Композиция полиамидной смолы
Иллюстрации
Показать всеИзобретение относится к композиции полиамидной смолы, которая имеет превосходные свойства, такие как термостойкость, стойкость к химическому воздействию, прочность, износостойкость и формуемость, и поэтому широко применяется для получения формованных изделий в качестве технической пластмассы. Композиция полиамидной смолы включает в себя: полиамид (А), содержащий единицу, представляющую собой диамин и содержащую не менее 70 мол.% единицы, представляющей собой п-ксилилендиамин, и единицу, представляющую собой дикарбоновую кислоту и содержащую не менее 70 мол.% единицы, представляющей собой линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода; и наполнитель (В). Полиамид (А) включает в себя полиамид, имеющий концентрацию атомов фосфора, составляющую от 50 до 1000 м.д., и значение YI, которое, по результатам дифференциального колориметрического анализа согласно JIS-K-7105, не превышает 10. Содержание наполнителя (В) составляет от 1 до 200 частей по массе в расчете на 100 частей по массе полиамида (А). Изобретение позволяет получить смолу с лучшей формуемостью и формованные изделия на основе этой полиамидной смолы с лучшей термической устойчивостью, низким поглощением воды превосходными скользящими свойствами. 2 н. и 18 з.п. ф-лы,4 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к композиции полиамидной смолы и, более конкретно, к композиции полиамидной смолы, включающей в себя полиамидную смолу, содержащую единицу, представляющую собой п-ксилилендиамин, и единицу, представляющую собой линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода, в качестве главных компонентов и конкретное количество наполнителя.
Предпосылки создания изобретения
Алифатический полиамид, типичными представителями которого являются найлон 6 или найлон 66, имеет превосходные свойства, такие как термостойкость, стойкость к химическому воздействию, прочность, износостойкость и формуемость, и поэтому его широко применяют в качестве технической пластмассы. Однако известно, что алифатический полиамид имеет и некоторые недостатки - в частности, его термостойкость недостаточна для изготовления деталей автомобильных двигателей, где полиамид подвергается воздействию высокой температуры, а вследствие абсорбции воды, у него низкая стабильность размеров. В последние годы особенно возросли требования к повышенной термостойкости деталей, применяемых в электротехнике и электронике, изготавливаемых по технологии монтажа на поверхности; традиционный алифатический полиамид непригоден и для изготовления электрических деталей для моторных отделений автомобилей. Поэтому необходимо разработать полиамид с повышенной термостойкостью, удовлетворительной стабильностью размеров и улучшенными механическими свойствами.
Кроме того, алифатический полиамид не только обладает превосходной стойкостью при трении, но и почти никогда не является причиной возгорания, даже в несмазанном состоянии. Кроме того, алифатический полиамид издает мало шума и обладает свойствами превосходного легковесного огнеупора и коррозионной стойкостью, вследствие чего его часто применяют в скользящих частях машин, таких как подшипники, зубчатые передачи, втулки, прокладки, валки и кулачковые детали. С другой стороны, в тех случаях, когда традиционный алифатический полиамид применяют в жестких условиях непрерывного интенсивного трения, повышенная температура, обусловленная теплотой трения, вызывает плавление и приводит к значительному истиранию, что мешает продолжению устойчивого фрикционного движения. Кроме того, вследствие абсорбции воды у традиционного алифатического полиамида изменяются размеры и ухудшаются механические свойства, поэтому требуется разработать способы преодоления этих недостатков.
Чтобы удовлетворить этим требованиям, в качестве технической пластмассы применяют полуароматический полиамид, называемый полиамидом 6Т, который имеет более высокую точку плавления, чем традиционный полиамид, и содержит полиамид, образованный из 1,6-гександиамина и терефталевой кислоты, в качестве главного компонента (см., например, Патентный документ 1). Однако полиамид, образованный из 1,6-гександиамина и терефталевой кислоты, имеет точку плавления около 370°C и поэтому не может быть использован в реальных условиях, поскольку для его формования из расплава требуется температура, равная температуре разрушения полимера, или более высокая. Поэтому в реальной практике проводят сополимеризацию адипиновой кислоты, изофталевой кислоты, ε-капролактама и т.п. (примерно при 30-40 моль%), получая полиамид с составом, обеспечивающим плавление при более низкой температуре (примерно 280-320°С), т.е. в температурном диапазоне, который дает возможность реально использовать такой полиамид.
Такая сополимеризация третьего компонента или четвертого компонента является эффективной для снижения точки плавления, но она может приводить и к снижению скорости кристаллизации и конечной степени кристаллизации. В результате этого не только ухудшаются физические свойства, такие как твердость, химическая стойкость и стабильность размеров при высокой температуре, но может уменьшиться и производительность (вследствие более длительного цикла формования). Для решения таких проблем было предложено преодолевать эти недостатки посредством подмешивания в полимер некоторого наполнителя, такого как стекловолокно, углеродное волокно, стеклянный порошок, или графитовый порошок (см., например, Патентные документы 2 и 3). Это может до некоторой степени преодолеть указанные проблемы, однако физические свойства, такие как твердость, химическая стойкость и стабильность размеров, в некоторых случаях остаются все же недостаточными.
В качестве полиамида с высокой точкой плавления, отличного от полиамида 6Т, предложен полуароматический полиамид, который образуют из смеси 1,9-нонандиамина и 2-метил-1,8-октандиамина и терефталевой кислоты и называют полиамидом 9T (см., например, Патентный документ 4). Полиамид 9Т имеет более высокую скорость кристаллизации, более высокую конечную степень кристаллизации и поглощает меньше воды, чем полиамид 6Т, который представляет собой полуароматический полиамид, применяемый на практике. Однако, как и в случае с недостатками, указанными выше, невозможно преодолеть и такие осложнения, как ухудшение физических свойств, обусловленное сополимеризацией, и уменьшение текучести расплава, обусловленное ароматической дикарбоновой кислотой, используемой в качестве главного компонента.
Список цитируемых документов
Патентная литература
[Патентный документ 1] JP 60-158220 A
[Патентный документ 2] JP 64-11073 B
[Патентный документ 3] JP 3-56576 B
[Патентный документ 4] JP 7-228776 A
Сущность изобретения
Техническая задача
Задачей, решаемой настоящим изобретением, является предоставление композиции полиамидной смолы, обладающей превосходными физическими свойствами, такими как термостойкость, механические свойства, низкое поглощение воды и стабильность размеров. Другой задачей, решаемой настоящим изобретением, является предоставление композиции полиамидной смолы, обладающей превосходными скользящими свойствами, а также такими физическими свойствами, как термостойкость, механические свойства и формуемость.
Решение поставленной задачи
Авторы настоящего изобретения провели интенсивные исследования, в результате которых нашли, что композиция смолы, получаемой при подмешивании конкретного количества наполнителя в полиамид, образованный из компонента, представляющего собой диамин и содержащего п-ксилилендиамин в качестве главного компонента, и из компонента, представляющего собой дикарбоновую кислоту и содержащего линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода, в качестве главного компонента, имеет превосходные физические свойства, такие как термостойкость, низкое поглощение воды, химическая стойкость, механические свойства и стабильность размеров. Кроме того, авторы настоящего изобретения провели дополнительные интенсивные исследования, в результате которых было также обнаружено, что композиция полиамидной смолы, которая включает в себя полиамид, образованный компонентом, представляющим собой диамин и содержащим п-ксилилендиамин в качестве главного компонента, и компонентом, представляющим собой дикарбоновую кислоту и содержащим линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода, в качестве главного компонента, конкретный волокнистый наполнитель и конкретный твердый смазочный материал, удовлетворительно поддерживает скользящие свойства даже в условиях высокой нагрузки и высокой скорости.
Настоящее изобретение соответствует следующим пунктам [1]-[3].
[1] Композиция полиамидной смолы, включающая в себя: полиамид (А), содержащий единицу, представляющую собой диамин и содержащую не менее 70 мол.% единицы, представляющей собой п-ксилилендиамин, и единицу, представляющую собой дикарбоновую кислоту и содержащую не менее 70 мол.% единицы, представляющей собой линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода; и наполнитель (В), где полиамид (А) включает в себя полиамид, имеющий концентрацию атомов фосфора, составляющую от 50 до 1000 м.д., и значение YI, которое, по результатам дифференциального колориметрического анализа согласно JIS-K-7105, не превышает 10, а содержание наполнителя (В) составляет от 1 до 200 частей по массе в расчете на 100 частей по массе полиамида (А).
[2] Композиция полиамидной смолы, включающая в себя: полиамид (А), содержащий единицу, представляющую собой диамин и содержащую не менее 70 мол.% единицы, представляющей собой п-ксилилендиамин, и единицу, представляющую собой дикарбоновую кислоту и содержащую не менее 70 мол.% единицы, представляющей собой линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода; волокнистый наполнитель (В1); и твердый смазочный материал (С), где полиамид (А) включает в себя полиамид, имеющий концентрацию атомов фосфора, составляющую от 50 до 1000 м.д., и значение YI, которое, по результатам дифференциального колориметрического анализа согласно JIS-K-7105, не превышает 10, а содержание волокнистого наполнителя (В1) и содержание твердого смазочного средства (С) составляют 5-200 частей по массе и 5-50 частей по массе, соответственно, в расчете на массу полиамида (А).
[3] Формованное изделие, содержащее композицию полиамидной смолы согласно вышеуказанным пунктам [1] или [2].
Полезные эффекты изобретения
Композиция полиамидной смолы для формуемого материала согласно настоящему изобретению является превосходной по многим физическим свойствам, таким как термостойкость, механические свойства (механическая прочность, твердость и ударопрочность), низкое поглощение воды и формуемость; она может быть сформована в виде пленки, листа или трубки, в результате чего она находит соответствующее применение в различных областях промышленности и в промышленных и хозяйственных продуктах. Конкретно, композиция смолы подходит для применения во многих электронных деталях и компонентах, монтируемых на поверхности, для которых требуется высокая термостойкость и точность размеров, в мелких и тонких изделиях, для которых требуется высокая скорость кристаллизации, высокая конечная степень кристаллизации и низкое поглощение воды, и во многих деталях машин, применяемых в условиях высокой температуры, от которых требуется термостойкость и твердость, таких как отражатели автомобильных фар и детали моторного отделения автомобиля. Кроме того, композиция полиамидной смолы согласно настоящему изобретению обладает превосходными скользящими свойствами и поэтому она подходит для применения во многих скользящих компонентах, таких как подшипники, зубчатые передачи, втулки, прокладки, валки и кулачковые детали.
Описание вариантов осуществления настоящего изобретения
Композиция полиамидной смолы согласно настоящему изобретению включает в себя полиамид (A), содержащий единицу, представляющую собой диамин, единицу, представляющую собой дикарбоновую кислоту, и наполнитель (В), описанный ниже. В данном случае термин «единица, представляющая собой диамин», означает единицу, представляющую собой заместитель, являющийся производным компонента сырьевого материала, представляющего собой диамин, а термин «единица, представляющая собой дикарбоновую кислоту», означает единицу, представляющую собой заместитель, являющийся производным компонента сырьевого материала, представляющего собой дикарбоновую кислоту.
<Полиамид (A)>
Полиамид (A) содержит единицу, представляющую собой диамин и включающую в себя не менее 70 мол.% единицы, представляющей собой п-ксилилендиамин, и единицу, представляющую собой дикарбоновую кислоту и включающую в себя не менее 70 мол.% единицы, представляющей собой линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода.
Единица, представляющая собой п-ксилилендиамин, содержится в единице, представляющей собой диамин, в концентрации, составляющей, предпочтительно, не менее 80 мол.%, более предпочтительно, не менее 90 мол.%, наиболее предпочтительно, 100 мол.%. Единица, представляющая собой линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода, содержится в единице, представляющей собой дикарбоновую кислоту, в концентрации, составляющей, предпочтительно, не менее 80 мол.%, более предпочтительно, не менее 90 мол.%, наиболее предпочтительно, 100 мол.%.
Полиамид (A) можно получать поликонденсацией компонента, представляющего собой диамин и включающего в себя не менее 70 мол.% п-ксилилендиамина, и компонента, представляющего собой дикарбоновую кислоту и включающего в себя не менее 70 мол.% линейной алифатической дикарбоновой кислоты, имеющей от 6 до 18 атомов углерода.
Как сырьевой материал полиамида (А), компонент, представляющий собой диамин, включает в себя п-ксилилендиамин в концентрации, составляющей не менее 70 мол.%, предпочтительно, не менее 80 мол.%, более предпочтительно, не менее 90 мол.%, особо предпочтительно, 100 мол.%. Когда концентрацию п-ксилилендиамина в компоненте, представляющем собой диамин, доводят до 70 мол.% или более, получаемый полиамид демонстрирует высокую точку плавления и высокую кристалличность и является пригодным для разнообразных областей применения, поскольку полиамид обладает превосходной термостойкостью, химической устойчивостью и т.п. и поглощает мало воды. Если концентрация п-ксилилендиамина в компоненте, представляющем собой диамин, применяемом в качестве сырьевого материала, составляет менее 70 мол.%, получаемый полиамид имеет пониженную термостойкость и химическую устойчивость и поглощает большее количество воды.
В качестве примеров компонента сырьевого материала, представляющего собой диамин, отличный от п-ксилилендиамина, можно назвать (но не ограничиваясь ими) алифатический амин, такой как 1,4-бутандиамин, 1,6-гександиамин, 1,8-октандиамин, 1,10-декандиамин, 1,12-додекандиамин, 2-метил-1,5-пентандиамин, 2,2,4-триметил-1,6-гександиамин, 2,4,4-триметил-1,6-гександиамин, 2-метил-1,8-октандиамин или 5-метил-1,9-нонандиамин, алициклический диамин, такой как 1,3-бис(аминометил)циклогексан, 1,4-бис(аминометил)циклогексан, циклогександиамин, метилциклогександиамин или изофорондиамин, ароматический диамин, такой как м-ксилилендиамин, или их смесь.
Компонент, представляющий собой дикарбоновую кислоту, как сырьевой материал полиамида (А) включает в себя линейную алифатическую дикарбоновую кислоту, имеющую от 6 до 18 атомов углерода, в концентрации, составляющей не менее 70 мол.%, предпочтительно, не менее 80 мол.%, более предпочтительно, не менее 90 мол.%, особо предпочтительно, 100 мол.%. Когда концентрацию линейной алифатической дикарбоновой кислоты, имеющей от 6 до 18 атомов углерода, доводят до 70 мол.% или более, получаемый полиамид демонстрирует текучесть при обработке в расплаве, высокую кристалличность и низкое поглощение воды и является пригодным для разнообразных областей применения, поскольку полиамид обладает превосходной термостойкостью, химической устойчивостью, обрабатываемостью в расплаве и стабильностью размеров. Если концентрация линейной алифатической дикарбоновой кислоты, имеющей от 6 до 18 атомов углерода, в компоненте, представляющем собой дикарбоновую кислоту, применяемом в качестве сырьевого материала, составляет менее 70 мол.%, получаемый полиамид имеет пониженную термостойкость, химическую устойчивость и обрабатываемость в расплаве.
Примеры линейной алифатической дикарбоновой кислоты, имеющей от 6 до 18 атомов углерода, могут включать в себя адипиновую кислоту, пимелиновую кислоту, пробковую кислоту, азелаиновую кислоту, себациновую кислоту, ундекандиовую кислоту, додекандиовую кислоту, тридекандиовую кислоту, тетрадекандиовую кислоту, пентадекандиовую кислоту и гексадекандиовую кислоту. Из них предпочтительной является, по меньшей мере, одна, выбранная из группы, включающей в себя азелаиновую кислоту, себациновую кислоту, ундекандиовую кислоту и додекандиовую кислоту, а особо предпочтительными являются себациновая кислота и/или азелаиновая кислота. В тех случаях, когда применяют алифатическую дикарбоновую кислоту, имеющую не более 5 атомов углерода, такая дикарбоновая кислота имеет низкую точку плавления и низкую точку кипения и поэтому она отгоняется из реакционной системы во время проведения реакций поликонденсации, вследствие чего изменяется реакционное молярное соотношение между диамином и дикарбоновой кислотой, что приводит к ухудшению механических свойств и более низкой термостойкости получаемого полиамида. Кроме того, в тех случаях, когда применяют алифатическую дикарбоновую кислоту, имеющую не менее 19 атомов углерода, термостойкий материал получить невозможно, поскольку точка плавления полиамида оказывается значительно пониженной.
В качестве примеров дикарбоновой кислоты сырьевого материала, отличной от линейной алифатической дикарбоновой кислоты, имеющей от 6 до 18 атомов углерода, можно назвать, не ограничиваясь ими, малоновую кислоту, янтарную кислоту, 2-метиладипиновую кислоту, триметиладипиновую кислоту, 2,2-диметилглутаровую кислоту, 2,4-диметилглутаровую кислоту, 3,3-диметилглутаровую кислоту, 3,3-диэтилянтарную кислоту, 1,3-циклопентандикарбоновую кислоту, 1,3-циклогександикарбоновую кислоту, 1,4-циклогександикарбоновую кислоту, изофталевую кислоту, терефталевую кислоту, 2,6-нафталиндикарбоновую кислоту, 1,5-нафталиндикарбоновую кислоту, 1,4-нафталиндикарбоновую кислоту, 2,7-нафталиндикарбоновую кислоту или их смесь.
В качестве компонента сополимеризации, образующей полиамид (А), можно также применять лактам, такой как ε-капролактам или лауролактам, или алифатическую аминокарбоновую кислоту, такую как аминокапроновая кислота или аминоундекановая кислота, а также компоненты, представляющие собой диамины, и компоненты, представляющие собой дикарбоновую кислоту, если не ухудшается эффект настоящего изобретения.
Небольшое количество монофункционального соединения, обладающего реакционной способностью в отношении концевой аминогруппы или концевой карбоксильной группы полиамида, может быть добавлено в качестве модификатора молекулярной массы при поликонденсации полиамида (А). Примеры соединений, которые можно использовать для этого, могут включать в себя, не ограничиваясь ими, алифатические монокарбоновые кислоты, такие как уксусная кислота, пропионовая кислота, масляная кислота, валериановая кислота, капроновая кислота, каприловая кислота, лауриновая кислота, тридециловая кислота, миристиновая кислота, пальмитиновая кислота, стеариновая кислота и пивалиновая кислота, ароматические монокарбоновые кислоты, такие как бензойная кислота, толуиловая кислота и нафталинкарбоновая кислота, алифатические моноамины, такие как бутиламин, амиламин, изоамиламин, гексиламин, гептиламин и октиламин, ароматические-алифатические моноамины, такие как бензиламин и метилбензиламин и их смеси.
В тех случаях, когда при поликонденсации полиамида (А) применяют модификатор молекулярной массы, подходящее количество такого модификатора молекулярной массы варьируют, например, в зависимости от реакционной способности и точки кипения применяемого модификатора молекулярной массы и реакционных условий; обычно оно составляет примерно 0,1-10% по массе в расчете на общую массу компонента, представляющего собой диамин, и компонента, представляющего собой дикарбоновую кислоту, применяемых в качестве сырьевого материала.
Соединение, содержащее атом фосфора, предпочтительно, добавляют в систему поликонденсации полиамида (А) в качестве антиоксиданта для предупреждения окрашивания полиамида, вызываемого катализатором реакции поликонденсации и кислородом, присутствующими в системе поликонденсации.
Примеры соединений, содержащих атом фосфора, включают в себя соли щелочноземельных металлов и фосфорноватистой кислоты, соли щелочных металлов и фосфористой кислоты, соли щелочноземельных металлов и фосфористой кислоты, соли щелочных металлов и фосфорной кислоты, соли щелочноземельных металлов и фосфорной кислоты, соли щелочных металлов и пирофосфорной кислоты, соли щелочноземельных металлов и пирофосфорной кислоты, соли щелочных металлов и метафосфорной кислоты и соли щелочноземельных металлов и метафосфорной кислоты.
Их конкретные примеры могут включать в себя гипофосфит кальция, гипофосфит магния, фосфит натрия, гидрофосфит натрия, фосфит калия, гидрофосфит калия, фосфит лития, гидрофосфит лития, фосфит магния, гидрофосфит магния, фосфит кальция, гидрофосфит кальция, фосфат натрия, гидрофосфат натрия, дигидрофосфат натрия, фосфат калия, гидрофосфат калия, дигидрофосфат калия, фосфат магния, гидрофосфат магния, дигидрофосфат магния, фосфат кальция, гидрофосфат кальция, дигидрофосфат кальция, фосфат лития, гидрофосфат лития, дигидрофосфат лития, пирофосфат натрия, пирофосфат калия, пирофосфат магния, пирофосфат кальция, пирофосфат лития, метафосфат натрия, метафосфат калия, метафосфат магния, метафосфат кальция, метафосфат лития и их смеси. Из них предпочтительными являются гипофосфит кальция, гипофосфит магния, фосфит кальция, гидрофосфит кальция и дигидрофосфат кальция, более предпочтителен гипофосфит кальция. Следует отметить, что каждое из этих соединений, содержащих атом фосфора, может быть гидратом.
Количество соединения, содержащего атом фосфора, добавленного к системе поликонденсации полиамида (А), составляет от 50 до 1000 м.д., предпочтительно, от 50 до 400 м.д., более предпочтительно, от 60 до 350 м.д., особо предпочтительно, от 70 до 300 м.д. в единицах концентрации атомов фосфора в полиамиде (А). В том случае, когда концентрация атомов фосфора в полиамиде (А) составляет менее 50 м.д., антиоксидантный эффект этого соединения оказывается недостаточно выраженным, и композиция полиамидной смолы проявляет тенденцию к появлению окраски. Кроме того, в случае, когда концентрация атомов фосфора в полиамиде (А) составляет более 1000 м.д., стимулируется реакция гелеобразования в композиции полиамидной смолы, и в формованное изделие может примешиваться постороннее вещество (причиной чего, возможно, является соединение, содержащее атом фосфора).
Концентрацию атомов фосфора в полиамиде (А), предпочтительно, создают, по меньшей мере, одним видом соединения, содержащего атом фосфора, выбранного из группы, состоящей из соли щелочноземельного металла и фосфорноватистой кислоты, соли щелочного металла и фосфористой кислоты, соли щелочноземельного металла и фосфористой кислоты, соли щелочного металла и фосфорной кислоты, соли щелочноземельного металла и фосфорной кислоты, соли щелочного металла и пирофосфорной кислоты, соли щелочноземельного металла и пирофосфорной кислоты, соли щелочного металла и метафосфорной кислоты и соли щелочноземельного металла и метафосфорной кислоты; более предпочтительно, эту концентрацию создают, по меньшей мере, одним видом соединения, содержащего атом фосфора, выбранного из группы, состоящей из гипофосфита кальция, гипофосфита магния, фосфита кальция и дигидрофосфата кальция.
Кроме того, к системе поликонденсации полиамида (А), предпочтительно, добавляют модификатор скорости полимеризации в комбинации с соединением, содержащим атом фосфора. Для предупреждения окрашивания полиамида во время поликонденсации необходимо, чтобы присутствовало достаточное количество соединения, содержащего атом фосфора. Однако это соединение может вызвать образование геля полиамида, и поэтому, а также для регулирования скорости реакции амидирования, вместе с этим соединением, предпочтительно, применяют модификатор скорости полимеризации.
Примеры модификатора скорости полимеризации включают в себя гидроксиды щелочных металлов, гидроксиды щелочноземельных металлов, ацетаты щелочных металлов и ацетаты щелочноземельных металлов. Из них предпочтительны гидроксиды щелочных металлов и ацетаты щелочных металлов. Примеры модификатора скорости полимеризации включают в себя гидроксид лития, гидроксид натрия, гидроксид калия, гидроксид рубидия, гидроксид цезия, гидроксид магния, гидроксид кальция, гидроксид стронция, гидроксид бария, ацетат лития, ацетат натрия, ацетат калия, ацетат рубидия, ацетат цезия, ацетат магния, ацетат кальция, ацетат стронция, ацетат бария и их смеси. Из них предпочтительны гидроксид натрия, гидроксид калия, гидроксид магния, гидроксид кальция, ацетат натрия и ацетат калия; более предпочтительны гидроксид натрия, ацетат натрия и ацетат калия.
В том случае, когда к системе поликонденсации добавляют модификатор скорости полимеризации, тогда, для улучшения баланса между стимулированием и подавлением реакции амидирования, предпочтительное молярное отношение между атомом фосфора в соединении, содержащем атом фосфора, и модификатором скорости полимеризации (=[молярное число модификатора скорости полимеризации]/[молярное число атомов фосфора в соединении, содержащем атом фосфора]) составляет от 0,3 до 1,0, более предпочтительно, от 0,4 до 0,95, особо предпочтительно, от 0,5 до 0,9.
Способ полимеризации полиамида (А) может быть произвольным - например, таким как (а) поликонденсация в расплавленном состоянии; (b) так называемая твердофазная полимеризация, включающая в себя производство полиамида с низкой молекулярной массой посредством поликонденсации в расплавленном состоянии и термообработку полиамида, полученного в результате этого, в твердофазном состоянии; или (с) экструзионная полимеризация, включающая в себя производство полиамида с низкой молекулярной массой посредством поликонденсации в расплавленном состоянии и увеличение молекулярной массы, проводимое в расплавленном состоянии с применением экструдера-смесителя.
Способ поликонденсации в расплавленном состоянии конкретно не ограничен, и его примеры могут включать в себя: способ, включающий в себя проведение поликонденсации в расплавленном состоянии с одновременным удалением воды и водного конденсата посредством нагревания водного раствора найлоновой соли компонента, представляющего собой диамин, и компонента, представляющего собой дикарбоновую кислоту, при повышенном давлении; и способ, включающий в себя проведение поликонденсации при обычном давлении или в атмосфере сжатого пара посредством прямого добавления компонента, представляющего собой диамин, к дикарбоновой кислоте в расплавленном состоянии. В том случае, когда полимеризацию проводят посредством прямого добавления диамина к дикарбоновой кислоте в расплавленном состоянии, поликонденсацию осуществляют, регулируя реакционную температуру, так чтобы эта температура была не ниже точек плавления олигоамида и полиамида, образуемых посредством непрерывного добавления компонента, представляющего собой диамин, к фазе расплавленной дикарбоновой кислоты, поддерживая реакционную систему в однородном жидком состоянии. В том случае, когда при производстве продукта посредством вышеуказанного способа поликонденсации промывают внутреннее пространство аппаратуры (например, при изменении типа продукта), можно применять триэтиленгликоль, этиленгликоль, м-ксилилендиамин и т.п.
Полиамид, полученный поликонденсацией в расплаве, сначала извлекают и гранулируют, а затем сушат перед применением. Для дальнейшего увеличения степени полимеризации полиамид можно производить посредством твердофазной полимеризации. В качестве нагревательного устройства, применяемого для сушки или твердофазной полимеризации, можно использовать устройство с непрерывной термической сушкой, нагревательное устройство в виде вращающегося барабана, называемое сушильным барабаном, коническую сушилку или роторную сушилку и нагревательное устройство конической формы, оснащенное внутренней лопастью, называемое NautaMixer. Однако это устройство не ограничивается такими вариантами, и можно применять иные известные способы и устройства. В частности, для проведения твердофазной полимеризации полиамида, из вышеуказанных устройств, предпочтительно, выбирают нагревательное устройство в виде вращающегося барабана, поскольку эту систему можно герметизировать и тем самым стимулировать поликонденсацию в отсутствие кислорода, вызывающего появление окраски.
Полиамид (A) является менее окрашенным и менее гелеобразным. Кроме того, по результатам испытания, проведенного с использованием дифференциальной колориметрии согласно JIS-K-7105, полиамид (A) имеет значение YI, равное 10 или менее, предпочтительно, 6 или менее, более предпочтительно, 5 или менее, еще более предпочтительно, 1 или менее. Формованное изделие, полученное из композиции смолы, содержащей полиамид (А) со значением YI более 10, не является предпочтительным, поскольку это изделие имеет желтоватый цвет и поэтому его рыночная стоимость невысока.
Хотя имеются некоторые индикаторы степени полимеризации полиамида, обычно используют относительную вязкость. С точки зрения внешнего вида и возможности изготовления изделий, формованных из расплава, предпочтительная относительная вязкость полиамида (А) составляет от 1,8 до 4,2, более предпочтительно, от 1,9 до 3,5, еще более предпочтительно, от 2,0 до 3,0. Следует заметить, что относительная вязкость, используемая в настоящем документе, представляет собой отношение времени падения (t), которое измеряют при 25°C для раствора, полученного растворением 1 г полиамида в 100 мл 96%-ной серной кислоты, используя вискозиметр Кэннона-Фенске, к времени падения (t0), которое указанным выше способом измеряют для самой 96%-ной серной кислоты; она представлена следующим уравнением (1):
Относительная вязкость = t/t0 (1)
Предпочтительная среднечисленная молекулярная масса (Mn) полиамида (А), которую измеряют посредством гельпроникающей хроматографии (GPC), составляет от 10000 до 50000, более предпочтительно, от 12000 до 40000, еще более предпочтительно, от 14000 до 30000. Когда Mn регулируют в этом диапазоне, стабилизируется механическая прочность формованного изделия, изготовленного из полиамида, а сам полиамид имеет удовлетворительную вязкость расплава, необходимую для удовлетворительной обрабатываемости при формовании.
В то же время предпочтительная дисперсность (отношение среднемассовой молекулярной массы к среднечисленной молекулярной массе, Mw/Mn) находится в диапазоне от 1,5 до 5,0, более предпочтительно, от 1,5 до 3,5. Когда дисперсность устанавливают в этом диапазоне, улучшается текучесть расплава и стабильность вязкости расплава, результатом чего является удовлетворительная обрабатываемость при перемешивании расплава или формования из расплава. Кроме того, твердость такого полиамида является удовлетворительной, как и некоторые другие его физические свойства, такие как стойкость к поглощению воды, химическая устойчивость и сопротивление термическому старению.
<Наполнитель (B)>
Наполнитель (В), применяемый в композиции полиамидной смолы согласно настоящему изобретению, представляет собой, предпочтительно, по меньшей мере, один из членов, выбранных из группы, состоящей из волокнистого наполнителя (B1) и неорганического наполнителя (B2).
Примеры волокнистого наполнителя (B1) включают в себя органические и неорганические волокнистые наполнители. Примеры органического волокнистого наполнителя могут включать в себя полностью ароматическое полиамидное волокно и целлюлозное волокно. Примеры неорганического волокнистого наполнителя могут включать в себя стекловолокно, углеродное волокно на основе PAN или на основе пека и борное волокно. Их примеры могут также включать в себя: волокно из металла, такого как сталь, SUS, латунь или медь; и нитевидные или игольчатые кристаллы неорганического соединения, такого как титанат калия, борат алюминия, гипс, карбонат кальция, сульфат магния, сепиолит, ксонотлит или волластонит.
Примеры стекловолокна включают в себя бесщелочное боросиликатное стекловолокно и щелочное С-стекловолокно. Размер волокна конкретно не ограничен, и можно применять волокно диаметром от 3 до 30 мкм. Кроме того, можно применять длинное волокно, имеющее длину от 5 до 50 мм, или можно применять короткое волокно, имеющее длину от 0,05 до 5 мм.
Волокнистый наполнитель (B1) представляет собой, предпочтительно, по меньшей мере, один из членов, выбранных из группы, состоящей из стекловолокна, углеродного волокна, полностью ароматического полиамидного волокна, целлюлозного волокна, металлического волокна, нитевидных или игольчатых кристаллов неорганического соединения; более предпочтительно, он представляет собой, по меньшей мере, один из членов, выбранных из группы, состоящей из стекловолокна, углеродного волокна и нитевидных или игольчатых кристаллов неорганического соединения.
В частности, в том случае, когда композицию полиамидной смолы согласно настоящему изобретению используют для изготовления скользящей детали, для применения в качестве наполнителя (В) подходит, по меньшей мере, один вид волокнистого наполнителя (В1), выбранного из группы, состоящей из стекловолокна, углеродного волокна и нитевидных или игольчатых кристаллов неорганического соединения; особенно подходят для такого применения стекловолокно и/или углеродное волокно. В таком случае, для достижения превосходной точности формования и гладкости поверхности, можно применять неорганический порошковый наполнитель или ему подобный материал в комбинации с волокнистым наполнителем (В1).
В качестве неорганического наполнителя (В2) можно применять наполнители, имеющие разнообразные формы, такие как порошок, средний размер частиц и форма которых конкретно не ограничены. Их конкретные примеры могут включать в себя тальк, слюду, чешуйчатое стекло, волластонит, монтмориллонит, титанат калия, сульфат магния, сульфат кальция, сульфат бария, сепиолит, ксонотлит, нитрид бора, борат алюминия, стеклянные гранулы, карбонат кальция, карбонат магния, карбонат бария, кремнезем, каолин, глину, оксид титана, оксид цинка, гидроксид магния, гидроксид алюминия и их смеси. Из этих веществ подходящим для применения в качестве неорганического наполнителя (В2) является карбонат кальция. В то же время, для улучшения устойчивости к атмосферным воздействиям и стабильности размеров неорганический наполнитель (В2) можно применять в комбинации с волокнистым наполнителем (В1).
Наполнитель (В) можно применять без какой-либо обработки, но для улучшения межфазового сцепления полиамида (А) или для улучшения дисперсности поверхность наполнителя перед применением можно обрабатывать любым из разнообразных силановых связующих средств, титановых связующих средств, высших жирных кислот, сложных эфиров высших жирных кислот, амидов высших жирных кислот, солей высших жирных кислот, других поверхностно-активных веществ и т.п. Особо предпочтительным силановым связующим средством является связующее средство на основе аминосилана. Кроме того, в том случае, когда наполнитель (В) представляет собой волокнистый наполнитель (В1), этому наполнителю, для улучшения его обрабатываемости, можно вторично придавать крестообразную форму или форму пучков или обрабатывать средством, способствующим этому.
Количество смешиваемого наполнителя (В) составляет от 1 до 200 частей по массе, предпочтительно, от 5 до 200 частей по массе, более предпочтительно, от 10 до 150 частей по массе, еще более предпочтительно, от 20 до 100 частей по массе в расчете на 100 частей по массе полиамида (А). Если количество смешиваемого неорганического наполнителя составляет менее 1 части по массе в расчете на 100 частей по массе полиамидной смолы, эффект улучшения механической прочности, термостойкости и т.п. оказывается малым, тогда как в том случае, когда количество смешиваемого неорганического наполнителя превышает 200 частей по массе, ухудшается текучесть расплава, результатом чего является неудовлетворительная формуемость. В частности, в том случае, когда наполнитель (В) представляет собой волокнистый наполнитель (В1), предпочтительное количество этого смешиваемого волокнистого наполнителя (В1) составляет от 5 до 200 частей по массе, более предпочтительно, от 10 до 150 частей по массе, еще более