения к абоненту по исходящему каналу, чтобы подтвердить прием сообщения от абонента. Это увеличивает использование полосы пропускания в исходящем канале, а также дополнительно увеличивает количество времени, которое требуется для передачи данных от абонента.

[0005] Эти проблемы стали еще более сложными из-за недавней потребности в определении местоположения абонента с использованием Системы глобального позиционирования (GPS) или других систем. Так как информация о местоположении абонента представляет большую информационную нагрузку на канал из-за ее частых передач, данные о местоположении могут передаваться по отдельному каналу с произвольным доступом, чтобы минимизировать влияние, которые данные о местоположении могли бы оказывать на другой поток данных, например голосовой трафик. Однако пропускная способность этого отдельного канала также ограничена вышеупомянутыми факторами, то есть процедурами доступа к каналу (которые занимают около 540 мс) и вероятностью конфликта. Моделирование в одном примере (в котором используется протокол DMR ETSI, использующий FEC с половинной скоростью, передачами являются 6 пакетных сигналов и имеется окно конфликта доступа к каналу в 150 мс) показывает, что при отправке сообщений местоположения по отдельному каналу следует предпринимать не более 20 обновлений в минуту на канал, чтобы целевая вероятность успеха была 93% или выше (что обычно считается приемлемым уровнем). Хотя обосновано, когда отслеживаются небольшие группы абонентов, это становится весьма проблематичным, если нужно отследить местоположения большого количества абонентов (например, больше нескольких сотен). Эта ситуация может возникать, например, когда правительственные органы (федеральные, относящиеся к штату или местные) хотят отследить назначенные устройства связи в аварийной службе или других государственных транспортных средствах. Кроме того, в других отраслях промышленности, таких как транспорт (например, автомобильные перевозки), коммунальные предприятия, производство, гостиничный бизнес, розничная торговля, авиаперевозки, строительство, вневедомственная охрана или складское хранение, может появиться потребность в применении такого отслеживания. Однако в этом случае количество инфраструктурного оборудования, применяемого для обеспечения отслеживания наряду с обеспечением приемлемого уровня успеха для запросов местоположения, становится большим и соответственно дорогостоящим.

[0006] Поскольку вполне вероятно, что потребность в отслеживании местоположения будет только увеличиваться и вследствие этого увеличится количество отслеживаемых устройств, то желательно предоставить способ и систему для отслеживания местоположения с использованием канала (каналов) возврата данных, в которых уменьшается количество каналов возврата и количество применяемой инфраструктуры, а соответственно и стоимость и в которых минимизируется количество времени для доступа к каналу.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0007] Прилагаемые чертежи, на которых одинаковые позиционные обозначения относятся к одинаковым или функционально сходным элементам на всех отдельных изображениях, вместе с подробным описанием приведенным ниже включаются в описание изобретения, образуют его часть и служат для дополнительной иллюстрации вариантов осуществления идей и объяснения различных принципов и преимуществ таких вариантов осуществления.

[0008] Фиг. 1 иллюстрирует вариант осуществления системы связи.

[0009] Фиг. 2 иллюстрирует внутреннюю блок-схему варианта осуществления устройства связи.

[0010] Фиг. 3 иллюстрирует один вариант осуществления блок-схемы способа создания и передачи обновлений местоположения.

[0011] Фиг. 4 иллюстрирует один вариант осуществления структуры канала.

[0012] Фиг. 5A иллюстрирует один вариант осуществления планирования в суперкадре данных; Фиг. 5B иллюстрирует другой вариант осуществления планирования в суперкадре.

[0013] Фиг. 6 иллюстрирует один вариант осуществления логической структуры каналов возврата данных.

[0014] Фиг. 7 иллюстрирует один вариант осуществления оповещения, содержащего предоставление.

[0015] Фиг. 8 иллюстрирует один вариант осуществления оповещения, которое не содержит предоставления.

[0016] Фиг. 9 иллюстрирует один вариант осуществления запроса от абонента.

[0017] Фиг. 10A иллюстрирует один вариант осуществления оповещения, содержащего предоставление, но не выделение следующего окна; Фиг. 10B иллюстрирует один вариант осуществления оповещения, не содержащего ни предоставления, ни выделения следующего окна.

[0018] Фиг. 11 иллюстрирует один вариант осуществления увеличения окна планировщика.

[0019] Фиг. 12 иллюстрирует один вариант временного распределения (тактирования) для запросов и предоставлений.

[0020] Фиг. 13 иллюстрирует один вариант временного распределения обновления местоположения при буферизации.

[0021] Фиг. 14 иллюстрирует один вариант временного распределения для запросов и предоставлений при буферизации.

[0022] Фиг. 15 иллюстрирует один вариант реализации сообщения только с предоставлением, используемого, когда пустые окна применяются для обеспечения предоставлений.

[0023] Компоненты устройства и способа представлены, где это уместно, с помощью общепринятых символов на чертежах, показывающих только те характерные подробности, которые имеют отношение к пониманию показанных вариантов осуществления так, чтобы не мешать раскрытию изобретения деталями, которые будут очевидны обычным специалистам в данной области техники, имеющим выгоду от описания в этом документе. Соответственно, могут присутствовать другие элементы, например известные специалисту в данной области техники.

ПОДРОБНОЕ ОПИСАНИЕ

[0024] Предоставляются система и способ, в которых абоненты используют вспомогательный (возвратный) канал для планирования и передачи обновлений повторителю. Канал структурируется для поддержки окон связи без конкуренции, во время которых информация о местоположении передается повторителям - то есть конкретное отличное окно назначается каждому абоненту. Начальный запрос для определения и назначения окна связи является запросом произвольного доступа с конкуренцией. Окно связи включает в себя несколько временных интервалов, по меньшей мере один из которых остается неназначенным, и в течение этого времени повторитель транслирует идентификационную информацию и информацию о назначении для следующего окна связи, а также новую информацию о назначении запрашивающему абоненту. Количество окон, назначенных в течение конкретного периода времени (например, кадра или суперкадра данных), определяется частотой обновления, запрошенной абонентом в запросе.

[0025] Хотя в этом документе в целом описываются периодические и разовые обновления местоположения, аналогичные методики могут использоваться для планирования периодических или разовых передач данных других типов, например речевой или видеоинформации либо сообщений Системы реакции аудитории (ARS), которые могут обеспечиваться повторителю посредством запланированного обновления (обновлений). Хотя обновления могут иметь любой тип данных, для удобства нижеследующее описание будет всецело относиться к обновлениям местоположения.

[0026] Фиг. 1 иллюстрирует сеть 100 общего пользования, которая включает в себя инфраструктуру 110. В инфраструктуре 110 имеется много рассредоточенных элементов, некоторые находятся рядом друг с другом, а другие расположены географически удаленно друг от друга. Такие элементы включают в себя один или несколько повторителей 120, 122, которые обеспечивают для абонента 130, расположенного в зоне обслуживания, обслуживаемой повторителями 120, возможность соединения с другими устройствами либо в той же зоне обслуживания, либо в другой зоне обслуживания посредством инфраструктуры 110. Повторитель ретранслирует информацию, которую он принимает. Повторители 120, 122 могут содержать множество повторителей, которые допускают прием и ретрансляцию сообщений между абонентами 130. Один повторитель 120 может находиться рядом/обслуживать конкретного абонента 130 и действовать в качестве подчиненного для планирующего повторителя 122 (называемого планировщиком в этом документе).

[0027] Инфраструктура 110 также может содержать различные другие элементы, не показанные на фиг. 1. Инфраструктура 110 может быть подключена к некоторому количеству дополнительных источников контента, например к Интернету или различным корпоративным сетям, и может содержать несколько взаимосвязанных зон, содержащих контроллер зоны, базовые пункты и серверы данных. Инфраструктура 110 также может быть связана с коммутируемой телефонной сетью общего пользования (PSTN), пейджинговой сетью или факсимильным аппаратом.

[0028] Абоненты 130 могут быть мобильными или портативными беспроводными радиоблоками, сотовыми радиотелефонами или любым другим типом устройства, которое может осуществлять беспроводную связь с инфраструктурой. Примеры абонентов включают в себя сотовые телефоны, персональные цифровые помощники или устройства связи, используемые персоналом служб экстренной помощи, и они могут соединяться с другими устройствами, такими как видеотерминалы, портативные компьютеры или т.п. Другие элементы, например контроллер, могут использоваться для распределения радиочастотных (RF) ресурсов связи между абонентами. Контроллер может располагаться в одном месте или может распределяться между повторителями.

[0029] Один или несколько серверов 140 определения местоположения могут располагаться в различных местах. Повторители 120, 122 после приема обновления местоположения от абонента 130 либо предоставляют эту информацию напрямую подходящему серверу (серверам) 140 определения местоположения (как показано сплошной линией) без повторения информации, либо повторяют эту информацию контроллеру 150, который затем предоставляет обновление местоположения серверу 140 определения местоположения (как показано пунктирной линией). Сервер (серверы) 140 определения местоположения хранит, отображает (или иным образом предоставляет) и/или манипулирует данными о местоположении, как необходимо. Конкретный набор абонентов 130 может ассоциироваться с сервером (серверами) 140 определения местоположения по географическим и/или логическим причинам. В различных вариантах осуществления сервер 140 определения местоположения может отслеживать всех абонентов 130 в одной или нескольких ограниченных географических областях (например, рядом с сервером 140 определения местоположения) или всех абонентов в одной или нескольких разговорных группах. Разговорные группы известны специалисту в данной области техники и соответственно не будут подробно описываться.

[0030] Вариант осуществления устройства связи, например абонента или повторителя, показан на блок-схеме на фиг. 2. Устройство 200 связи среди прочих компонентов может содержать процессор 202, приемопередатчик 204, включающий в себя схемы 206 передатчика и схемы 208 приемника, антенну 222, устройства 212 ввода/вывода, память 214 программ, буферную память 216, один или несколько интерфейсов 218 связи и съемное запоминающее устройство 220. Устройство 200 связи предпочтительно является интегральным блоком и может содержать по меньшей мере все элементы, изображенные на фиг. 2, а также любой другой элемент, необходимый устройству 200 связи для выполнения его электронных функций. Электронные элементы подключаются с помощью шины 224.

[0031] Процессор 202 включает в себя один или несколько микропроцессоров, микроконтроллеров, DSP, конечных автоматов, логических схем или любое другое устройство или устройства, которые обрабатывают информацию на основе рабочих команд или команд программирования. Такие рабочие команды или команды программирования хранятся в памяти 214 программ и могут включать в себя такие команды, как оценка и коррекция принятого сигнала, шифрование/дешифрование, и заключения о том, существует ли тревога, которые выполняются процессором 202, а также информацию, связанную с переданным сигналом, например модуляцию, частоту передачи или амплитуду сигнала. Память 214 программ может быть интегральной микросхемой памяти, содержащей любой вид оперативного запоминающего устройства (RAM) и/или постоянного запоминающего устройства (ROM), дискетой, ROM на компакт-диске (CD), накопителем на жестком диске, универсальным цифровым диском (DVD), картой флэш-памяти или любым другим носителем для хранения цифровой информации. Обычному специалисту в данной области техники понятно, что когда процессор 202 имеет одну или несколько функций, выполняемых конечным автоматом или логическими схемами, то память 214, содержащая соответствующие рабочие команды, может быть встроена в конечный автомат или логические схемы. Операции, выполняемые процессором 202 и остальной частью устройства 200 связи, подробно описываются ниже.

[0032] Схемы 206 передатчика и схемы 208 приемника дают возможность устройству 200 связи соответственно передавать и принимать сигналы связи. В этой связи схемы 206 передатчика и схемы 208 приемника включают в себя подходящие схемы, чтобы сделать возможным беспроводные передачи. Реализации схем 206 передатчика и схем 208 приемника зависят от реализации устройства 200 связи и устройств, с которыми оно должно осуществлять связь. Например, схемы 206, 208 передатчика и приемника могут быть реализованы как часть аппаратной и программной архитектуры устройства связи в соответствии с известными методиками. Обычному специалисту в данной области техники понятно, что большинство функций (если не все) схем 206, 208 передатчика или приемника можно реализовать в процессоре, например процессоре 202. Однако процессор 202, схемы 206 передатчика и схемы 208 приемника искусственно разделены в этом документе для облегчения понимания. Буферная память 216 может быть любым видом энергозависимой памяти, например RAM, и используется для временного хранения принятой или переданной информации.

[0033] Устройство 200 связи также может содержать ряд устройств ввода/вывода, например клавиатуру с буквенно-цифровыми клавишами, дисплей (например, LED, OLED), который отображает информацию о повторителе или средствах связи, подключенных к повторителю, программные и/или аппаратные клавиши, сенсорный экран, колесико, микрофон и динамик.

[0034] Как обсуждалось выше, абонентам становится все более желательным передавать обновления местоположения. По сравнению с речевыми или другими передачами данных, обновления местоположения имеют место относительно часто и в заранее установленные моменты. Хотя эти обновления являются сложными задачами из-за большого объема создаваемого трафика, благодаря их периодической природе их можно планировать, что делает использование канала более эффективным. Пользуясь преимуществом периодичности, была разработана структура канала, которая дает возможность достичь нужных эффективностей. Полезные аспекты способа включают в себя то, что он поддерживает непериодические незапланированные передачи (например, для осуществления запросов запланированных окон данных, а также регистрации присутствия Службой автоматической регистрации (ARS)). ARS является сигнализацией, отправленной от абонента к серверу, чтобы сообщить, что абонент присутствует в системе. К тому же в отличие от других систем повторители могут быть или не быть выравнены по времени (хотя абоненты остаются выравненными по повторителям), что обычно достигается с использованием специального канала управления. К сожалению, хотя некоторые системы имеют канал управления, посредством которого абоненты могут быть выравнены по времени (и программную поддержку), не все системы могут иметь такой канал управления.

[0035] Базовая блок-схема алгоритма способа создания и передачи обновлений местоположения показана на фиг. 3. Как очевидно, этот способ реализуется абонентом, хотя дополняющий способ, который работает с абонентом для достижения планирования канала, может быть реализован повторителем. При использовании в данном документе термин "рабочий канал" задается в качестве каналов восходящей линии связи/нисходящей линии связи по умолчанию, используемых, когда аудиоинформация, видеоинформация или другая информация передается к абоненту/от абонента. Рабочий канал может быть каналом прямого режима, каналом повторителя или каналом, который является частью транкинговой системы. Рабочий канал также может быть однопунктовым или многопунктовым каналом. Термин "канал возврата данных" является каналами восходящей линии связи/нисходящей линии связи, используемыми для предоставления связанной с обновлением местоположения информации (включающей данные о местоположении, например данные GPS, а также данные планирования). Хотя в этом документе описываются только обновления местоположения, по каналу возврата данных могут предоставляться другие типы данных (например, данные регистрации ARS и в будущем короткие сообщения).

[0036] Абонент включается и инициализируется на этапе 302. Абонент переключается на канал возврата данных нисходящей линии связи на этапе 304 и на этапе 306 ожидает приема оповещения от повторителя. Когда принимается оповещение, абонент на этапе 308 определяет из оповещения, когда передавать запрос, посредством этого выравнивая себя во времени с передачами от повторителя, и на этапе 310 ожидает этот момент. Когда этот момент наступает, на этапе 312 абонент передает повторителю запрос планирования обновления местоположения по восходящей линии связи.

[0037] Затем на этапе 314 абонент переключается на канал возврата данных нисходящей линии связи и ожидает оповещение или сообщение с предоставлением от повторителя в течение заранее установленного времени. Оповещение сообщает информацию всем слушающим абонентам (то есть настроенным на канал, по которому передает повторитель), тогда как сообщение с предоставлением является персонализированным. Оповещение подробнее будет описываться позже, но сообщает текущую и будущую информацию планирования. В других вариантах осуществления абонент может сначала ожидать оповещение, а затем запрашивать планирование после приема оповещения. Этот последний вариант осуществления позволяет абоненту определять посредством оповещения, что у повторителя нет свободных возможностей для планирования обновлений местоположения, и соответственно следует использовать дополнительный набор каналов возврата данных. Сообщение с предоставлением также будет подробнее описываться позже.

[0038] Когда абонент принимает оповещение, абонент на этапе 316 определяет, запланировал ли повторитель абонента (и когда) для периодических (или разовых) обновлений местоположения. Если оповещение не содержит этой информации, то абонент на этапе 318 определяет, достаточное ли количество оповещений (обычно 1-2) было передано повторителем, так что если запрос принят, то ответ был бы предоставлен в последнем оповещении.

[0039] Если абонент определяет, что не было принято достаточного количества оповещений, то он возвращается к этапу 314 и продолжает ожидать следующее оповещение. Если абонент определяет, что принято достаточное количество оповещений, то далее он определяет на этапе 320, затратил ли он слишком много времени в канале возврата данных (например, отправил повторителю очень много запросов), чтобы минимизировать пропущенные вызовы в рабочем канале. Если абонент определяет, что подтверждается другой запрос, то абонент возвращается к этапу 312. Если абонент определяет, что он отправил заранее установленное максимальное количество запросов (например, 2-3) или находится в канале возврата данных в течение максимального количества времени, ожидая подтверждения приема в оповещении, то абонент возвращается в рабочий канал (как правило, нисходящей линии связи) на этапе 322. Этот период времени может быть равен, например, 2-3 окнам (например, вплоть до 1 с), или до тех пор, пока абонент может удерживать данные в очереди, которая равна 53 секундам в одном варианте осуществления.

[0040] Как только абонент на этапе 316 определяет, что задается планирование, он переключается обратно в рабочий канал на этапе 322 и переходит к нормальной работе (после того, как вся остальная инициализация была завершена). В нормальной работе абонент на этапе 324 определяет, нужно ли передавать или принимать данные по рабочему каналу данных. Если абонент определяет, что данные нужно передавать или принимать, то на этапе 326 абонент передает или принимает эти рабочие данные трафика, а затем возвращается к этапу 324. Данные трафика рабочего канала, например аудиосвязь, имеют преимущество перед обновлениями местоположения, абонент сохраняет или отвергает информацию о местоположении, если наступает время для обновления местоположения, но передача/прием данных трафика рабочего канала продолжается. Хотя и не показано на фиг. 3, абонент может буферизовать или ставить в очередь данные, которые передаются/принимаются, чтобы выполнить обновление местоположения в подходящее время, а затем восстановить поток данных после завершения обновления местоположения.

[0041] Если абонент определяет, что никакие данные не нужно передавать или принимать, то на этапе 328 абонент определяет, наступило ли время обновления местоположения, запланированное повторителем, или сохранены ли им обновления местоположения для передачи. Если абонент определяет, что время обновления местоположения не наступило, или отсутствуют обновления местоположения для передачи, то абонент возвращается к этапу 324. Если абонент определяет, что наступило время обновления местоположения, или им сохранены обновления местоположения для передачи, то на этапе 330 абонент переключается на канал возврата данных нисходящей линии связи и на этапе 332 определяет, запланировано ли ранее время обновления местоположения для текущего обновления местоположения. Другими словами, время обновления местоположения может предназначаться либо для периодического обновления местоположения, либо для неповторяющегося обновления местоположения для вышеупомянутого сохраненного обновления местоположения, которое возникло во время других передач, последнее из которых обычно не планируется во время инициализации.

[0042] Если обновление местоположения является непериодическим (то есть для обновления местоположения в очереди), то абонент возвращается к этапу 312, где он планирует время обновления для разового запроса. Если обновление местоположения было ранее запланировано на этапе 332, то независимо от того, является ли обновление местоположения периодическим, на этапе 334 абонент ожидает следующего оповещения от повторителя и на этапе 336 определяет, по-прежнему ли абонент запланирован для передачи обновления на обозначенное время. Как описано ниже, если абонент остается неактивным (не передающим в выделенном ему окне) в течение длительного периода времени, то повторитель может освободить зарезервированное время обновления. Если абонент по-прежнему запланирован, то абонент переключается на канал возврата данных восходящей линии связи и на этапе 338 передает свое местоположение повторителю перед переключением обратно на рабочий канал нисходящей линии связи на этапе 332. Если абонент уже не запланирован, то абонент возвращается к этапу 312, где планирует новое время обновления. Эти этапы позволяют исключить по меньшей мере часть потерь, ассоциированных с традиционными процедурами доступа к каналу (время ожидания, ассоциированное с мониторингом и обнаружением состояния канала - например, 180 мс на мониторинг и 120 мс на состояние канала).

[0043] Хотя блок-схема алгоритма из фиг. 3 показывает только одно обновление, как упомянуто выше, если абонент передавал/принимал данные на этапе 326, то несколько обновлений местоположения могут быть помещены в очередь и отправлены повторителю. В одном варианте осуществления после перехода в канал возврата данных нисходящей линии связи и проверки, что зарезервированное окно является следующим, в пакетном сигнале, предшествующем запланированному обновлению местоположения, абонент передает запрос дополнительного разового окна. После завершения обновления местоположения абонент принимает предоставление в оповещении для предстоящего окна. Может быть желательно, чтобы вновь предоставленное окно находилось рядом во времени, поэтому абонент остается в канале возврата данных и передает второе обновление местоположения. Этот процесс может повторяться, пока не будут переданы все обновления местоположения в очереди, или в течение ограниченного заранее установленного количества времени, после чего абонент возвращается обратно в рабочий канал, чтобы проверить, нужно ли передавать/принимать какие-либо данные. В одном варианте осуществления разовые обновления местоположения могут планироваться в блоках времени, например, в периодах времени, в которых абонент, скорее всего, бездействует (отсутствуют передачи от абонента/к абоненту).

[0044] Один вариант осуществления структуры канала показан на фиг. 4. Структура канала содержит временные интервалы, окна, кадры и суперкадры данных. Временные интервалы задаются в различных стандартах и являются стандартными временными интервалами множественного доступа с временным разделением каналов (TDMA). В варианте осуществления, показанном на фиг. 4, каждый временной интервал занимает t1=30 мс (хотя в других вариантах осуществления это может меняться). Так как временные интервалы в канале TDMA функционируют полностью независимо друг от друга и могут не иметь одинаковой структуры организации окон, выравнивание между кадрами оповещения для одного временного интервала с кадрами оповещения другого временного интервала может не совпадать (хотя на фиг. 4 они показаны как выравненные). В других вариантах осуществления один или несколько временных интервалов могут применяться в некоторой другой компетенции, нежели предоставление запланированных обновлений местоположения. В одном конкретном примере используется структура ETSI-DMR, в которой используются 2 независимых временных интервала (соответственно t2=60 мс). Однако в других вариантах осуществления может использоваться большее количество временных интервалов.

[0045] Для абонентов каждый временной интервал, когда он не бездействует, занят пакетным сигналом с речью, данными или управляющей информацией (также называемой пакетным сигналом) на конкретной частоте в зависимости от того, какие временные интервалы занимает пакетный сигнал. В частности, пакетные сигналы в каждом временном интервале имеют длину 27,5 мс с защитным интервалом в 1,25 мс (незанятым либо используемым для передачи CACH) в каждом конце пакетного сигнала. Так как временные интервалы по существу могут функционировать независимо, для удобства нижеследующее обсуждение будет сосредоточено только на одном наборе временных интервалов, используемых абонентом (понимая, что существует один или несколько промежуточных независимых временных интервалов между каждым из временных интервалов в наборе временных интервалов).

[0046] Окно образуется из N временных интервалов, где N - целое число, и занимает период t2 времени в зависимости от N. В различных вариантах осуществления N может быть равно 1-10, и соответственно t3 в одном варианте осуществления варьируется от 60 мс до 600 мс. Окно задается как один или несколько временных интервалов больше минимального количества смежных временных интервалов, которые необходимы абоненту для передачи информационного сообщения повторителю по восходящей линии связи. В вариантах осуществления, описанных в этом документе, окно является одним временным интервалом больше необходимого минимального количества смежных временных интервалов. Первый временной интервал окна (показанный пунктирным прямоугольником на фиг. 4) используется повторителем для передачи оповещения по каналу возврата данных нисходящей линии связи. Абонент использует оставшиеся временные интервалы окна для передачи информационного сообщения по каналу возврата данных восходящей линии связи (и они также повторяются в нисходящей линии связи, когда размер окна N>1). Например, когда сообщение из 4 пакетных сигналов передается по каналу возврата данных восходящей линии связи, размер окна устанавливается в 5 временных интервалов (300 мс).

[0047] Кадр данных (или кадр) задается как последовательность всех полных окон в заранее установленном втором интервале. В одном примере этот второй интервал равен 30 с (t4=30 с). В этом варианте осуществления все окна в кадре имеют одинаковый размер. Количество полных окон в кадре зависит от размера окон, используемых в канале. Например, в кадре: имеется 100 окон (каждое по 300 мс) из 5 временных интервалов; 83 окна из 6 временных интервалов, в этом случае последние 2 временных интервала являются неиспользуемыми (и соответственно могут использоваться для других целей); 71 окно из 7 временных интервалов, в этом случае последние 3 временных интервала являются неиспользуемыми; 62 окна из 8 временных интервалов, в этом случае последние 4 временных интервала являются неиспользуемыми; 55 окон из 9 временных интервалов, в этом случае последние 5 временных интервалов являются неиспользуемыми; и 50 окон из 10 временных интервалов.

[0048] Суперкадр данных задается как последовательность из N кадров (в этом документе 16) и в одном примере имеет длину 8 минут (t5=8 минут). В различных вариантах осуществления существует 1600 окон из 5 временных интервалов, доступных в суперкадре данных, существует 1328 окон из 6 временных интервалов, доступных в суперкадре данных, и т.п. Значения t1-t5 в разных системах могут меняться.

[0049] Абоненты могут запрашивать моменты для обновления их данных о местоположении по желанию, например от одного раза в каждом кадре (то есть каждые 30 с) до одного раза в каждом суперкадре данных (то есть каждые 8 минут), и различные моменты между ними, 60 с, 120 с, 240 с. На фиг. 5A показан один вариант осуществления планирования, который встречается (и может быть сохранен в памяти повторителя или отдельного контроллера). В этом примере каждое окно имеет длину в 5 временных интервалов и соответственно, как упомянуто выше, каждый кадр содержит 100 окон.

[0050] Как показано, первый абонент SU1 планируется для обновления его данных о местоположении каждые 30 с, и ему было назначено первое окно каждого кадра. Второй абонент SU2 планируется для обновления его данных о местоположении каждые 120 с, и ему было назначено второе окно каждого четвертого кадра, начиная с начального кадра (то есть кадры 1, 5, 9, 13). Аналогичным образом третий абонент SU3 также планируется для обновления его данных о местоположении каждые 120 с, и ему было назначено третье окно каждого четвертого кадра, начиная со второго кадра (то есть кадры 2, 6, 10, 14). Четвертый абонент SU4 планируется для обновления его данных о местоположении каждые 60 с, и ему было назначено второе окно каждого второго кадра, начиная со второго кадра (то есть кадры 2, 4, 6…). Аналогичным образом пятый абонент SU5 также планируется для обновления его данных о местоположении каждые 60 с, и ему было назначено последнее окно каждого второго кадра, начиная с первого кадра (то есть кадры 1, 3, 5…). Шестой абонент SU6 планируется для обновления его данных о местоположении каждые 240 с, и ему было назначено четвертое окно каждого восьмого кадра (то есть два окна на суперкадр данных), начиная с начального кадра (то есть кадры 1 и 9). Наконец, седьмой абонент SU7 планируется для обновления его данных о местоположении каждые 480 с, и ему было назначено четвертое окно каждого шестнадцатого кадра (то есть только одно окно на суперкадр данных), начиная со второго кадра (то есть только кадр 2).

[0051] Как очевидно из показанного на фиг. 5A примера, могут поддерживаться 200 обновлений местоположения в минуту на временной интервал на повторитель, когда повторителем используется окно из 5 пакетных сигналов. Например, чтобы вместить 1200 абонентов, обновляющих свое местоположение один раз в минуту, используется только 3 канала (частотные пары), 3 повторителя и 6 станций управления (подключенных к серверу определения местоположения). Это является 90%-ным сокращением от предыдущих систем, в которых использовалось 30 каналов, 30 повторителей и 60 станций управления. В этих предыдущих системах загрузка канала 20 обновлениями в минуту формирует приблизительно 10,8 секунд трафика каждую минуту, приводя только к 18%-ному использованию канала: ~82% пропускной способности канала остается неиспользуемой, как упомянуто выше, чтобы минимизировать вероятность конфликтов произвольного доступа и потерянных передач местоположения до приемлемого уровня. В раскрытой в этом документе системе конфликты произвольного доступа практически устраняются, приводя к повышенной надежности, а использование канала повышается примерно с 18% до более чем 83% (5 из 6 временных интервалов теперь несут полезную нагрузку).

[0052] Планирование разовых и повторяющихся обновлений местоположения в суперкадре данных может выполняться произвольно или с использованием любого алгоритма, чтобы предоставить максимальному количеству абонентов нужную им частоту обновления. В варианте осуществления, показанном на фиг. 5B, окна в каждом кадре подразделяются на наборы окон (также называемые областями). Области могут единообразно иметь одинаковое количество окон или могут иметь разные количества окон (например, одна область, имеющая 20 окон, другая область, имеющая 10 окон, третья, имеющая 20 окон, четвертая, имеющая 40 окон, и т.д.). В каждой области некоторые окна (первое подмножество) зарезервированы для выполнения периодических запросов обновления местоположения, тогда как другие (второе подмножество) зарезервированы для выполнения разовых запросов обновления местоположения, так что периодические и разовые окна распределяются